1
|
Abu Ali T, Anzengruber M, Unger K, Stadlober B, Coclite AM. Enhancement of the Sensing Performance of Devices based on Multistimuli-Responsive Hybrid Materials. ACS APPLIED MATERIALS & INTERFACES 2024; 16:61408-61418. [PMID: 37702609 PMCID: PMC11565566 DOI: 10.1021/acsami.3c08376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Accepted: 08/30/2023] [Indexed: 09/14/2023]
Abstract
Capturing environmental stimuli is an essential aspect of electronic skin applications in robotics and prosthetics. Sensors made of temperature- and humidity-responsive hydrogel and piezoelectric zinc oxide (ZnO) core-shell nanorods have shown the necessary sensitivity. This is achieved by using highly conformal and substrate independent deposition methods for the ZnO and the hydrogel, i.e., plasma enhanced atomic layer deposition (PEALD) and initiated chemical vapor deposition (iCVD). In this work, we demonstrate that the use of a multichamber reactor enables performing PEALD and iCVD, sequentially, without breaking the vacuum. The sequential deposition of uniform as well as conformal thin films responsive to force, temperature, and humidity improved the deposition time and quality significantly. Proper interlayer adhesion could be achieved via in situ interface activation, a procedure easily realizable in this unique multichamber reactor. Beyond the fabrication method, also the mechanical properties of the template used to embed the core-shell nanorods and the cross-linker density in the hydrogel were optimized following the results of finite element models. Finally, galvanostatic electrochemical impedance spectroscopy measurements showed how temperature and humidity stimuli have different effects on the device impedance and phase, and these differences can be the basis for stimuli recognition.
Collapse
Affiliation(s)
- Taher Abu Ali
- Graz
University of Technology, NAWI Graz, Institute
of Solid State Physics, 8010 Graz, Austria
- Joanneum
Research Forschungsgesellschaft mbH, MATERIALS
− Institute for Surface Technologies and Photonics, 8160 Weiz, Austria
| | - Marlene Anzengruber
- Graz
University of Technology, NAWI Graz, Institute
of Solid State Physics, 8010 Graz, Austria
| | - Katrin Unger
- Graz
University of Technology, NAWI Graz, Institute
of Solid State Physics, 8010 Graz, Austria
- Electronic
Sensors, Silicon Austria Laboratories GmbH, 8010 Graz, Austria
| | - Barbara Stadlober
- Joanneum
Research Forschungsgesellschaft mbH, MATERIALS
− Institute for Surface Technologies and Photonics, 8160 Weiz, Austria
| | - Anna Maria Coclite
- Graz
University of Technology, NAWI Graz, Institute
of Solid State Physics, 8010 Graz, Austria
| |
Collapse
|
2
|
Bibire T, Timofte DV, Dănilă R, Panainte AD, Yilmaz CN, Bibire N, Agoroaei L, Ghiciuc CM. Rifampicin-Loaded PLGA/Alginate-Grafted pNVCL-Based Nanoparticles for Wound Healing. APPLIED SCIENCES 2024; 14:9799. [DOI: 10.3390/app14219799] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
Abstract
The topical therapy with rifampicin (RF)-based formulations is beneficial for treating postoperative wound infections and to accelerate healing. Despite recent research highlighting the antibiotic’s significant anti-inflammatory properties, limited topical wound healing products are currently available. The present study aimed to prove that the newly synthesized nanoparticles based on grafted alginate and poly(N-vinylcaprolactam) (pNVCL) and poly-lactic-co-glycolic acid (PLGA) contribute to the healing process of a wound. The methods used were at first the synthesis of the copolymer of alginate and pNVCL via grafting from technique and radical polymerization followed by water-in-oil-in water (W/O/W) emulsification; as oil phase PLGA dissolved in dichloromethane (DCM) was used. The formed nanoparticles were than characterized. The loaded RF was determined to be 160 µg/mL for a 20 mg formulation and within a four-hour time frame approximately 10% of the total loaded amount was released. The inhibitory concentrations (IC50) were 192.1 µg/mL for the nanoparticle, 208.8 µg/mL for pure rifampicin, and 718.1 µg/mL for the rifampicin-loaded nanoparticles. Considering the double role rifampicin was used for, the result was considered satisfactory in the way that these formulations could be used predominantly for postoperative wound irrigation in order to avoid infections and to improve healing.
Collapse
Affiliation(s)
- Tudor Bibire
- Doctoral School, “Grigore T. Popa” University of Medicine and Pharmacy, 16 Universitatii Street, 700116 Iasi, Romania
| | - Daniel Vasile Timofte
- Department of Surgery, Faculty of Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, 16 Universitatii Street, 700116 Iasi, Romania
- St. Spiridon County Clinical Emergency Hospital, 1 Independentei Blvd., 700111 Iasi, Romania
| | - Radu Dănilă
- Department of Surgery, Faculty of Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, 16 Universitatii Street, 700116 Iasi, Romania
- St. Spiridon County Clinical Emergency Hospital, 1 Independentei Blvd., 700111 Iasi, Romania
| | - Alina-Diana Panainte
- Department of Analytical Chemistry, Faculty of Pharmacy, “Grigore T. Popa” University of Medicine and Pharmacy, 16 Universitatii Street, 700116 Iasi, Romania
| | - Cătălina Natalia Yilmaz
- Biochemistry Division, Department of Chemistry, Faculty of Science, Dokuz Eylül University, Kültür Mah. Cumhuriyet Bulv. No:144 Alsancak, 35210 Izmir, Turkey
| | - Nela Bibire
- Department of Analytical Chemistry, Faculty of Pharmacy, “Grigore T. Popa” University of Medicine and Pharmacy, 16 Universitatii Street, 700116 Iasi, Romania
| | - Luminița Agoroaei
- Department of Toxicology, Faculty of Pharmacy, “Grigore T. Popa” University of Medicine and Pharmacy, 16 Universitații Street, 700116 Iasi, Romania
| | - Cristina Mihaela Ghiciuc
- Department of Pharmacology, Faculty of Medicine, Clinical Pharmacology and Algeziology, Grigore T. Popa University of Medicine and Pharmacy, 16 Universitatii Street, 700116 Iasi, Romania
- St. Maria Clinical Emergency Hospital for Children, 62 Vasile Lupu Street, 700309 Iasi, Romania
| |
Collapse
|
3
|
Darvishi A, Ansari M. Thermoresponsive and Supramolecular Polymers: Interesting Biomaterials for Drug Delivery. Biotechnol J 2024; 19:e202400379. [PMID: 39380492 DOI: 10.1002/biot.202400379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2024] [Revised: 08/20/2024] [Accepted: 09/03/2024] [Indexed: 10/10/2024]
Abstract
How to use and deliver drugs to diseased and damaged areas has been one of the main concerns of pharmacologists and doctors for a long time. With the efforts of researchers, the advancement of technology, and the involvement of engineering in the health field, diverse and promising approaches have been studied and used to achieve this goal. A better understanding of biomaterials and the ability of production equipment led researchers to offer new drug delivery systems to the world. In recent decades, responsive polymers (exclusively to temperature and pH) and supramolecular polymers have received much attention due to their unique capabilities. Although this field of research still needs to be scrutinized and studied more, their recognition, examination, and use as drug delivery systems is a start for a promising future. This review study, focusing on temperature-responsive and supramolecular biomaterials and their application as drug delivery systems, deals with their structure, properties, and role in the noninvasive and effective delivery of medicinal agents.
Collapse
Affiliation(s)
- Ahmad Darvishi
- Department of Biomedical Engineering, Meybod University, Meybod, Iran
| | - Mojtaba Ansari
- Department of Biomedical Engineering, Meybod University, Meybod, Iran
| |
Collapse
|
4
|
Zhang H, Wang X, Yang X, Wu Z, Chen Q, Wei Q, Guo Y, Hu Q, Shen JW. NIR-triggered and Thermoresponsive Core-shell nanoparticles for synergistic anticancer therapy. J Control Release 2024; 374:194-204. [PMID: 39142356 DOI: 10.1016/j.jconrel.2024.08.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 08/07/2024] [Accepted: 08/11/2024] [Indexed: 08/16/2024]
Abstract
Recent advancements in cancer treatment have underscored the inadequacy of conventional monotherapies in addressing complex malignant tumors. Consequently, there is a growing interest in synergistic therapies capable of overcoming the limitations of monotherapies, leading to more personalized and effective approaches. Among these, the combination of photothermal therapy (PTT) and chemotherapy has emerged as a promising avenue for tumor management. In this study, we present a novel approach utilizing thermoresponsive mesoporous silica nanoparticles (MSN) as a delivery system for the chemotherapeutic drug doxorubicin. By incorporating photothermal agent copper sulfide (CuS) nanoparticles into the MSN, the resulting composite material exhibits potent photothermal properties. Furthermore, the integration of an upper critical solution temperature (UCST) polymer within the silica outer layer serves as a "gatekeeper", enabling precise control over drug release kinetics. This innovative nanomaterial effectively merges thermoresponsive behavior with PTT, thereby minimizing the collateral damage associated with traditional chemotherapy on healthy tissues. Moreover, in both in vitro studies using mouse breast carcinoma cells (4 T1) and in vivo experiments utilizing a 4 T1 tumor-bearing mouse model, our nanomaterials demonstrated synergistic effects, enhancing the anti-tumor efficacy of combined PTT and chemotherapy. With its remarkable photothermal conversion efficiency, robust stability, and biocompatibility, the UCST-responsive nanoplatform holds immense potential for clinical applications.
Collapse
Affiliation(s)
- Hong Zhang
- School of Pharmacy, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China
| | - Xiao Wang
- School of Pharmacy, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China
| | - Xiaorong Yang
- School of Pharmacy, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China
| | - Zehua Wu
- School of Pharmacy, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China
| | - Qin Chen
- School of Pharmacy, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China
| | - Qiaolin Wei
- School of Pharmacy, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China; Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China
| | - Yong Guo
- School of Pharmacy, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China; Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China.
| | - Quan Hu
- School of Pharmacy, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China; Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China.
| | - Jia-Wei Shen
- School of Pharmacy, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China; Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China.
| |
Collapse
|
5
|
Bibire T, Dănilă R, Yilmaz CN, Verestiuc L, Nacu I, Ursu RG, Ghiciuc CM. In Vitro Biological Evaluation of an Alginate-Based Hydrogel Loaded with Rifampicin for Wound Care. Pharmaceuticals (Basel) 2024; 17:943. [PMID: 39065793 PMCID: PMC11280071 DOI: 10.3390/ph17070943] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 07/10/2024] [Accepted: 07/11/2024] [Indexed: 07/28/2024] Open
Abstract
We report a biocompatible hydrogel dressing based on sodium alginate-grafted poly(N-vinylcaprolactam) prepared by encapsulation of Rifampicin as an antimicrobial drug and stabilizing the matrix through the repeated freeze-thawing method. The hydrogel structure and polymer-drug compatibility were confirmed by FTIR, and a series of hydrogen-bond-based interactions between alginate and Rifampicin were identified. A concentration of 0.69% Rifampicin was found in the polymeric matrix using HPLC analysis and spectrophotometric UV-Vis methods. The hydrogel's morphology was evaluated by scanning electron microscopy, and various sizes and shapes of pores, ranging from almost spherical geometries to irregular ones, with a smooth surface of the pore walls and high interconnectivity in the presence of the drug, were identified. The hydrogels are bioadhesive, and the adhesion strength increased after Rifampicin was encapsulated into the polymeric matrix, which suggests that these compositions are suitable for wound dressings. Antimicrobial activity against S. aureus and MRSA, with an increased effect in the presence of the drug, was also found in the newly prepared hydrogels. In vitro biological evaluation demonstrated the cytocompatibility of the hydrogels and their ability to stimulate cell multiplication and mutual cell communication. The in vitro scratch assay demonstrated the drug-loaded alginate-grafted poly(N-vinylcaprolactam) hydrogel's ability to stimulate cell migration and wound closure. All of these results suggest that the prepared hydrogels can be used as antimicrobial materials for wound healing and care applications.
Collapse
Affiliation(s)
- Tudor Bibire
- Doctoral School, Grigore T. Popa University of Medicine and Pharmacy, 16 Universitatii Street, 700116 Iasi, Romania;
- St. Spiridon County Clinical Emergency Hospital, 1 Independentei Blvd., 700111 Iasi, Romania;
| | - Radu Dănilă
- St. Spiridon County Clinical Emergency Hospital, 1 Independentei Blvd., 700111 Iasi, Romania;
- Department of Surgery, Faculty of Medicine, Grigore T. Popa University of Medicine and Pharmacy, 16 Universitatii Street, 700116 Iasi, Romania
| | - Cătălina Natalia Yilmaz
- Biochemistry Division, Department of Chemistry, Faculty of Science, Dokuz Eylül University, Kültür Mah. Cumhuriyet Bulv. No:144 Alsancak, 35210 Izmir, Turkey
| | - Liliana Verestiuc
- Department of Biomedical Sciences, Faculty of Medical Bioengineering, Grigore T. Popa University of Medicine and Pharmacy, 16 Universitatii Street, 700116 Iasi, Romania;
| | - Isabella Nacu
- Department of Biomedical Sciences, Faculty of Medical Bioengineering, Grigore T. Popa University of Medicine and Pharmacy, 16 Universitatii Street, 700116 Iasi, Romania;
- Petru Poni Institute of Macromolecular Chemistry, 41-A Grigore Ghica Voda Alley, 700487 Iasi, Romania
| | - Ramona Gabriela Ursu
- Department of Microbiology, Faculty of Medicine, Grigore T. Popa University of Medicine and Pharmacy, 16 Universitatii Street, 700116 Iasi, Romania;
| | - Cristina Mihaela Ghiciuc
- Department of Pharmacology, Faculty of Medicine, Clinical Pharmacology and Algeziology, Grigore T. Popa University of Medicine and Pharmacy, 16 Universitatii Street, 700116 Iasi, Romania;
- St. Maria Clinical Emergency Hospital for Children, 62 Vasile Lupu Street, 700309 Iasi, Romania
| |
Collapse
|
6
|
Gola A, Pietrańczyk R, Musiał W. Synthesis and Physicochemical Properties of Thermally Sensitive Polymeric Derivatives of N-vinylcaprolactam. Polymers (Basel) 2024; 16:1917. [PMID: 39000772 PMCID: PMC11244384 DOI: 10.3390/polym16131917] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 07/03/2024] [Accepted: 07/03/2024] [Indexed: 07/17/2024] Open
Abstract
Six derivatives of poly-N-vinylcaprolactam (PNVCL) P1-P6 were synthesized via surfactant-free precipitation polymerization (SFPP) at 70 °C, with potassium persulfate (KPS) as the initiator. P5 and P6 were synthesized using the cross-linker N,N'-Methylenebisacrylamide (MBA). The conductivity was measured to monitor the polymerization process. The hydrodynamic diameters (HDs) and polydispersity indexes (PDIs) of aqueous dispersions of P1-P6 were determined using dynamic light scattering (DLS) and zeta potential (ZP) using electrophoretic mobilities. At 18 °C for P1-P6, the HDs (nm) were 428.32 ± 81.30 and PDI 0.31 ± 0.19, 528.60 ± 84.70 (PDI 0.42 ± 0,04), 425.96 ± 115.42 (PDI 0.56 ± 0.08), 440.34 ± 106.40 (PDI 0.52 ± 0.09), 198.39 ± 225.35 (PDI 0.40 ± 0.19), and 1201.52 ± 1318.05 (PDI 0.71 ± 0.30), the and ZPs were (mV) 0.90 ± 3.23, -4.46 ± 1.22, -6.44 ± 1.82, 0.22 ± 0.48, 0.18 ± 0.79, and -0.02 ± 0.39 for P1-P6, respectively. The lower critical solution temperature ranged from 27 to 29 °C. The polymers were characterized using the ATR-FTIR method. The study concluded that the physicochemical properties of the product were significantly affected by the initial reaction parameters. Polymers P1-P4 and P6 have potential for use as drug carriers for skin applications.
Collapse
Affiliation(s)
| | | | - Witold Musiał
- Department of Physical Chemistry and Biophysics, Pharmaceutical Faculty, Wroclaw Medical University, Borowska 211, 50-556 Wroclaw, Poland; (A.G.); (R.P.)
| |
Collapse
|
7
|
Iqbal MA, Mahmood A, Al-Masry W, Park CH, Hassan SU, Akhter T. Versatile poly( N-vinylcaprolactam)- grafted-hydroxypropyl cellulose polymers with tailored thermo- and pH-responsive properties via sustainable organocatalyzed atom transfer radical polymerization. Polym Chem 2024; 15:4244-4254. [DOI: 10.1039/d4py00931b] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
Abstract
This study explores the synthesis of dual pH- and thermo-responsive poly(N-vinylcaprolactam)-grafted-hydroxypropyl cellulose (PNVCL-g-HPC) polymers via visible-light-driven, metal-free organocatalyzed atom transfer radical polymerization (O-ATRP).
Collapse
Affiliation(s)
- Muhammad Asif Iqbal
- Department of Chemistry, School of Science, University of Management and Technology, C-II, Johar Town, 54770, Lahore, Pakistan
| | - Asif Mahmood
- Department of Chemical Engineering, College of Engineering, King Saud University, Riyadh, 11421, Saudi Arabia
| | - Waheed Al-Masry
- Department of Chemical Engineering, College of Engineering, King Saud University, Riyadh, 11421, Saudi Arabia
| | - Chan Ho Park
- Department of Chemical and Biological Engineering, Gachon University, Seongnam, 13120, Republic of Korea
| | - Sadaf Ul Hassan
- Department of Chemistry, COMSATS University Islamabad, Lahore Campus, Lahore, Defence Road, Off Raiwind Road, Lahore 54000, Pakistan
| | - Toheed Akhter
- Department of Chemical and Biological Engineering, Gachon University, Seongnam, 13120, Republic of Korea
| |
Collapse
|
8
|
Tanga S, Aucamp M, Ramburrun P. Injectable Thermoresponsive Hydrogels for Cancer Therapy: Challenges and Prospects. Gels 2023; 9:gels9050418. [PMID: 37233009 DOI: 10.3390/gels9050418] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 05/06/2023] [Accepted: 05/08/2023] [Indexed: 05/27/2023] Open
Abstract
The enervating side effects of chemotherapeutic drugs have necessitated the use of targeted drug delivery in cancer therapy. To that end, thermoresponsive hydrogels have been employed to improve the accumulation and maintenance of drug release at the tumour site. Despite their efficiency, very few thermoresponsive hydrogel-based drugs have undergone clinical trials, and even fewer have received FDA approval for cancer treatment. This review discusses the challenges of designing thermoresponsive hydrogels for cancer treatment and offers suggestions for these challenges as available in the literature. Furthermore, the argument for drug accumulation is challenged by the revelation of structural and functional barriers in tumours that may not support targeted drug release from hydrogels. Other highlights involve the demanding preparation process of thermoresponsive hydrogels, which often involves poor drug loading and difficulties in controlling the lower critical solution temperature and gelation kinetics. Additionally, the shortcomings in the administration process of thermosensitive hydrogels are examined, and special insight into the injectable thermosensitive hydrogels that reached clinical trials for cancer treatment is provided.
Collapse
Affiliation(s)
- Sandrine Tanga
- School of Pharmacy, Faculty of Natural Sciences, University of the Western Cape, Bellville 7535, South Africa
| | - Marique Aucamp
- School of Pharmacy, Faculty of Natural Sciences, University of the Western Cape, Bellville 7535, South Africa
| | - Poornima Ramburrun
- Wits Advanced Drug Delivery Platform Research Unit, Department of Pharmacy and Pharmacology, School of Therapeutic Sciences, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg 2193, South Africa
| |
Collapse
|
9
|
Halligan E, Zhuo S, Colbert DM, Alsaadi M, Tie BSH, Bezerra GSN, Keane G, Geever LM. Modulation of the Lower Critical Solution Temperature of Thermoresponsive Poly( N-vinylcaprolactam) Utilizing Hydrophilic and Hydrophobic Monomers. Polymers (Basel) 2023; 15:polym15071595. [PMID: 37050207 PMCID: PMC10096650 DOI: 10.3390/polym15071595] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 02/23/2023] [Accepted: 03/06/2023] [Indexed: 04/14/2023] Open
Abstract
Four-dimensional printing is primarily based on the concept of 3D printing technology. However, it requires additional stimulus and stimulus-responsive materials. Poly-N-vinylcaprolactam is a temperature-sensitive polymer. Unique characteristics of poly-N-vinylcaprolactam -based hydrogels offer the possibility of employing them in 4D printing. The main aim of this study is to alter the phase transition temperature of poly-N-vinylcaprolactam hydrogels. This research focuses primarily on incorporating two additional monomers with poly-N-vinylcaprolactam: Vinylacetate and N-vinylpyrrolidone. This work contributes to this growing area of research by altering (increasing and decreasing) the lower critical solution temperature of N-vinylcaprolactam through photopolymerisation. Poly-N-vinylcaprolactam exhibits a lower critical solution temperature close to the physiological temperature range of 34-37 °C. The copolymers were analysed using various characterisation techniques, such as FTIR, DSC, and UV-spectrometry. The main findings show that the inclusion of N-vinylpyrrolidone into poly-N-vinylcaprolactam increased the lower critical solution temperature above the physiological temperature. By incorporating vinylacetate, the lower critical solution temperature dropped to 21 °C, allowing for potential self-assembly of 4D-printed objects at room temperature. In this case, altering the lower critical solution temperature of the material can potentially permit the transformation of the 4D-printed object at a particular temperature.
Collapse
Affiliation(s)
- Elaine Halligan
- Polymer, Recycling, Industrial, Sustainability and Manufacturing (PRISM) Center, Technological University of the Shannon: Midlands Midwest, Dublin Road, Athlone, N37 HD68 Co. Westmeath, Ireland
| | - Shuo Zhuo
- Polymer, Recycling, Industrial, Sustainability and Manufacturing (PRISM) Center, Technological University of the Shannon: Midlands Midwest, Dublin Road, Athlone, N37 HD68 Co. Westmeath, Ireland
| | - Declan Mary Colbert
- Polymer, Recycling, Industrial, Sustainability and Manufacturing (PRISM) Center, Technological University of the Shannon: Midlands Midwest, Dublin Road, Athlone, N37 HD68 Co. Westmeath, Ireland
| | - Mohamad Alsaadi
- Polymer, Recycling, Industrial, Sustainability and Manufacturing (PRISM) Center, Technological University of the Shannon: Midlands Midwest, Dublin Road, Athlone, N37 HD68 Co. Westmeath, Ireland
- CONFIRM Centre for Smart Manufacturing, University of Limerick, V94 C928 Co. Limerick, Ireland
| | - Billy Shu Hieng Tie
- Polymer, Recycling, Industrial, Sustainability and Manufacturing (PRISM) Center, Technological University of the Shannon: Midlands Midwest, Dublin Road, Athlone, N37 HD68 Co. Westmeath, Ireland
| | - Gilberto S N Bezerra
- Polymer, Recycling, Industrial, Sustainability and Manufacturing (PRISM) Center, Technological University of the Shannon: Midlands Midwest, Dublin Road, Athlone, N37 HD68 Co. Westmeath, Ireland
| | - Gavin Keane
- Centre for Industrial Service & Design, Technological University of the Shannon: Midlands Midwest, Dublin Road, Athlone, N37 HD68 Co. Westmeath, Ireland
| | - Luke M Geever
- Applied Polymer Technologies Gateway, Material Research Institute, Technological University of the Shannon: Midlands Midwest, Dublin Road, Athlone, N37 HD68 Co. Westmeath, Ireland
| |
Collapse
|
10
|
Chittari SS, Obermeyer AC, Knight AS. Investigating Fundamental Principles of Nonequilibrium Assembly Using Temperature-Sensitive Copolymers. J Am Chem Soc 2023; 145:6554-6561. [PMID: 36913711 DOI: 10.1021/jacs.3c00883] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/15/2023]
Abstract
Both natural biomaterials and synthetic materials benefit from complex energy landscapes that provide the foundation for structure-function relationships and environmental sensitivity. Understanding these nonequilibrium dynamics is important for the development of design principles to harness this behavior. Using a model system of poly(ethylene glycol) methacrylate-based thermoresponsive lower critical solution temperature (LCST) copolymers, we explored the impact of composition and stimulus path on nonequilibrium thermal hysteretic behavior. Through turbidimetry analysis of nonsuperimposable heat-cool cycles, we observe that LCST copolymers show clear hysteresis that varies as a function of pendent side chain length and hydrophobicity. Hysteresis is further impacted by the temperature ramp rate, as insoluble states can be kinetically trapped under optimized temperature protocols. This systematic study brings to light fundamental principles that can enable the harnessing of out-of-equilibrium effects in synthetic soft materials.
Collapse
Affiliation(s)
- Supraja S Chittari
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Allie C Obermeyer
- Department of Chemical Engineering, Columbia University, New York, New York 10027, United States
| | - Abigail S Knight
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| |
Collapse
|
11
|
Durkut S. Fe 3O 4 magnetic nanoparticles-loaded thermoresponsive poly( N-vinylcaprolactam)- g-galactosylated chitosan microparticles: investigation of physicochemical, morphological and magnetic properties. JOURNAL OF MACROMOLECULAR SCIENCE PART A-PURE AND APPLIED CHEMISTRY 2023. [DOI: 10.1080/10601325.2023.2185530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/06/2023]
Affiliation(s)
- Serap Durkut
- Tissue Engineering, Biomaterials and Nanobiotechnology Laboratory, Ankara University Faculty of Science, Ankara, Turkey
| |
Collapse
|
12
|
Lizana-Vasquez GD, Arrieta-Viana LF, Mendez-Vega J, Acevedo A, Torres-Lugo M. Synthetic Thermo-Responsive Terpolymers as Tunable Scaffolds for Cell Culture Applications. Polymers (Basel) 2022; 14:polym14204379. [PMID: 36297960 PMCID: PMC9611013 DOI: 10.3390/polym14204379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2022] [Revised: 10/07/2022] [Accepted: 10/08/2022] [Indexed: 11/16/2022] Open
Abstract
The use of tailored synthetic hydrogels for in vitro tissue culture and biomanufacturing provides the advantage of mimicking the cell microenvironment without issues of batch-to-batch variability. To that end, this work focused on the design, characterization, and preliminary evaluation of thermo-responsive, transparent synthetic terpolymers based on N-isopropylacrylamide, vinylphenylboronic acid, and polyethylene glycol for cell manufacturing and in vitro culture applications. Polymer physical properties were characterized by FT-IR, 1H-NMR, DLS, rheology, and thermal-gravimetric analysis. Tested combinations provided polymers with a lower critical solution temperature (LCST) between 30 and 45 °C. Terpolymer elastic/shear modulus varied between 0.3 and 19.1 kPa at 37 °C. Cellular characterization indicated low cell cytotoxicity on NIH-3T3. Experiments with the ovarian cancer model SKOV-3 and Jurkat T cells showed the terpolymers’ capacity for cell encapsulation without interfering with staining or imaging protocols. In addition, cell growth and high levels of pluripotency demonstrated the capability of terpolymer to culture iPSCs. Characterization results confirmed a promising use of terpolymers as a tunable scaffold for cell culture applications.
Collapse
|
13
|
Quader S, Van Guyse JFR. Bioresponsive Polymers for Nanomedicine-Expectations and Reality! Polymers (Basel) 2022; 14:3659. [PMID: 36080733 PMCID: PMC9460233 DOI: 10.3390/polym14173659] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 08/26/2022] [Accepted: 08/28/2022] [Indexed: 12/18/2022] Open
Abstract
Bioresponsive polymers in nanomedicine have been widely perceived to selectively activate the therapeutic function of nanomedicine at diseased or pathological sites, while sparing their healthy counterparts. This idea can be described as an advanced version of Paul Ehrlich's magic bullet concept. From that perspective, the inherent anomalies or malfunction of the pathological sites are generally targeted to allow the selective activation or sensory function of nanomedicine. Nonetheless, while the primary goals and expectations in developing bioresponsive polymers are to elicit exclusive selectivity of therapeutic action at diseased sites, this remains difficult to achieve in practice. Numerous research efforts have been undertaken, and are ongoing, to tackle this fine-tuning. This review provides a brief introduction to key stimuli with biological relevance commonly featured in the design of bioresponsive polymers, which serves as a platform for critical discussion, and identifies the gap between expectations and current reality.
Collapse
Affiliation(s)
- Sabina Quader
- Innovation Center of NanoMedicine, Kawasaki Institute of Industrial Promotion, 3-25-14 Tonomachi, Kawasaki-ku, Kawasaki 212-0821, Japan
| | - Joachim F. R. Van Guyse
- Innovation Center of NanoMedicine, Kawasaki Institute of Industrial Promotion, 3-25-14 Tonomachi, Kawasaki-ku, Kawasaki 212-0821, Japan
- Leiden Academic Center for Drug Research (LACDR), Leiden University, 2333 CC Leiden, The Netherlands
| |
Collapse
|
14
|
Liu Y, Lei Y, Chen Y. Thermoresponsive Properties of Poly[oligo(ethylene glycol) sorbate]s Prepared by Organocatalyzed Group Transfer Polymerization. Macromolecules 2022. [DOI: 10.1021/acs.macromol.2c00678] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Yujian Liu
- Institute for Advanced Study, Shenzhen University, Nanshan District Shenzhen, Guangdong 518060, China
| | - Yongyao Lei
- Institute for Advanced Study, Shenzhen University, Nanshan District Shenzhen, Guangdong 518060, China
| | - Yougen Chen
- Institute for Advanced Study, Shenzhen University, Nanshan District Shenzhen, Guangdong 518060, China
| |
Collapse
|
15
|
Bahmani M, Akbarian M, Tayebi L, Farjadian F. The inhibitory effect of curcumin loaded poly (vinyl caprolactam) nanohydrogel on insulin fibrillation. Process Biochem 2022; 117:209-218. [PMID: 36506035 PMCID: PMC9733913 DOI: 10.1016/j.procbio.2022.04.009] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Amyloidosis refers to a group of diseases caused by the deposition of abnormal proteins in tissues. Herein, curcumin was loaded in a nanohydrogel made of poly (vinylcaprolactam) to improve its solubility and was employed to exert an inhibitory effect on insulin fibrillation, as a protein model. Poly (vinyl caprolactam), cross-linked with polyethylene glycol diacrylate, was synthesized by the reversible addition-fragmentation chain transfer method. The release profile of curcumin exhibited a first-order kinetic model, signifying that the release of curcumin was mainly dominated by diffusion processes. The study of curcumin release showed that 78% of the compound was released within 72 h. The results also revealed a significant decline in insulin fibrillation in the presence of curcumin-loaded poly (vinyl caprolactam). These observations confirmed that increasing the ratio of curcumin-loaded poly (vinyl caprolactam) to insulin concentration would increase the hydrogel's inhibitory effect (P-value < 0.05). Furthermore, transmission electron and fluorescence microscopies and Fourier-transform infrared spectroscopy made it possible to study the size and interaction of fibrils. Based on the results, this nanohydrogel combination could protect the structure of insulin and had a deterrent effect on fibril formation.
Collapse
Affiliation(s)
- Marzieh Bahmani
- Pharmaceutical Sciences Research Center, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mohsen Akbarian
- Department of Chemistry, National Cheng Kung University, Tainan 701, Taiwan,Corresponding author. (M. Akbarian)
| | - Lobat Tayebi
- School of Dentistry, Marquette University, Milwaukee, WI, USA
| | - Fatemeh Farjadian
- Pharmaceutical Sciences Research Center, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran,Correspondence to: Pharmaceutical Sciences Research Center, School of Pharmacy, Shiraz University of Medical Sciences, P. O. Box 7146864685, Shiraz, Iran. (F. Farjadian)
| |
Collapse
|
16
|
Precise Synthesis and Thermoresponsive Property of Poly(ethyl glycidyl ether) and Its Block and Statistic Copolymers with Poly(glycidol). Polymers (Basel) 2021; 13:polym13223873. [PMID: 34833172 PMCID: PMC8623496 DOI: 10.3390/polym13223873] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2021] [Revised: 11/01/2021] [Accepted: 11/03/2021] [Indexed: 11/16/2022] Open
Abstract
In this paper, we describe a comprehensive study of the thermoresponsive properties of statistic copolymers and multiblock copolymers synthesized by poly(glycidol)s (PG) and poly(ethyl glycidyl ether) (PEGE) with different copolymerization methods. These copolymers were first synthesized by ring-opening polymerization (ROP), which was initiated by tert-butylbenzyl alcohol (tBBA) and 1-tert-butyl-4,4,4-tris(dimethylamino)-2,2-bis[tris(dimethylamino)phosphoranylidenamino]-2Λ5,4Λ5-catenadi(phosphazene) (t-Bu-P4) as the catalyst, and then the inherent protective groups were removed to obtain the copolymers without any specific chain end groups. The thermoresponsive property of the statistic copolymer PGx-stat-PEGEy was compared with the diblock copolymer PGx-b-PEGEy, and the triblock copolymers were compared with the pentablock copolymers. Among them, PG-stat-PEGE, PG-b-PEGE-b-PG-b-PEGE-b-PG, and PEGE-b-PG-b-PEGE-b-PG-b-PEGE, and even the specific ratio of PEGE-b-PG-b-PEGE, exhibited LCST-type phase transitions in water, which were characterized by cloud point (Tcp). Although the ratio of x to y affected the value of the Tcp of PGx-stat-PEGEy, we found that the disorder of the copolymer has a decisive effect on the phase-transition behavior. The phase-transition behaviors of PG-b-PEGE, part of PEGE-b-PG-b-PEGE, and PG-b-PEGE-b-PG copolymers in water present a two-stage phase transition, that is, firstly LCST-type and then the upper critical solution temperature (UCST)-like phase transition. In addition, we have extended the research on the thermoresponsive properties of EGE homopolymers without specific α-chain ends.
Collapse
|
17
|
Marsili L, Dal Bo M, Berti F, Toffoli G. Chitosan-Based Biocompatible Copolymers for Thermoresponsive Drug Delivery Systems: On the Development of a Standardization System. Pharmaceutics 2021; 13:1876. [PMID: 34834291 PMCID: PMC8620438 DOI: 10.3390/pharmaceutics13111876] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 10/27/2021] [Accepted: 11/02/2021] [Indexed: 12/26/2022] Open
Abstract
Chitosan is a natural polysaccharide that is considered to be biocompatible, biodegradable and non-toxic. The polymer has been used in drug delivery applications for its positive charge, which allows for adhesion with and recognition of biological tissues via non-covalent interactions. In recent times, chitosan has been used for the preparation of graft copolymers with thermoresponsive polymers such as poly-N-vinylcaprolactam (PNVCL) and poly-N-isopropylamide (PNIPAM), allowing the combination of the biodegradability of the natural polymer with the ability to respond to changes in temperature. Due to the growing interest in the utilization of thermoresponsive polymers in the biological context, it is necessary to increase the knowledge of the key principles of thermoresponsivity in order to obtain comparable results between different studies or applications. In the present review, we provide an overview of the basic principles of thermoresponsivity, as well as a description of the main polysaccharides and thermoresponsive materials, with a special focus on chitosan and poly-N-Vinyl caprolactam (PNVCL) and their biomedical applications.
Collapse
Affiliation(s)
- Lorenzo Marsili
- Department of Chemical and Pharmaceutical Sciences, University of Trieste, Via Licio Giorgieri 1, 34127 Trieste, Italy;
| | - Michele Dal Bo
- Experimental and Clinical Pharmacology Unit, CRO National Cancer Institute IRCCS, Via Franco Gallini 2, 33081 Aviano, Italy; (M.D.B.); (G.T.)
| | - Federico Berti
- Department of Chemical and Pharmaceutical Sciences, University of Trieste, Via Licio Giorgieri 1, 34127 Trieste, Italy;
| | - Giuseppe Toffoli
- Experimental and Clinical Pharmacology Unit, CRO National Cancer Institute IRCCS, Via Franco Gallini 2, 33081 Aviano, Italy; (M.D.B.); (G.T.)
| |
Collapse
|
18
|
Marsili L, Dal Bo M, Berti F, Toffoli G. Thermoresponsive Chitosan-Grafted-Poly( N-vinylcaprolactam) Microgels via Ionotropic Gelation for Oncological Applications. Pharmaceutics 2021; 13:1654. [PMID: 34683947 PMCID: PMC8539247 DOI: 10.3390/pharmaceutics13101654] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Revised: 09/23/2021] [Accepted: 09/25/2021] [Indexed: 12/19/2022] Open
Abstract
Microgels can be considered soft, porous and deformable particles with an internal gel structure swollen by a solvent and an average size between 100 and 1000 nm. Due to their biocompatibility, colloidal stability, their unique dynamicity and the permeability of their architecture, they are emerging as important candidates for drug delivery systems, sensing and biocatalysis. In clinical applications, the research on responsive microgels is aimed at the development of "smart" delivery systems that undergo a critical change in conformation and size in reaction to a change in environmental conditions (temperature, magnetic fields, pH, concentration gradient). Recent achievements in biodegradable polymer fabrication have resulted in new appealing strategies, including the combination of synthetic and natural-origin polymers with inorganic nanoparticles, as well as the possibility of controlling drug release remotely. In this review, we provide a literature review on the use of dual and multi-responsive chitosan-grafted-poly-(N-vinylcaprolactam) (CP) microgels in drug delivery and oncological applications.
Collapse
Affiliation(s)
- Lorenzo Marsili
- Department of Chemical and Pharmaceutical Sciences, University of Trieste, Via Licio Giorgieri 1, 34127 Trieste, Italy;
- Experimental and Clinical Pharmacology Unit, CRO National Cancer Institute IRCCS, Via Franco Gallini 2, 33081 Aviano, Italy; (M.D.B.); (G.T.)
| | - Michele Dal Bo
- Experimental and Clinical Pharmacology Unit, CRO National Cancer Institute IRCCS, Via Franco Gallini 2, 33081 Aviano, Italy; (M.D.B.); (G.T.)
| | - Federico Berti
- Department of Chemical and Pharmaceutical Sciences, University of Trieste, Via Licio Giorgieri 1, 34127 Trieste, Italy;
| | - Giuseppe Toffoli
- Experimental and Clinical Pharmacology Unit, CRO National Cancer Institute IRCCS, Via Franco Gallini 2, 33081 Aviano, Italy; (M.D.B.); (G.T.)
| |
Collapse
|