1
|
Song K, Bi X, Yu C, Pan YT, Xiao P, Wang J, Song JI, He J, Yang R. Structure of Metal-Organic Frameworks Eco-Modulated by Acid-Base Balance toward Biobased Flame Retardant in Polyurea Composites. ACS APPLIED MATERIALS & INTERFACES 2024. [PMID: 38498312 DOI: 10.1021/acsami.4c02187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/20/2024]
Abstract
Biobased-functionalized metal-organic frameworks (Bio-FUN-MOFs) stand out from the crowd of candidates in the flame-retardant field due to their multipathway flame-retardant mechanisms and green synthesis processes. However, exploring and designing Bio-FUN-MOFs tend to counteract the problem of compromising the flame-retardant advantages of MOFs themselves, which inevitably results in a waste of resources. Herein, a strategy in which MOFs are ecologically regulated through acid-base balance is presented for controllable preparation of Bio-FUN-MOFs by two birds with one stone, i.e., higher flame-retardant element loading and retention of more MOF structures. Specifically, the buffer layer is created on the periphery of ZIF-67 by weak etching of biobased alkali arginine to resist the excessive etching of ZIF-67 by phytic acid when loading phosphorus source and to preserve the integrity of internal crystals as much as possible. As a proof of concept, ZIF-67 was almost completely etched out by phytic acid in the absence of arginine. The arginine and phytic acid-functionalized ZIF-67 with yolk@shell structure (ZIF@Arg-Co-PA) obtained by this strategy, as a biobased flame retardant, reduces fire hazards for polyurea composites. At only 5 wt % loading, ZIF@Arg-Co-PA imparted polyurea composites with a limiting oxygen index of 23.2%, and the peaks of heat release rate, total heat release, and total smoke production were reduced by 43.8, 32.3, and 34.3%, respectively, compared to neat polyurea. Additionally, the prepared polyurea composites have acceptable mechanical properties. This work will shed light on the advanced structural design of polymer composites with excellent fire safety, especially environmentally friendly and efficient biobased MOF flame retardants.
Collapse
Affiliation(s)
- Kunpeng Song
- National Engineering Research Center of Flame Retardant Materials, School of Materials Science & Engineering, Beijing Institute of Technology, Beijing 100081, P. R. China
| | - Xue Bi
- National Engineering Research Center of Flame Retardant Materials, School of Materials Science & Engineering, Beijing Institute of Technology, Beijing 100081, P. R. China
| | - Chuang Yu
- National Engineering Research Center of Flame Retardant Materials, School of Materials Science & Engineering, Beijing Institute of Technology, Beijing 100081, P. R. China
| | - Ye-Tang Pan
- National Engineering Research Center of Flame Retardant Materials, School of Materials Science & Engineering, Beijing Institute of Technology, Beijing 100081, P. R. China
| | - Peng Xiao
- State Grid Jiangsu Electric Power Co., Ltd. Research Institute, Nanjing 211103, Jiangsu, P. R. China
| | - Junling Wang
- Jiangsu Key Laboratory of Hazardous Chemicals Safety and Control, College of Safety Science and Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Jung-Il Song
- School of Mechatronics, Changwon National University, Changwon 641-773, Republic of Korea
| | - Jiyu He
- National Engineering Research Center of Flame Retardant Materials, School of Materials Science & Engineering, Beijing Institute of Technology, Beijing 100081, P. R. China
| | - Rongjie Yang
- National Engineering Research Center of Flame Retardant Materials, School of Materials Science & Engineering, Beijing Institute of Technology, Beijing 100081, P. R. China
| |
Collapse
|
2
|
Song K, Bi X, Yu C, Pan YT, Vahabi H, Realinho V, He J, Yang R. A Gas-Steamed Route to Mesoporous Open Metal-Organic Framework Cages Enhancing Flame Retardancy and Smoke Suppression of Polyurea. ACS APPLIED MATERIALS & INTERFACES 2024; 16:7617-7630. [PMID: 38315971 DOI: 10.1021/acsami.3c17625] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2024]
Abstract
Up to now, metal-organic frameworks (MOFs) with open nanostructures have shown outstanding capabilities in trapping smoke particles compared to the original MOFs. However, only a few MOF-based strategies have been reported to synthesize hierarchical porous cages thus far, which are mainly restricted to environmentally unfriendly wet-chemical liquid methods. Herein, as a proof-of-concept, a gas-steamed metal-organic framework approach was designed to fabricate a series of cheeselike open cages with hierarchical porosity. Briefly, zeolitic imidazolate framework-67 (ZIF-67) and phytic acid were employed as precursor and etchant, respectively. Abandoning the conventional wet-chemical method, the coordination bond of ZIF-67 was cleaved by acidic steam, forming an open framework with a high specific surface area and a hierarchical porous structure. The universality of this method was also confirmed by the selection of different etchants. Impressively, they also show outstanding fume-toxic adsorption capability and labyrinth effects based on abundant and complex porous channels. At only 5 wt % loading, Co3O4@open ZIF-67 cage-2 (Co3O4@OZC-2) imparted polyurea (PUA) composites with a 21.2% limiting oxygen index, and the peak of heat release rate, total heat release, and total smoke production were reduced by around 37.5, 25.5, and 40.4%, respectively, compared to neat PUA. This work will shed light on the advanced structural design of polymer composites with high fire safety, especially smoke suppression performance, so as to obtain more feasible applications.
Collapse
Affiliation(s)
- Kunpeng Song
- National Engineering Research Center of Flame Retardant Materials, School of Materials Science & Engineering, Beijing Institute of Technology, Beijing 100081, P. R. China
| | - Xue Bi
- National Engineering Research Center of Flame Retardant Materials, School of Materials Science & Engineering, Beijing Institute of Technology, Beijing 100081, P. R. China
| | - Chuang Yu
- National Engineering Research Center of Flame Retardant Materials, School of Materials Science & Engineering, Beijing Institute of Technology, Beijing 100081, P. R. China
| | - Ye-Tang Pan
- National Engineering Research Center of Flame Retardant Materials, School of Materials Science & Engineering, Beijing Institute of Technology, Beijing 100081, P. R. China
| | - Henri Vahabi
- CentraleSupélec, LMOPS, Université de Lorraine, F-57000 Metz, France
| | - Vera Realinho
- Poly2 Group, Department of Materials Science and Engineering, School of Industrial, Aerospace and Audiovisual Engineering of Terrassa, Universitat Politècnica de Catalunya (UPC BarcelonaTech), C/de Colom, 11, 08222 Terrassa, Spain
| | - Jiyu He
- National Engineering Research Center of Flame Retardant Materials, School of Materials Science & Engineering, Beijing Institute of Technology, Beijing 100081, P. R. China
| | - Rongjie Yang
- National Engineering Research Center of Flame Retardant Materials, School of Materials Science & Engineering, Beijing Institute of Technology, Beijing 100081, P. R. China
| |
Collapse
|
3
|
Song K, Zhang H, Pan YT, Ur Rehman Z, He J, Wang DY, Yang R. Metal-organic framework-derived bird's nest-like capsules for phosphorous small molecules towards flame retardant polyurea composites. J Colloid Interface Sci 2023; 643:489-501. [PMID: 37088052 DOI: 10.1016/j.jcis.2023.04.047] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 03/29/2023] [Accepted: 04/12/2023] [Indexed: 04/25/2023]
Abstract
The loading treatment of phosphorus flame retardants can mitigate their migration and plasticization effect. However, designing suitable carriers has remained a great challenge. Herein, two kinds of Co-based isomers, namely cobalt-cobalt layered double hydroxides (CoCo-LDH) and cobalt basic carbonate (CBC), were synthesized by employing ZIF-67 as a self-template, assemblied into two different nanostructures namely multi-yolk@shell CBC@CoCo-LDH (m-CBC@LDH) and solid CBC nanoparticles by facilely tuning the reaction time, which were employed as carriers, respectively. Subsequently, triphenyl phosphate (TPP)-loaded m-CBC@LDH (m-CBC-P@LDH) was prepared using TPP as the guest. The m-CBC@LDH with high specific surface area and hollow structure exhibited up to more than 30% of TPP loading. The peak of heat release rate and total heat release of polyurea composite blended with 5 wt% m-CBC-P@LDH reduced by 41.7% and 20.6% respectively, and the mechanical properties were less damaged. This work complements a feasible approach for preparation of metal-organic frameworks-derived flame retardant carriers.
Collapse
Affiliation(s)
- Kunpeng Song
- National Engineering Research Center of Flame Retardant Materials, School of Materials Science & Engineering, Beijing Institute of Technology, Beijing 100081, PR China
| | - Henglai Zhang
- National Engineering Research Center of Flame Retardant Materials, School of Materials Science & Engineering, Beijing Institute of Technology, Beijing 100081, PR China
| | - Ye-Tang Pan
- National Engineering Research Center of Flame Retardant Materials, School of Materials Science & Engineering, Beijing Institute of Technology, Beijing 100081, PR China.
| | - Zeeshan Ur Rehman
- College of Mechatronic Engineering, Changwon National University, Changwon, Gyeongsangnam-do 51140, Republic of Korea
| | - Jiyu He
- National Engineering Research Center of Flame Retardant Materials, School of Materials Science & Engineering, Beijing Institute of Technology, Beijing 100081, PR China.
| | - De-Yi Wang
- IMDEA Materials Institute, C/Eric Kandel, 2, 28906 Getafe, Madrid, Spain
| | - Rongjie Yang
- National Engineering Research Center of Flame Retardant Materials, School of Materials Science & Engineering, Beijing Institute of Technology, Beijing 100081, PR China
| |
Collapse
|
4
|
The influence on flame retardant epoxy composites by a bird's nest-like structure of Co-based isomers evolved from zeolitic imidazolate framework-67. Polym Degrad Stab 2023. [DOI: 10.1016/j.polymdegradstab.2023.110318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/06/2023]
|
5
|
Hou B, Song K, Ur Rehman Z, Song T, Lin T, Zhang W, Pan YT, Yang R. Precise Control of a Yolk-Double Shell Metal-Organic Framework-Based Nanostructure Provides Enhanced Fire Safety for Epoxy Nanocomposites. ACS APPLIED MATERIALS & INTERFACES 2022; 14:14805-14816. [PMID: 35290025 DOI: 10.1021/acsami.2c01334] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Nanomaterials derived from metal-organic frameworks (MOFs) are highly promising as future flame retardants for polymeric materials. The precise control of the interface for polymer nanocomposites is taking scientific research by storm, whereas such investigations for MOF-based nanofillers are rare. Herein, a novel yolk-double shell nanostructure (ZIF-67@layered double hydroxides@polyphophazenes, ZIF@LDH@PZS) was subtly designed and introduced into epoxy resin (EP) as a flame retardant to fill the vacancy of yolk/shell construction in the field. Meanwhile, the interface of the polymer nanocomposites can be further accurately tailored by the outermost layer of the nanofillers from PZS to Ni(OH)2 (NH), by which hollow nanocages with treble shells (LDH@PZS@NH) were obtained. It is remarkably interesting that LDH@PZS@NH endows the EP with the lowest peak of heat release rate in the cone calorimeter test, but the total heat and smoke releases (THR and TSP) of the nanocomposites are even higher than those of the neat polymer. In contrast, EP blended with ZIF@LDH@PZS shows outstanding comprehensive performance: with 2 wt.%, the limiting oxygen index is increased to 29.5%, and the peak heat release rate is reduced by 26.0%. The impact and flexural strengths are slightly lowered, while the storage modulus is enhanced remarkably compared with that for neat EP. The flame retardant mechanism is systematically explored focusing on the interfacial interactions of different hybrids within the epoxy matrix, ushering in a new stage of study of nanostructural design-guided interface manipulation in MOF-based polymer nanocomposites.
Collapse
Affiliation(s)
- Boyou Hou
- National Engineering Research Center of Flame Retardant Materials, School of Materials Science & Engineering, Beijing Institute of Technology, Beijing 100081, PR China
| | - Kunpeng Song
- National Engineering Research Center of Flame Retardant Materials, School of Materials Science & Engineering, Beijing Institute of Technology, Beijing 100081, PR China
| | - Zeeshan Ur Rehman
- College of Mechatronic Engineering, Changwon National University, Changwon, Gyeongsangnam-do 51140, Republic of Korea
| | - Tinglu Song
- Experimental Center of Advanced Materials, School of Materials Science & Engineering, Beijing Institute of Technology, Beijing 100081, PR China
| | - Tao Lin
- Tsinghua University, School of Materials Science & Engineering, Beijing 100084, PR China
| | - Wenchao Zhang
- National Engineering Research Center of Flame Retardant Materials, School of Materials Science & Engineering, Beijing Institute of Technology, Beijing 100081, PR China
| | - Ye-Tang Pan
- National Engineering Research Center of Flame Retardant Materials, School of Materials Science & Engineering, Beijing Institute of Technology, Beijing 100081, PR China
| | - Rongjie Yang
- National Engineering Research Center of Flame Retardant Materials, School of Materials Science & Engineering, Beijing Institute of Technology, Beijing 100081, PR China
| |
Collapse
|
6
|
Lin S, Tao B, Zhao X, Chen G, Wang DY. Surface Functionalization of Black Phosphorus via Amine Compounds and Its Impacts on the Flame Retardancy and Thermal Decomposition Behaviors of Epoxy Resin. Polymers (Basel) 2021; 13:polym13213635. [PMID: 34771191 PMCID: PMC8588435 DOI: 10.3390/polym13213635] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 09/29/2021] [Accepted: 10/15/2021] [Indexed: 11/16/2022] Open
Abstract
Recently, lots of effort has been placed into stabilizing black phosphorus (BP) in the air to improve its compatibility with polymers. Herein, BP was chemically functionalized by aliphatic amine (DETA), aromatic amine (PPDA) and cyclamine (Pid) via a nucleophilic substitution reaction, aiming to develop an intensively reactive BP flame retardant for epoxy resin (EP). The -NH2 group on BP-DETA, BP-PPDA and BP-Pid reacted with the epoxide group at different temperatures. The lowest temperature was about 150 °C for BP-DETA. The impacts of three BP-NH2 were compared on the flame retardancy and thermal decomposition of EP. At 5 wt% loading, EP/BP-NH2 all passed UL 94 V 0 rating. The limiting oxygen index (LOI) of EP/BP-PPDA was as high as 32.3%. The heat release rate (HRR) of EP/BP-DETA greatly decreased by 46% and char residue increased by 73.8%, whereas HRR of EP/BP-Pid decreased by 11.5% and char residue increased by 50.8%, compared with EP. Average effective heat of combustion (av-EHC) of EP/BP-Pid was lower than that of EP/BP-DETA and EP/BP-PPDA. In view of the flame-retardant mechanism, BP nanosheets functionalized with aliphatic amine and aromatic amine played a dominant role in the condensed phase, while BP functionalized with cyclamine was more effective in the gas phase.
Collapse
Affiliation(s)
- Shaoling Lin
- College of Chemical Engineering, Huaqiao University, Xiamen 361021, China;
- College of Materials Science and Engineering, Huaqiao University, Xiamen 361021, China; (B.T.); (G.C.)
| | - Boqing Tao
- College of Materials Science and Engineering, Huaqiao University, Xiamen 361021, China; (B.T.); (G.C.)
| | - Xiaomin Zhao
- College of Materials Science and Engineering, Huaqiao University, Xiamen 361021, China; (B.T.); (G.C.)
- Correspondence: (X.Z.); (D.-Y.W.)
| | - Guohua Chen
- College of Materials Science and Engineering, Huaqiao University, Xiamen 361021, China; (B.T.); (G.C.)
| | - De-Yi Wang
- IMDEA Materials Institute, C/Eric Kandel, 2, 28906 Getafe, Spain
- Escuela Politécnica Superior, Universidad Francisco de Vitoria, Ctra. Pozuelo-Majadahonda Km 1,800, 28223 Pozuelo de Alarcón, Spain
- Correspondence: (X.Z.); (D.-Y.W.)
| |
Collapse
|