1
|
Reis CLB, Campelo TA, Frota CC, Ayala AP, Silva LMA, Rocha MVP, Santiago-Aguiar RSD. The use of green protic ionic liquids in the crystallization of isoniazid: Evaluation of physicochemical and biological properties of drug. Eur J Pharm Biopharm 2024; 201:114345. [PMID: 38823540 DOI: 10.1016/j.ejpb.2024.114345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Revised: 05/06/2024] [Accepted: 05/30/2024] [Indexed: 06/03/2024]
Abstract
This study evaluated the synthesis of protic ionic liquids (PILs), 2-hydroxy ethylammonium formate (2-HEAF) and 2-hydroxy ethylammonium acetate (2-HEAA), and their applicability in the crystallization process of the active pharmaceutical ingredient isoniazid (INH) as anti-solvent. Isoniazid is an antibiotic used in the treatment of tuberculosis infections, being used as a first-line chemotherapeutic agent against Mycobacterium tuberculosis. Futhermore, this investigation was conducted in order to evaluate how these PILs can influence the habit, solubility, stability, and therapeutic efficiency of the obtained isoniazid crystals. The 2-HEAF and 2-HEAA PILs were easily formed in reactions between ethanolamine and carboxylic acids (formic or acetic acid), and they have no toxicity against Artemia salina. The PILs were able to crystallize isoniazid, influencing the crystal habit and size. The greatest variations in the hydrogen signals of the NH2 and NH groups of the amine and low variations in the chemical shifts of the hydrogens of the cation of the ethanolamine group from 2-HEAA and 2-HEAF indicate that PILs establish possibly weak interactions with INH. The obtained crystals were amorphous and showed higher solubility in water than standard INH. Moreover, these crystals showed therapeutic efficiency inantimycobacterial activity to inhibit the growth of Mycobacterium tuberculosis. The INH:2-HEAF only degraded 5.1 % (w/w), however, INH:2-HEAA degraded 32.8 % (w/w) after 60 days in an accelerated atmosphere. Then, the 2-HEAA and 2-HEAF were able to crystallize isoniazid, being a new application for these PILs. The used PILs also influenced the characteristics of isoniazid crystals.
Collapse
Affiliation(s)
- Carla Luzia Borges Reis
- Department of Chemical Engineering, Federal University of Ceará, Campus do Pici, Bloco 709, 60440-900 Fortaleza, Ceará, Brazil
| | - Thales Alves Campelo
- Department of Pathology, Federal University of Ceará, Alexandre Baraúna St., 949, Rodolfo Teófilo, 60430-160 Fortaleza, Ceará, Brazil
| | - Cristiane Cunha Frota
- Department of Pathology, Federal University of Ceará, Alexandre Baraúna St., 949, Rodolfo Teófilo, 60430-160 Fortaleza, Ceará, Brazil
| | - Alejandro Pedro Ayala
- Department of Physics, Federal University of Ceará, Mister Hull Ave., Pici, 60440-900 Fortaleza, Ceará, Brazil
| | | | - Maria Valderez Ponte Rocha
- Department of Chemical Engineering, Federal University of Ceará, Campus do Pici, Bloco 709, 60440-900 Fortaleza, Ceará, Brazil
| | | |
Collapse
|
2
|
Duan H, Ran J, Zhao J, Wang X, Zhai B, Chen Y, Yin S, Li S, Zhang L, Li Z. Application of ultrasonic-enhanced active seed crystals in the removal of sodium oxalate from alumina refinery waste liquor. ULTRASONICS SONOCHEMISTRY 2024; 106:106881. [PMID: 38653147 PMCID: PMC11059431 DOI: 10.1016/j.ultsonch.2024.106881] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 04/15/2024] [Accepted: 04/19/2024] [Indexed: 04/25/2024]
Abstract
When organic matter, especially sodium oxalate (Na2C2O4), accumulates to a certain extent, it will seriously affect the alumina production process in the refinery and therefore urgently needs to be removed. This work attempts to illuminate the benefits of ultrasonic intensification of the crystallization process of Na2C2O4, taking the alumina refinery waste liquor, i.e., flat plate washing liquor, as a case study. The effects of different operating parameters (seed crystal addition amount, caustic soda concentration, reaction time, ultrasonic power) on the crystallization behavior and yield are discussed, and it is found that ultrasonic can increase the Na2C2O4 removal rate to 70.4%. The addition of ultrasonic promotes the morphological evolution of Na2C2O4 and is of great significance to the optimization of the components of the precipitated Na2C2O4. Specifically, the proportion of Na2C2O4 in the crystallized product reaches 64% with conventional conditions, while it reaches 77% with ultrasonic conditions. Therefore, ultrasonic can greatly reduce the alkali loss caused by the crystallization process of Na2C2O4 in flat plate washing liquor, which has great economic benefits.
Collapse
Affiliation(s)
- Haisheng Duan
- Faculty of Metallurgical and Energy Engineering, Kunming University of Science and Technology, Kunming, Yunnan 650093, China; Yunnan Wenshan Aluminum Co., Ltd., Wenshan, Yunnan 663000, China
| | - Jianfeng Ran
- Faculty of Metallurgical and Energy Engineering, Kunming University of Science and Technology, Kunming, Yunnan 650093, China
| | - Jiaping Zhao
- Faculty of Metallurgical and Energy Engineering, Kunming University of Science and Technology, Kunming, Yunnan 650093, China; Yunnan Wenshan Aluminum Co., Ltd., Wenshan, Yunnan 663000, China
| | - Xuxu Wang
- Faculty of Metallurgical and Energy Engineering, Kunming University of Science and Technology, Kunming, Yunnan 650093, China
| | - Benkang Zhai
- Faculty of Metallurgical and Energy Engineering, Kunming University of Science and Technology, Kunming, Yunnan 650093, China
| | - Ying Chen
- Yunnan Wenshan Aluminum Co., Ltd., Wenshan, Yunnan 663000, China
| | - Shaohua Yin
- Faculty of Metallurgical and Energy Engineering, Kunming University of Science and Technology, Kunming, Yunnan 650093, China.
| | - Shiwei Li
- Faculty of Metallurgical and Energy Engineering, Kunming University of Science and Technology, Kunming, Yunnan 650093, China
| | - Libo Zhang
- Faculty of Metallurgical and Energy Engineering, Kunming University of Science and Technology, Kunming, Yunnan 650093, China.
| | - Zulai Li
- Faculty of Material Science and Engineering, Kunming University of Science and Technology, Kunming, Yunnan 650093, China
| |
Collapse
|
3
|
Lin Q, Zhang Y, Chen L, Zhang H, An C, Li C, Wang Q, Song J, He W, Wang H. Glycine/alginate-based piezoelectric film consisting of a single, monolithic β-glycine spherulite towards flexible and biodegradable force sensor. Regen Biomater 2024; 11:rbae047. [PMID: 38903560 PMCID: PMC11187499 DOI: 10.1093/rb/rbae047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2024] [Revised: 04/19/2024] [Accepted: 04/25/2024] [Indexed: 06/22/2024] Open
Abstract
Development of piezoelectric biomaterials with high piezoelectric performance, while possessing excellent flexibility, biocompatibility, and biodegradability still remains a great challenge. Herein, a flexible, biocompatible and biodegradable piezoelectric β-glycine-alginate-glycerol (Gly-Alg-Glycerol) film with excellent in vitro and in vivo sensing performance was developed. Remarkably, a single, monolithic β-glycine spherulite, instead of more commonly observed multiple spherulites, was formed in alginate matrix, thereby resulting in outstanding piezoelectric property, including high piezoelectric constant (7.2 pC/N) and high piezoelectric sensitivity (1.97 mV/kPa). The Gly-Alg-Glycerol film exhibited superior flexibility, enabling complex shape-shifting, e.g. origami pigeon, 40% tensile strain, and repeated bending and folding deformation without fracture. In vitro, the flexible Gly-Alg-Glycerol film sensor could detect subtle pulse signal, sound wave and recognize shear stress applied from different directions. In addition, we have demonstrated that the Gly-Alg-Glycerol film sensor sealed by polylactic acid and beeswax could serve as an in vivo sensor to monitor physiological pressure signals such as heartbeat, respiration and muscle movement. Finally, the Gly-Alg-Glycerol film possessed good biocompatibility, supporting the attachment and proliferation of rat mesenchymal stromal cells, and biodegradability, thereby showing great potential as biodegradable piezoelectric biomaterials for biomedical sensing applications.
Collapse
Affiliation(s)
- Qiaoxia Lin
- MOE Key Laboratory of Bio-Intelligent Manufacturing, Dalian Key Laboratory of Artificial Organ and Regenerative Medicine, School of Bioengineering, Dalian University of Technology, Dalian 116024, Liaoning, P. R. China
- State Key Laboratory of Fine Chemicals, Frontiers Science Center for Smart Materials Oriented Chemical Engineering, Dalian University of Technology, Dalian 116024, Liaoning, P. R. China
- School of Chemical Engineering, Dalian University of Technology, Dalian 116024, Liaoning, P. R. China
| | - Yonggang Zhang
- MOE Key Laboratory of Bio-Intelligent Manufacturing, Dalian Key Laboratory of Artificial Organ and Regenerative Medicine, School of Bioengineering, Dalian University of Technology, Dalian 116024, Liaoning, P. R. China
| | - Luhua Chen
- School of Mechanical Engineering, Dalian University of Technology, Dalian 116024, Liaoning, P. R. China
| | - Haoyue Zhang
- MOE Key Laboratory of Bio-Intelligent Manufacturing, Dalian Key Laboratory of Artificial Organ and Regenerative Medicine, School of Bioengineering, Dalian University of Technology, Dalian 116024, Liaoning, P. R. China
- State Key Laboratory of Fine Chemicals, Frontiers Science Center for Smart Materials Oriented Chemical Engineering, Dalian University of Technology, Dalian 116024, Liaoning, P. R. China
- School of Chemical Engineering, Dalian University of Technology, Dalian 116024, Liaoning, P. R. China
| | - Chuanfeng An
- MOE Key Laboratory of Bio-Intelligent Manufacturing, Dalian Key Laboratory of Artificial Organ and Regenerative Medicine, School of Bioengineering, Dalian University of Technology, Dalian 116024, Liaoning, P. R. China
| | - Chengze Li
- MOE Key Laboratory of Bio-Intelligent Manufacturing, Dalian Key Laboratory of Artificial Organ and Regenerative Medicine, School of Bioengineering, Dalian University of Technology, Dalian 116024, Liaoning, P. R. China
| | - Qifan Wang
- MOE Key Laboratory of Bio-Intelligent Manufacturing, Dalian Key Laboratory of Artificial Organ and Regenerative Medicine, School of Bioengineering, Dalian University of Technology, Dalian 116024, Liaoning, P. R. China
| | - Jinhui Song
- School of Mechanical Engineering, Dalian University of Technology, Dalian 116024, Liaoning, P. R. China
| | - Wei He
- State Key Laboratory of Fine Chemicals, Frontiers Science Center for Smart Materials Oriented Chemical Engineering, Dalian University of Technology, Dalian 116024, Liaoning, P. R. China
- School of Chemical Engineering, Dalian University of Technology, Dalian 116024, Liaoning, P. R. China
| | - Huanan Wang
- MOE Key Laboratory of Bio-Intelligent Manufacturing, Dalian Key Laboratory of Artificial Organ and Regenerative Medicine, School of Bioengineering, Dalian University of Technology, Dalian 116024, Liaoning, P. R. China
- State Key Laboratory of Fine Chemicals, Frontiers Science Center for Smart Materials Oriented Chemical Engineering, Dalian University of Technology, Dalian 116024, Liaoning, P. R. China
| |
Collapse
|
4
|
Fronczyk T, Mielańczyk A, Klymenko O, Erfurt K, Neugebauer D. Eco-Conscious Approach to Thermoresponsive Star-Comb and Mikto-Arm Polymers via Enzymatically Assisted Atom Transfer Radical Polymerization Followed by Ring-Opening Polymerization. Molecules 2023; 29:55. [PMID: 38202638 PMCID: PMC10779862 DOI: 10.3390/molecules29010055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2023] [Revised: 12/13/2023] [Accepted: 12/18/2023] [Indexed: 01/12/2024] Open
Abstract
This study explores the synthesis, characterization, and application of a heterofunctional initiator derived from 2-hydroxypropyl cyclodextrin (HP-β-CD), having eight bromoester groups and thirteen hydroxyl groups allowing the synthesis of mikto-arm star-shaped polymers. The bromoesterification of HP-β-CD was achieved using α-bromoisobutyryl bromide as the acylation reagent, modifying the cyclodextrin (CD) molecule as confirmed by electrospray ionization mass spectrometry (ESI-MS), nuclear magnetic resonance (NMR), attenuated total reflection-Fourier transform infrared (ATR-FTIR) spectroscopy analysis, and differential scanning calorimetry (DSC) thermograms. The initiator's effectiveness was further demonstrated by obtaining star-comb and mikto-arm polymers via an enzymatically assisted atom transfer radical polymerization (ATRP) method and subsequent ring-opening polymerization (ROP). The ATR polymerization quality and control depended on the type of monomer and was optimized by the way of introducing the initiator into the reaction mixture. In the case of ATRP, high conversion rates for poly(ethylene oxide) methyl ether methacrylate (OEOMA), with molecular weights (Mn) of 500 g/mol and 300 g/mol, were achieved. The molecular weight distribution of the obtained polymers remained in the range of 1.23-1.75. The obtained star-comb polymers were characterized by different arm lengths. Unreacted hydroxyl groups in the core of exemplary star-comb polymers were utilized in the ROP of ε-caprolactone (CL) to obtain a hydrophilic mikto-arm polymer. Cloud point temperature (TCP) values of the synthesized polymers increased with arm length, indicating the polymers' reduced hydrophobicity and enhanced solvation by water. Atomic force microscopy (AFM) analysis revealed the ability of the star-comb polymers to create fractals. The study elucidates advancements in the synthesis and utilization of hydrophilic sugar-based initiators for enzymatically assisted ATRP in an aqueous solution for obtaining complex star-comb polymers in a controlled manner.
Collapse
Affiliation(s)
- Tomasz Fronczyk
- Department of Physical Chemistry and Technology of Polymers, Faculty of Chemistry, Silesian University of Technology, M. Strzody 9 Street, 44-100 Gliwice, Poland; (T.F.); (D.N.)
| | - Anna Mielańczyk
- Department of Physical Chemistry and Technology of Polymers, Faculty of Chemistry, Silesian University of Technology, M. Strzody 9 Street, 44-100 Gliwice, Poland; (T.F.); (D.N.)
| | - Olesya Klymenko
- Department of Histology and Cell Pathology, Faculty of Medical Sciences in Zabrze, Medical University of Silesia, 40-055 Katowice, Poland;
| | - Karol Erfurt
- Department of Organic Chemical Technology and Petrochemistry, Faculty of Chemistry, Silesian University of Technology, B. Krzywoustego 4, 44-100 Gliwice, Poland;
| | - Dorota Neugebauer
- Department of Physical Chemistry and Technology of Polymers, Faculty of Chemistry, Silesian University of Technology, M. Strzody 9 Street, 44-100 Gliwice, Poland; (T.F.); (D.N.)
| |
Collapse
|
5
|
Orda S, Drzazga M, Leszczyńska-Sejda K, Ciszewski M, Kocur A, Branecka P, Gall K, Słaboń M, Lemanowicz M. Investigations of the Density and Solubility of Ammonium Perrhenate and Potassium Perrhenate Aqueous Solutions. MATERIALS (BASEL, SWITZERLAND) 2023; 16:5481. [PMID: 37570185 PMCID: PMC10420235 DOI: 10.3390/ma16155481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 08/01/2023] [Accepted: 08/03/2023] [Indexed: 08/13/2023]
Abstract
Rhenium is largely used as an additive to nickel- and cobalt-based superalloys. Their resistance to temperature and corrosion makes them suitable for the production of turbines in civil and military aviation, safety valves in drilling platforms, and tools working at temperatures exceeding 1000 °C. The purity of commercial rhenium salts is highly important. Potassium, which is a particularly undesirable element, can be removed by recrystallization. Therefore, it is crucial to possess detailed knowledge concerning process parameters including the dissolved solid concentration and the resulting saturation temperature. This can be achieved using simple densimetric methods. Due to the fact that data concerning the physicochemical properties of ammonium perrhenate (APR) NH4ReO4 and potassium perrhenate (PPR) KReO4 are imprecise or unavailable in the scientific literature, the goal of this study is to present experimental data including the solubility and density of water solutions of both salts. In the experiments, a densimeter with a vibrating cell was used to precisely determine the densities. Although the investigated solutions did not fit into the earlier proposed mathematical model, some crucial conclusions could still be made based on the results.
Collapse
Affiliation(s)
- Szymon Orda
- Łukasiewicz Research Network—Institute of Non-Ferrous Metals, Centre of Hydroelectrometallurgy, ul. Sowińskiego 5, 44-100 Gliwice, Poland; (M.D.); (K.L.-S.); (M.C.)
| | - Michał Drzazga
- Łukasiewicz Research Network—Institute of Non-Ferrous Metals, Centre of Hydroelectrometallurgy, ul. Sowińskiego 5, 44-100 Gliwice, Poland; (M.D.); (K.L.-S.); (M.C.)
| | - Katarzyna Leszczyńska-Sejda
- Łukasiewicz Research Network—Institute of Non-Ferrous Metals, Centre of Hydroelectrometallurgy, ul. Sowińskiego 5, 44-100 Gliwice, Poland; (M.D.); (K.L.-S.); (M.C.)
| | - Mateusz Ciszewski
- Łukasiewicz Research Network—Institute of Non-Ferrous Metals, Centre of Hydroelectrometallurgy, ul. Sowińskiego 5, 44-100 Gliwice, Poland; (M.D.); (K.L.-S.); (M.C.)
| | - Alicja Kocur
- Department of Chemical Engineering and Process Design, Faculty of Chemistry, Silesian University of Technology, ul. ks. M. Strzody 7, 44-100 Gliwice, Poland; (A.K.); (K.G.); (M.S.); (M.L.)
| | - Pola Branecka
- Department of Chemical Engineering and Process Design, Faculty of Chemistry, Silesian University of Technology, ul. ks. M. Strzody 7, 44-100 Gliwice, Poland; (A.K.); (K.G.); (M.S.); (M.L.)
| | - Kacper Gall
- Department of Chemical Engineering and Process Design, Faculty of Chemistry, Silesian University of Technology, ul. ks. M. Strzody 7, 44-100 Gliwice, Poland; (A.K.); (K.G.); (M.S.); (M.L.)
| | - Mateusz Słaboń
- Department of Chemical Engineering and Process Design, Faculty of Chemistry, Silesian University of Technology, ul. ks. M. Strzody 7, 44-100 Gliwice, Poland; (A.K.); (K.G.); (M.S.); (M.L.)
| | - Marcin Lemanowicz
- Department of Chemical Engineering and Process Design, Faculty of Chemistry, Silesian University of Technology, ul. ks. M. Strzody 7, 44-100 Gliwice, Poland; (A.K.); (K.G.); (M.S.); (M.L.)
| |
Collapse
|
6
|
The Fundamental Role of Lipids in Polymeric Nanoparticles: Dermal Delivery and Anti-Inflammatory Activity of Cannabidiol. Molecules 2023; 28:molecules28041774. [PMID: 36838759 PMCID: PMC9962451 DOI: 10.3390/molecules28041774] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 02/08/2023] [Accepted: 02/08/2023] [Indexed: 02/16/2023] Open
Abstract
This report presents a nanoparticulate platform for cannabidiol (CBD) for topical treatment of inflammatory conditions. We have previously shown that stabilizing lipids improve the encapsulation of CBD in ethyl cellulose nanoparticles. In this study, we examined CBD release, skin permeation, and the capability of lipid-stabilized nanoparticles (LSNs) to suppress the release of IL-6 and IL-8. The nanoparticles were stabilized with cetyl alcohol (CA), stearic acid (SA), lauric acid (LA), and an SA/LA eutectic combination (SALA). LSN size and concentration were measured and characterized by differential scanning calorimetry (DSC), in vitro release of loaded CBD, and skin permeability. IL-6 and IL-8 secretions from TNF-α-induced HaCaT cells were monitored following different LSN treatments. CBD released from the LSNs in dispersion at increasing concentrations of polysorbate 80 showed non-linear solubilization, which was explained by recurrent precipitation. A significant high release of CBD in a cell culture medium was shown from SALA-stabilized nanoparticles. Skin permeation was >30% lower from SA-stabilized nanoparticles compared to the other LSNs. Investigation of the CBD-loaded LSNs' effect on the release of IL-6 and IL-8 from TNF-α-induced HaCaT cells showed that nanoparticles stabilized with CA, LA, or SALA were similarly effective in suppressing cytokine release. The applicability of the CBD-loaded LSNs to treat topical inflammatory conditions has been supported by their dermal permeation and release inhibition of pro-inflammatory cytokines.
Collapse
|
7
|
Lemanowicz M, Chrzanowska J, Kotek M, Mielańczyk A, Kupczak M, Niewolik D, Korytkowska-Wałach A, Klymenko O, Kocur A, Neugebauer D. Stimuli-Responsive Star Polymer as an Admixture for Crystallization of Hollow Crystals. MATERIALS (BASEL, SWITZERLAND) 2022; 15:8240. [PMID: 36431723 PMCID: PMC9692294 DOI: 10.3390/ma15228240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Revised: 11/12/2022] [Accepted: 11/17/2022] [Indexed: 06/16/2023]
Abstract
Polymers are becoming a very popular tool in the crystallization of different compounds. In this work, a new method of crystallization is proposed using stimuli-responsive star polymer in order to obtain hollow structure crystals. In these experiments, amphiphilic copolymer of acrylic acid (AA) and methyl acrylate (MA) were used for isohydric crystallization via they cooling of KCl in deionized water solution. The experiments were realized in quartz cuvette with a magnetic stirrer using a specialized spectrometer with precise temperature control. The crystallization course was monitored by the absorbance readings and analysis of the nucleation energetic effect. It was proved that the moment of the polymer's phase transition occurrence had an important role in the crystal growth process. On the other hand, the occurrence of phase transition did not trigger the nucleation. The supercoolings achieved in the presence of the polymer were significantly higher compared to pure salt crystallization. On the basis of analysis of Particle Size Distribution (PSD) and Critical Aggregation Concentration (CAC) of the polymer, it was proposed that the hydrophobic particles of macromolecules created from polymeric aggregates served as templates for the formation of hollow crystals. Their purity was verified using thermogravimetric analysis (TGA), 1H NMR, and XRD. Only trace amounts of polymer were found in the crystalline product.
Collapse
Affiliation(s)
- Marcin Lemanowicz
- Department of Chemical Engineering and Process Design, Faculty of Chemistry, Silesian University of Technology, ks. M. Strzody 7, 44-100 Gliwice, Poland
| | - Justyna Chrzanowska
- Department of Chemical Engineering and Process Design, Faculty of Chemistry, Silesian University of Technology, ks. M. Strzody 7, 44-100 Gliwice, Poland
| | - Milena Kotek
- Department of Chemical Engineering and Process Design, Faculty of Chemistry, Silesian University of Technology, ks. M. Strzody 7, 44-100 Gliwice, Poland
| | - Anna Mielańczyk
- Department of Physical Chemistry and Technology of Polymers, Faculty of Chemistry, Silesian University of Technology, ks. M. Strzody 9, 44-100 Gliwice, Poland
| | - Maria Kupczak
- Department of Physical Chemistry and Technology of Polymers, Faculty of Chemistry, Silesian University of Technology, ks. M. Strzody 9, 44-100 Gliwice, Poland
| | - Daria Niewolik
- Department of Physical Chemistry and Technology of Polymers, Faculty of Chemistry, Silesian University of Technology, ks. M. Strzody 9, 44-100 Gliwice, Poland
| | - Anna Korytkowska-Wałach
- Department of Organic Chemistry, Bioorganic Chemistry and Biotechnology, Faculty of Chemistry, Silesian University of Technology, B. Krzywoustego 4, 44-100 Gliwice, Poland
| | - Olesya Klymenko
- Department of Histology and Embryology, School of Medicine with the Division of Dentistry in Zabrze, Medical University of Silesia, ul. Jordana 19, 41-808 Zabrze, Poland
| | - Alicja Kocur
- Department of Chemical Engineering and Process Design, Faculty of Chemistry, Silesian University of Technology, ks. M. Strzody 7, 44-100 Gliwice, Poland
| | - Dorota Neugebauer
- Department of Physical Chemistry and Technology of Polymers, Faculty of Chemistry, Silesian University of Technology, ks. M. Strzody 9, 44-100 Gliwice, Poland
| |
Collapse
|
8
|
Sheikh Nezhad Moghadam A, Rafizadeh M, Afshar Taromi F. Non-isothermal crystallization kinetics of polyethylene terephthalate: a study based on Tobin, Hay and Nakamura models. IRANIAN POLYMER JOURNAL 2022. [DOI: 10.1007/s13726-022-01109-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
9
|
Bolla G, Sarma B, Nangia AK. Crystal Engineering of Pharmaceutical Cocrystals in the Discovery and Development of Improved Drugs. Chem Rev 2022; 122:11514-11603. [PMID: 35642550 DOI: 10.1021/acs.chemrev.1c00987] [Citation(s) in RCA: 99] [Impact Index Per Article: 49.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The subject of crystal engineering started in the 1970s with the study of topochemical reactions in the solid state. A broad chemical definition of crystal engineering was published in 1989, and the supramolecular synthon concept was proposed in 1995 followed by heterosynthons and their potential applications for the design of pharmaceutical cocrystals in 2004. This review traces the development of supramolecular synthons as robust and recurring hydrogen bond patterns for the design and construction of supramolecular architectures, notably, pharmaceutical cocrystals beginning in the early 2000s to the present time. The ability of a cocrystal between an active pharmaceutical ingredient (API) and a pharmaceutically acceptable coformer to systematically tune the physicochemical properties of a drug (i.e., solubility, permeability, hydration, color, compaction, tableting, bioavailability) without changing its molecular structure is the hallmark of the pharmaceutical cocrystals platform, as a bridge between drug discovery and pharmaceutical development. With the design of cocrystals via heterosynthons and prototype case studies to improve drug solubility in place (2000-2015), the period between 2015 to the present time has witnessed the launch of several salt-cocrystal drugs with improved efficacy and high bioavailability. This review on the design, synthesis, and applications of pharmaceutical cocrystals to afford improved drug products and drug substances will interest researchers in crystal engineering, supramolecular chemistry, medicinal chemistry, process development, and pharmaceutical and materials sciences. The scale-up of drug cocrystals and salts using continuous manufacturing technologies provides high-value pharmaceuticals with economic and environmental benefits.
Collapse
Affiliation(s)
- Geetha Bolla
- Department of Chemistry, Ben-Gurion University of the Negev, Building 43, Room 201, Sderot Ben-Gurion 1, Be'er Sheva 8410501, Israel
| | - Bipul Sarma
- Department of Chemical Sciences, Tezpur University, Napaam, Tezpur, Assam 784028, India
| | - Ashwini K Nangia
- School of Chemistry, University of Hyderabad, Prof. C. R. Rao Road, Gachibowli, Hyderabad 500046, India
| |
Collapse
|
10
|
Kolev I, Ivanova N, Topouzova-Hristova T, Dimova T, Koseva P, Vasileva I, Ivanova S, Apostolov A, Alexieva G, Tzonev A, Strashilov V. Ammonio Methacrylate Copolymer (Type B)-Diltiazem Interactions in Solid Dispersions and Microsponge Drug-Delivery Systems. Polymers (Basel) 2022; 14:polym14102125. [PMID: 35632008 PMCID: PMC9144411 DOI: 10.3390/polym14102125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Revised: 04/23/2022] [Accepted: 05/20/2022] [Indexed: 12/10/2022] Open
Abstract
This paper presents a complex analytical study on the distribution, solubility, amorphization, and compatibility of diltiazem within the composition of Eudragit RS 100-based particles of microspongeous type. For this purpose, a methodology combining attenuated total reflectance Fourier transform infrared (ATR-FTIR) absorption spectroscopy, differential scanning calorimetry (DSC), scanning electron microscopy with energy-dispersive X-ray microanalysis (SEM-EDX), and in vitro dissolution study is proposed. The correct interpretation of the FTIR and drug-dissolution results was guaranteed by the implementation of two contrasting reference models: physical drug–polymer mixtures and casting-obtained, molecularly dispersed drug–polymer composites (solid dispersions). The spectral behavior of the drug–polymer composites in the carbonyl frequency (νCO) region was used as a quality marker for the degree of their interaction/mutual solubility. A spectral-pattern similarity between the microsponge particles and the solid dispersions indicated the molecular-type dispersion of the former. The comparative drug-desorption study and the qualitative observations over the DSC and SEM-EDX results confirmed the successful synthesis of a homogeneous coamorphous microsponge-type formulation with excellent drug-loading capacity and “controlled” dissolution profile. Among them, the drug-delivery particles with 25% diltiazem content (M-25) were recognized as the most promising, with the highest population of drug molecules in the polymer bulk and the most suitable desorption profile. Furthermore, an economical and effective analytical algorithm was developed for the comprehensive physicochemical characterization of complex delivery systems of this kind.
Collapse
Affiliation(s)
- Iliyan Kolev
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Medical University “Prof. Dr. Paraskev Stoyanov”–Varna, 84 “Tzar Osvoboditel” Blvd., 9000 Varna, Bulgaria; (T.D.); (P.K.); (I.V.); (S.I.)
- Correspondence: (I.K.); (N.I.)
| | - Nadezhda Ivanova
- Department of Pharmaceutical Technologies, Faculty of Pharmacy, Medical University “Prof. Dr. Paraskev Stoyanov”–Varna, 84 “Tzar Osvoboditel” Blvd., 9000 Varna, Bulgaria
- Correspondence: (I.K.); (N.I.)
| | - Tanya Topouzova-Hristova
- Department of Cytology, Histology and Embryology, Faculty of Biology, Sofia University “St. Kl. Ohridski”, 8 Dragan Tzankov Str., 1164 Sofia, Bulgaria;
| | - Tanya Dimova
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Medical University “Prof. Dr. Paraskev Stoyanov”–Varna, 84 “Tzar Osvoboditel” Blvd., 9000 Varna, Bulgaria; (T.D.); (P.K.); (I.V.); (S.I.)
| | - Pavlina Koseva
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Medical University “Prof. Dr. Paraskev Stoyanov”–Varna, 84 “Tzar Osvoboditel” Blvd., 9000 Varna, Bulgaria; (T.D.); (P.K.); (I.V.); (S.I.)
| | - Ivalina Vasileva
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Medical University “Prof. Dr. Paraskev Stoyanov”–Varna, 84 “Tzar Osvoboditel” Blvd., 9000 Varna, Bulgaria; (T.D.); (P.K.); (I.V.); (S.I.)
| | - Sonya Ivanova
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Medical University “Prof. Dr. Paraskev Stoyanov”–Varna, 84 “Tzar Osvoboditel” Blvd., 9000 Varna, Bulgaria; (T.D.); (P.K.); (I.V.); (S.I.)
| | - Anton Apostolov
- Laboratory on Structure and Properties of Polymers, Faculty of Chemistry and Pharmacy, Sofia University “St. Kl. Ohridski”, 1 J. Bourchier Blvd., 1164 Sofia, Bulgaria;
| | - Gergana Alexieva
- Department of General Physics, Faculty of Physics, Sofia University “St. Kl. Ohridski”, 5 J. Bourchier Blvd., 1164 Sofia, Bulgaria;
| | - Atanas Tzonev
- Department of Condensed Matter Physics and Microelectronics, Faculty of Physics, Sofia University “St. Kl. Ohridski”, 5 J. Bourchier Blvd., 1164 Sofia, Bulgaria; (A.T.); (V.S.)
| | - Vesselin Strashilov
- Department of Condensed Matter Physics and Microelectronics, Faculty of Physics, Sofia University “St. Kl. Ohridski”, 5 J. Bourchier Blvd., 1164 Sofia, Bulgaria; (A.T.); (V.S.)
| |
Collapse
|
11
|
Corsaro C, Neri G, Santoro A, Fazio E. Acrylate and Methacrylate Polymers' Applications: Second Life with Inexpensive and Sustainable Recycling Approaches. MATERIALS (BASEL, SWITZERLAND) 2021; 15:282. [PMID: 35009430 PMCID: PMC8746205 DOI: 10.3390/ma15010282] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 12/24/2021] [Accepted: 12/27/2021] [Indexed: 12/13/2022]
Abstract
Polymers are widely employed in several fields thanks to their wide versatility and the easy derivatization routes. However, a wide range of commercial polymers suffer from limited use on a large scale due to their inert nature. Nowadays, acrylate and methacrylate polymers, which are respectively derivatives of acrylic or methacrylic acid, are among the most proposed materials for their useful characteristics like good biocompatibility, capping ability toward metal clusters, low price, potentially recyclability and reusability. Here, we discuss the advantages and challenges of this class of smart polymers focusing our attention on their current technological applications in medical, electronic, food packaging and environmental remediation fields. Furthermore, we deal with the main issue of their recyclability, considering that the current commercial bioplastics are not yet able to meet the global needs as much as to totally replace fossil-fuel-based products. Finally, the most accredited strategies to reach recyclable composites based on acrylic polymers are described.
Collapse
Affiliation(s)
- Carmelo Corsaro
- Department of Mathematical and Computational Sciences, Physics Science and Earth Science, University of Messina, 98166 Messina, Italy;
| | - Giulia Neri
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, 98166 Messina, Italy; (G.N.); (A.S.)
| | - Antonio Santoro
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, 98166 Messina, Italy; (G.N.); (A.S.)
| | - Enza Fazio
- Department of Mathematical and Computational Sciences, Physics Science and Earth Science, University of Messina, 98166 Messina, Italy;
| |
Collapse
|
12
|
Upper Critical Solution Temperature Polymer Phase Transition as a Tool for the Control of Inorganic Salt Crystallization Process. MATERIALS 2021; 14:ma14185373. [PMID: 34576596 PMCID: PMC8468619 DOI: 10.3390/ma14185373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Revised: 09/09/2021] [Accepted: 09/13/2021] [Indexed: 11/25/2022]
Abstract
In this paper, the experimental research concerning the impact of the hydrophilic-hydrophobic transition of a polymer exhibiting the Upper Critical Solution Temperature (UCST) onto the crystallization process of inorganic salt is presented. A hypothesis was postulated that under favorable process conditions the sudden change of macromolecules properties and the resulting appearance of insoluble particles will induce the nucleation process of the salt. Since the transition point parameters may be precisely designed, the described mechanism would eliminate the stochastic nature of the crystallization process. Although performed experiments proved that the postulated process mechanism was incorrect, the presence of macromolecules had a significant impact on the crystallization course. The stochastic nature of the process was not eliminated; nevertheless, it seems that a specific point of nucleation was created which was independent of the cloud point temperature (TCP) of the polymer. Moreover, the surface morphology of crystals was changed.
Collapse
|