1
|
Castillo-Patiño D, Rosas-Mejía HG, Albalate-Ramírez A, Rivas-García P, Carrillo-Castillo A, Morones-Ramírez JR. Transforming Agro-Industrial Waste into Bioplastic Coating Films. ACS OMEGA 2024; 9:42970-42989. [PMID: 39464469 PMCID: PMC11500142 DOI: 10.1021/acsomega.4c05924] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 09/14/2024] [Accepted: 09/24/2024] [Indexed: 10/29/2024]
Abstract
Addressing the environmental impact of agro-industrial waste, this study explores the transformation of banana, potato, and orange peels into bioplastics suitable for thin coating films. We prepared six extracts at 100 g/L, encompassing individual (banana peel, BP; orange peel, OP; and potato peel, PP) and combined [BP/OP, BP/PP, and BP/OP/PP] formulations, with yeast mold (YM) medium serving as the control. Utilizing the spin-coating method, we applied 1 mL of each sample at 1000 rpm for 1 min to create the films. Notably, the OP extract demonstrated a twofold increase in bioplastic yield (860.33 mg/L) compared to the yields of BP (391.43 mg/L), PP (357.67 mg/L), BP/OP (469.40 mg/L), BP/PP (382.50 mg/L), BP/OP/PP (272.67 mg/L), and YM (416.33 mg/L) extracts. Atomic force microscopy analysis of the film surfaces revealed a roughness under 8 nm, with the OP extract recording the highest at 7.0275 nm, whereas the BP/OP mixture exhibited the lowest roughness at 0.2067 nm and also formed the thinnest film at 6.5 nm. With R2 trend values exceeding 0.9950, the films exhibited water vapor permeability values ranging from 3.05 × 10-3 to 4.44 × 10-3, with the OP film being the least permeable and the BP/PP films the most permeable. The OP film demonstrated the lowest solubility in both water and ethanol with values of 64.71 and 1.05%, respectively. The solubilities of all films were above 60% in water and below 4% in ethanol. Furthermore, the films exhibited antimicrobial efficacy against both Gram-positive and Gram-negative bacteria. Our findings confirm the potential of utilizing banana, orange, and potato peels as viable substrates for eco-friendly bioplastics in thin-film applications.
Collapse
Affiliation(s)
- Diana
Lucinda Castillo-Patiño
- Faculty
of Chemical Sciences, Autonomous University
of Nuevo León (UANL), San
Nicolás de los Garza 66455, Mexico
- Center
for Research in Biotechnology and Nanotechnology, Faculty of Chemical
Sciences, Autonomous University of Nuevo
León, Research and Technological Innovation Park, Apodaca 66628, Mexico
| | - Humberto Geovani Rosas-Mejía
- Faculty
of Chemical Sciences, Autonomous University
of Nuevo León (UANL), San
Nicolás de los Garza 66455, Mexico
- Center
for Research in Biotechnology and Nanotechnology, Faculty of Chemical
Sciences, Autonomous University of Nuevo
León, Research and Technological Innovation Park, Apodaca 66628, Mexico
| | - Alonso Albalate-Ramírez
- Faculty
of Chemical Sciences, Autonomous University
of Nuevo León (UANL), San
Nicolás de los Garza 66455, Mexico
- Center
for Research in Biotechnology and Nanotechnology, Faculty of Chemical
Sciences, Autonomous University of Nuevo
León, Research and Technological Innovation Park, Apodaca 66628, Mexico
| | - Pasiano Rivas-García
- Faculty
of Chemical Sciences, Autonomous University
of Nuevo León (UANL), San
Nicolás de los Garza 66455, Mexico
- Center
for Research in Biotechnology and Nanotechnology, Faculty of Chemical
Sciences, Autonomous University of Nuevo
León, Research and Technological Innovation Park, Apodaca 66628, Mexico
| | - Amanda Carrillo-Castillo
- Autonomous
University of Ciudad Juarez, Plutarco Elias Avenue, 1210 Foviste Chamizal, Ciudad Juárez 32310, Chihuahua, Mexico
| | - José Rubén Morones-Ramírez
- Faculty
of Chemical Sciences, Autonomous University
of Nuevo León (UANL), San
Nicolás de los Garza 66455, Mexico
- Center
for Research in Biotechnology and Nanotechnology, Faculty of Chemical
Sciences, Autonomous University of Nuevo
León, Research and Technological Innovation Park, Apodaca 66628, Mexico
| |
Collapse
|
2
|
Ilvis P, Acosta J, Arancibia M, Casado S. Nanoscopic Characterization of Starch-Based Biofilms Extracted from Ecuadorian Potato ( Solanum tuberosum) Varieties. Polymers (Basel) 2024; 16:1873. [PMID: 39000728 PMCID: PMC11244412 DOI: 10.3390/polym16131873] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 06/08/2024] [Accepted: 06/25/2024] [Indexed: 07/17/2024] Open
Abstract
Synthetic plastic polymers are causing considerable emerging ecological hazards. Starch-based biofilms are a potential alternative. However, depending on the natural source and extraction method, the properties of starch can vary, affecting the physicochemical characteristics of the corresponding casted films generated from it. These differences might entail morphological changes at the nanoscale, which can be explored by inspecting their surfaces. Potato (Solanum tuberosum) is a well-known tuber containing a high amount of starch, but the properties of the biofilms extracted from it are dependent on the specific variety. In this research, four Ecuadorian potato varieties (Leona Blanca, Única, Chola, and Santa Rosa) were analyzed and blended with different glycerol concentrations. The amylose content of each extracted starch was estimated, and biofilms obtained were characterized at both macroscopic and nanoscopic levels. Macroscopic tests were conducted to evaluate their elastic properties, visible optical absorption, water vapor permeability, moisture content, and solubility. It was observed that as the glycerol percentage increased, both moisture content and soluble matter increased, while tensile strength decreased, especially in the case of the Chola variety. These results were correlated to a surface analysis using atomic force microscopy, providing a possible explanation based on the topography and phase contrast observations made at the nanoscale.
Collapse
Affiliation(s)
- Pablo Ilvis
- Food and Biotechnology Science and Engineering Department, Technical University of Ambato, Ambato 180207, Ecuador
| | - José Acosta
- Food and Biotechnology Science and Engineering Department, Technical University of Ambato, Ambato 180207, Ecuador
| | - Mirari Arancibia
- Food and Biotechnology Science and Engineering Department, Technical University of Ambato, Ambato 180207, Ecuador
| | - Santiago Casado
- Food and Biotechnology Science and Engineering Department, Technical University of Ambato, Ambato 180207, Ecuador
| |
Collapse
|
3
|
Liu H, Bai Y, Huang C, Wang Y, Ji Y, Du Y, Xu L, Yu DG, Bligh SWA. Recent Progress of Electrospun Herbal Medicine Nanofibers. Biomolecules 2023; 13:184. [PMID: 36671570 PMCID: PMC9855805 DOI: 10.3390/biom13010184] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2022] [Revised: 12/28/2022] [Accepted: 01/09/2023] [Indexed: 01/18/2023] Open
Abstract
Herbal medicine has a long history of medical efficacy with low toxicity, side effects and good biocompatibility. However, the bioavailability of the extract of raw herbs and bioactive compounds is poor because of their low water solubility. In order to overcome the solubility issues, electrospinning technology can offer a delivery alternative to resolve them. The electrospun fibers have the advantages of high specific surface area, high porosity, excellent mechanical strength and flexible structures. At the same time, various natural and synthetic polymer-bound fibers can mimic extracellular matrix applications in different medical fields. In this paper, the development of electrospinning technology and polymers used for incorporating herbal medicine into electrospun nanofibers are reviewed. Finally, the recent progress of the applications of these herbal medicine nanofibers in biomedical (drug delivery, wound dressing, tissue engineering) and food fields along with their future prospects is discussed.
Collapse
Affiliation(s)
- Hang Liu
- School of Materials and Chemistry, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Yubin Bai
- School of Materials and Chemistry, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Chang Huang
- School of Materials and Chemistry, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Ying Wang
- School of Materials and Chemistry, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Yuexin Ji
- School of Materials and Chemistry, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Yutong Du
- School of Materials and Chemistry, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Lin Xu
- School of Materials and Chemistry, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Deng-Guang Yu
- School of Materials and Chemistry, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Sim Wan Annie Bligh
- School of Health Sciences, Caritas Institute of Higher Education, Hong Kong 999077, China
| |
Collapse
|
4
|
Akram T, Mustafa S, Ilyas K, Tariq MR, Ali SW, Ali S, Shafiq M, Rao M, Safdar W, Iftikhar M, Hameed A, Manzoor M, Akhtar M, Umer Z, Basharat Z. Supplementation of banana peel powder for the development of functional broiler nuggets. PeerJ 2022; 10:e14364. [PMID: 36518284 PMCID: PMC9744146 DOI: 10.7717/peerj.14364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Accepted: 10/18/2022] [Indexed: 11/30/2022] Open
Abstract
Banana peel powder is considered one of the most nutritive and effective waste product to be utilized as a functional additive in the food industry. This study aimed to determine the impact of banana peel powder at concentrations of 2%, 4%, and 6% on the nutritional composition, physicochemical parameters, antioxidant potential, cooking properties, microbial count, and organoleptic properties of functional nuggets during storage at refrigeration temperature for 21 days. Results showed a significant increase in nutritional content including ash and crude fiber ranging from 2.52 ± 0.017% to 6.45 ± 0.01% and 0.51 ± 0.01% to 2.13 ± 0.01%, respectively, whereas a significant decrease was observed in crude protein and crude fat ranging from 13.71 ± 0.02% to 8.92 ± 0.02% and 9.25 ± 0.02% to 4.51 ± 0.01%, respectively. The incorporation of banana peel powder significantly improved the Water Holding Capacity from 5.17% to 8.37%, cooking yield from 83.20 ± 0.20% to 87.73 ± 0.16% and cooking loss from 20.19 ± 0.290% to 13.98 ± 0.15%. Antioxidant potential was significantly improved as TPC of functional nuggets increased ranging from 3.73 ± 0.02 mg GAE/g to 8.53 ± 0.02 mg GAE/g while a decrease in TBARS (0.18 ± 0.02 mg malonaldehyde/kg to 0.14 ± 0.02 mg malonaldehyde/kg) was observed. Furthermore, functional broiler nuggets depicted a significantly reduced total plate count (3.06-4.20 × 105 CFU/g) than control, which is likely due to high amounts of phenolic compounds in BPP. Broiler nuggets supplemented with 2% BPP (T1) received the greatest sensory scores in terms of flavour, tenderness, and juiciness. Results of current study revealed the potential of BPP to be utilized as an effective natural source of fibre supplementation in food products along with enhanced antioxidant and anti-microbial properties.
Collapse
Affiliation(s)
- Tasleem Akram
- Faisalabad Medical University, Faisalabad, Punjab, Pakistan
| | | | - Khola Ilyas
- Faisalabad Medical University, Faisalabad, Punjab, Pakistan
| | | | - Shinawar Waseem Ali
- Department of Food Sciences, University of the Punjab, Lahore, Punjab, Pakistan
| | - Sajid Ali
- Department of Agronomy, University of the Punjab, Lahore, Punjab, Pakistan
| | - Muhammad Shafiq
- Department of Horticulture, University of the Punjab, Lahore, Punjab, Pakistan
| | - Maryam Rao
- Department of Food Sciences, University of the Punjab, Lahore, Punjab, Pakistan
| | - Waseem Safdar
- Department of Biological Sciences, National University of Medical Sciences, Rawalpindi, Punjab, Pakistan
| | - Madiha Iftikhar
- Department of Diet and Nutritional Sciences, Ibadat International University, Islamabad, Pakistan
| | - Amna Hameed
- Department of Diet and Nutritional Sciences, Ibadat International University, Islamabad, Pakistan
| | - Mujahid Manzoor
- Department of Entomology, University of the Punjab, Lahore, Punjab, Pakistan
| | | | - Zujaja Umer
- Department of Food Sciences, University of the Punjab, Lahore, Punjab, Pakistan
| | - Zunaira Basharat
- Department of Food Sciences, University of the Punjab, Lahore, Punjab, Pakistan
| |
Collapse
|
5
|
Pico C, De la Vega J, Tubón I, Arancibia M, Casado S. Nanoscopic Characterization of Starch Biofilms Extracted from the Andean Tubers Ullucus tuberosus, Tropaeolum tuberosum, Oxalis tuberosa, and Solanum tuberosum. Polymers (Basel) 2022; 14:polym14194116. [PMID: 36236064 PMCID: PMC9573434 DOI: 10.3390/polym14194116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 09/24/2022] [Accepted: 09/26/2022] [Indexed: 11/16/2022] Open
Abstract
The replacement of synthetic polymers by starch biofilms entails a significant potentiality. They are non-toxic materials, biodegradable, and relatively easy to gather from several sources. However, various applications may require physicochemical properties that might prevent the use of some types of starch biofilms. Causes should be explored at the nanoscale. Here we present an atomic force microscopy surface analysis of starch biofilms extracted from the Andean tubers melloco (Ullucus tuberosus), mashua (Tropaeolum tuberosum), oca (Oxalis tuberosa), and potato (Solanum tuberosum) and relate the results to the macroscopic effects of moisture content, water activity, total soluble matter, water vapor permeability, elastic properties, opacity and IR absorption. Characterization reveals important differences at the nanoscale between the starch-based biofilms examined. Comparison permitted correlating macroscopic properties observed to the topography and tapping phase contrast segregation at the nanoscale. For instance, those samples presenting granular topography and disconnected phases at the nanoscale are associated with less elastic strength and more water molecule affinity. As an application example, we propose using the starch biofilms developed as a matrix to dispose of mouthwash and discover that melloco films are quite appropriate for this purpose.
Collapse
Affiliation(s)
- Cynthia Pico
- Food and Biotechnology Science and Engineering Department, Technical University of Ambato, Ambato 180207, Ecuador
| | | | - Irvin Tubón
- Food and Biotechnology Science and Engineering Department, Technical University of Ambato, Ambato 180207, Ecuador
| | - Mirari Arancibia
- Food and Biotechnology Science and Engineering Department, Technical University of Ambato, Ambato 180207, Ecuador
- Isabrubotanik S.A., Ambato 180150, Ecuador
| | - Santiago Casado
- Food and Biotechnology Science and Engineering Department, Technical University of Ambato, Ambato 180207, Ecuador
- Correspondence: ; Tel.: +593-2400987 (ext. 5509)
| |
Collapse
|