1
|
Fischer T, Kretzschmar A, Selmert V, Jovanovic S, Kungl H, Tempel H, Eichel RA. Post-treatment strategies for pyrophoric KOH-activated carbon nanofibres. RSC Adv 2024; 14:3845-3856. [PMID: 38274173 PMCID: PMC10810230 DOI: 10.1039/d3ra07096d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Accepted: 12/30/2023] [Indexed: 01/27/2024] Open
Abstract
The effect of two atmospheric post-treatment conditions directly after the KOH activation of polyacrylonitrile-based nanofibres is studied in this work. As post-treatment different N2 : O2 flow conditions, namely high O2-flow and low O2-flow, are applied and their impact on occurring reactions and carbon nanofibres' properties is studied by thermogravimetric analysis (TGA), differential scanning calorimetry (DSC), scanning electron microscopy (SEM), Raman spectroscopy, elemental analysis and CO2 and Ar gas adsorption. At high O2-flow conditions a pyrophoric effect was observed on the KOH-activated carbon nanofibers. Based on the obtained results from the TGA and DSC the pyrophoric effect is attributed to the oxidation reactions of metallic potassium formed during the KOH activation process and a consequent carbon combustion reaction. Suppression of this pyrophoric effect is achieved using the low O2-flow conditions due to a lower heat formation of the potassium oxidation and the absence of carbon combustion. Compared to the high O2-flow samples no partial destruction of the carbon nanofibers is observed in the SEM images. The determination of the adsorption isotherms, the surface area, the pore size distribution and the isosteric enthalpies of adsorption show the superior properties under low O2-flow conditions. The present micropore volume is increased from 0.424 cm3 g-1 at high O2-flow to 0.806 cm3 g-1 for low O2-flow samples, resulting in an increase of CO2 adsorption capacity of 38% up to 6.6 mmol g-1 at 1 bar. This significant improvement clearly points out the importance of considering highly exothermic potassium oxidation reactions and possible post-treatment strategies when applying KOH activation to electrospun carbon nanofiber materials.
Collapse
Affiliation(s)
- Tom Fischer
- Forschungszentrum Jülich GmbH, Institute of Energy and Climate Research (IEK-9) - Fundamental Electrochemistry Jülich 52425 Germany
- RWTH Aachen University, Institute of Physical Chemistry Aachen 52056 Germany
| | - Ansgar Kretzschmar
- Forschungszentrum Jülich GmbH, Institute of Energy and Climate Research (IEK-9) - Fundamental Electrochemistry Jülich 52425 Germany
| | - Victor Selmert
- Forschungszentrum Jülich GmbH, Institute of Energy and Climate Research (IEK-9) - Fundamental Electrochemistry Jülich 52425 Germany
- RWTH Aachen University, Institute of Physical Chemistry Aachen 52056 Germany
| | - Sven Jovanovic
- Forschungszentrum Jülich GmbH, Institute of Energy and Climate Research (IEK-9) - Fundamental Electrochemistry Jülich 52425 Germany
| | - Hans Kungl
- Forschungszentrum Jülich GmbH, Institute of Energy and Climate Research (IEK-9) - Fundamental Electrochemistry Jülich 52425 Germany
| | - Hermann Tempel
- Forschungszentrum Jülich GmbH, Institute of Energy and Climate Research (IEK-9) - Fundamental Electrochemistry Jülich 52425 Germany
| | - Rüdiger-A Eichel
- Forschungszentrum Jülich GmbH, Institute of Energy and Climate Research (IEK-9) - Fundamental Electrochemistry Jülich 52425 Germany
- RWTH Aachen University, Institute of Physical Chemistry Aachen 52056 Germany
| |
Collapse
|
2
|
Mehrotra S, Rai P, Gautam K, Saxena A, Verma R, Lahane V, Singh S, Yadav AK, Patnaik S, Anbumani S, Priya S, Sharma SK. Chitosan-carbon nanofiber based disposable bioelectrode for electrochemical detection of oxytocin. Food Chem 2023; 418:135965. [PMID: 37018903 DOI: 10.1016/j.foodchem.2023.135965] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 03/10/2023] [Accepted: 03/13/2023] [Indexed: 03/17/2023]
Abstract
Bioelectrodes with low carbon footprint can provide an innovative solution to the surmounting levels of e-waste. Biodegradable polymers offer green and sustainable alternatives to synthetic materials. Here, a chitosan-carbon nanofiber (CNF) based membrane has been developed and functionalized for electrochemical sensing application. The surface characterization of the membrane revealed crystalline structure with uniform particle distribution, and surface area of 25.52 m2/g and pore volume of 0.0233 cm3/g. The membrane was functionalized to develop a bioelectrode for the detection of exogenous oxytocin in milk. Electrochemical impedance spectroscopy was employed to determine oxytocin in a linear concentration range of 10 to 105 ng/mL. The developed bioelectrode showed an LOD of 24.98 ± 11.37 pg/mL and sensitivity of 2.77 × 10-10 Ω / log ng mL-1/mm2 for oxytocin in milk samples with 90.85-113.34 percent recovery. The chitosan-CNF membrane is ecologically safe and opens new avenues for environment-friendly disposable materials for sensing applications.
Collapse
Affiliation(s)
- Srishti Mehrotra
- Food, Drug and Chemical Toxicology Group, CSIR - Indian Institute of Toxicology Research, Vishvigyan Bhawan, 31, Mahatma Gandhi Marg, Lucknow 226001, Uttar Pradesh, India; Academy of Scientific and Industrial Research (AcSIR), Ghaziabad 201002, India
| | - Pawankumar Rai
- Food, Drug and Chemical Toxicology Group, CSIR - Indian Institute of Toxicology Research, Vishvigyan Bhawan, 31, Mahatma Gandhi Marg, Lucknow 226001, Uttar Pradesh, India
| | - Krishna Gautam
- Regulatory Toxicology Group, CSIR-Indian Institute of Toxicology Research, Vishvigyan Bhawan, 31, Mahatma Gandhi Marg, Lucknow 226001, Uttar Pradesh, India; Academy of Scientific and Industrial Research (AcSIR), Ghaziabad 201002, India
| | - Apoorva Saxena
- Food, Drug and Chemical Toxicology Group, CSIR - Indian Institute of Toxicology Research, Vishvigyan Bhawan, 31, Mahatma Gandhi Marg, Lucknow 226001, Uttar Pradesh, India
| | - Rahul Verma
- System Toxicology & Health Risk Assessment Group, CSIR - Indian Institute of Toxicology Research, Vishvigyan Bhawan, 31, Mahatma Gandhi Marg, Lucknow-226001, Uttar Pradesh, India; Academy of Scientific and Industrial Research (AcSIR), Ghaziabad 201002, India
| | - Vaibhavi Lahane
- Regulatory Toxicology Group, CSIR-Indian Institute of Toxicology Research, Vishvigyan Bhawan, 31, Mahatma Gandhi Marg, Lucknow 226001, Uttar Pradesh, India; Academy of Scientific and Industrial Research (AcSIR), Ghaziabad 201002, India
| | - Sakshi Singh
- Regulatory Toxicology Group, CSIR-Indian Institute of Toxicology Research, Vishvigyan Bhawan, 31, Mahatma Gandhi Marg, Lucknow 226001, Uttar Pradesh, India
| | - Akhilesh K Yadav
- Regulatory Toxicology Group, CSIR-Indian Institute of Toxicology Research, Vishvigyan Bhawan, 31, Mahatma Gandhi Marg, Lucknow 226001, Uttar Pradesh, India; Academy of Scientific and Industrial Research (AcSIR), Ghaziabad 201002, India
| | - Satyakam Patnaik
- System Toxicology & Health Risk Assessment Group, CSIR - Indian Institute of Toxicology Research, Vishvigyan Bhawan, 31, Mahatma Gandhi Marg, Lucknow-226001, Uttar Pradesh, India; Academy of Scientific and Industrial Research (AcSIR), Ghaziabad 201002, India
| | - Sadasivam Anbumani
- Regulatory Toxicology Group, CSIR-Indian Institute of Toxicology Research, Vishvigyan Bhawan, 31, Mahatma Gandhi Marg, Lucknow 226001, Uttar Pradesh, India; Academy of Scientific and Industrial Research (AcSIR), Ghaziabad 201002, India
| | - Smriti Priya
- System Toxicology & Health Risk Assessment Group, CSIR - Indian Institute of Toxicology Research, Vishvigyan Bhawan, 31, Mahatma Gandhi Marg, Lucknow-226001, Uttar Pradesh, India
| | - Sandeep K Sharma
- Food, Drug and Chemical Toxicology Group, CSIR - Indian Institute of Toxicology Research, Vishvigyan Bhawan, 31, Mahatma Gandhi Marg, Lucknow 226001, Uttar Pradesh, India; Academy of Scientific and Industrial Research (AcSIR), Ghaziabad 201002, India.
| |
Collapse
|
3
|
Preparation of Zeolitic Imidazolate Framework-8-Based Nanofiber Composites for Carbon Dioxide Adsorption. NANOMATERIALS 2022; 12:nano12091492. [PMID: 35564201 PMCID: PMC9104967 DOI: 10.3390/nano12091492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 04/20/2022] [Accepted: 04/26/2022] [Indexed: 11/17/2022]
Abstract
In this study, polyacrylonitrile (PAN)-based activated nanofiber composites, which were embedded inside zeolitic imidazolate framework-8 (ZIF-8) crystals or ZIF-8-derived carbons (ZDC-850), were fabricated using an electrospinning process, to serve as CO2 adsorbents. The adsorbents were characterized using various techniques. The degree of crystallinity of ZDC-850 totally changed compared to that of ZIF-8. For nanofiber composites, the timing of the ligand decomposition of ZIF-8 significantly affected the material properties. The Zn metals in the ZIF-8/PAN or ZDC-850/PAN could be embedded and protected by the PAN fibers from excess volatilization in the following treatments: ZIF-8 had significant pore volumes in the range of 0.9−1.3 nm, but ZDC-850 and ZIF-8/PAN exhibited a distinct peak at approximately 0.5 nm. The CO2 adsorption capacities at 25 °C and 1 atm followed the order: ZIF-8/PAN (4.20 mmol/g) > ZDC-850 (3.50 mmol/g) > ZDC-850/PAN (3.38 mmol/g) > PAN (2.91 mmol/g) > ZIF-8 (0.88 mmol/g). The slope in the log−linear plot of isosteric heat of adsorption was highly associated with CO2 adsorption performance. Under 1 atm at 25 °C, for Zn metal active sites inside the pores, the pores at approximately 0.5 nm and in C-N (amines) groups could promote CO2 adsorption. At low CO2 pressures, for a good CO2 adsorbent, the carbon content in the adsorbent should be higher than a threshold value. Under this condition, the percentage of ultra-micropore and micropore volumes, as well as the functional groups, such as the quaternary or protonated N (amines), N=C (imines or pyridine-type N), C-OH, and -COOH groups, should be considered as significant factors for CO2 adsorption.
Collapse
|
4
|
Nam J, Jeon E, Moon SY, Park JW. Rearranged Copolyurea Networks for Selective Carbon Dioxide Adsorption at Room Temperature. Polymers (Basel) 2021; 13:polym13224004. [PMID: 34833301 PMCID: PMC8623474 DOI: 10.3390/polym13224004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Revised: 11/15/2021] [Accepted: 11/16/2021] [Indexed: 12/30/2022] Open
Abstract
Copolyurea networks (co-UNs) were synthesized via crosslinking polymerization of a mixture of tetrakis(4-aminophenyl)methane (TAPM) and melamine with hexamethylene diisocyanate (HDI) using the organic sol-gel polymerization method. The subsequent thermal treatment of between 200 and 400 °C induced the sintering of the powdery polyurea networks to form porous frameworks via urea bond rearrangement and the removal of volatile hexamethylene moieties. Incorporating melamine into the networks resulted in a higher nitrogen content and micropore ratio, whereas the overall porosity decreased with the melamine composition. The rearranged network composed of the tetraamine/melamine units in an 80:20 ratio showed the highest carbon dioxide adsorption quantity at room temperature. The results show that optimizing the chemical structure and porosity of polyurea-based networks can lead to carbon dioxide adsorbents working at elevated temperatures.
Collapse
Affiliation(s)
- Junsik Nam
- School of Materials Science and Engineering, Gwangju Institute of Science and Technology, 123 Cheomdangwagi-ro, Buk-gu, Gwangju 61005, Korea; (J.N.); (E.J.)
| | - Eunkyung Jeon
- School of Materials Science and Engineering, Gwangju Institute of Science and Technology, 123 Cheomdangwagi-ro, Buk-gu, Gwangju 61005, Korea; (J.N.); (E.J.)
| | - Su-Young Moon
- Carbon Resources Institute, Korea Research Institute of Chemical Technology, 141 Gajeongro, Yuseong, Daejeon 34114, Korea;
| | - Ji-Woong Park
- School of Materials Science and Engineering, Gwangju Institute of Science and Technology, 123 Cheomdangwagi-ro, Buk-gu, Gwangju 61005, Korea; (J.N.); (E.J.)
- Correspondence:
| |
Collapse
|