1
|
Yoon T, Shin M, Yang B, Kim HJ, Lim S, Cha HJ. Junctional Role of Anionic Domain of Mussel Foot Protein Type 4 in Underwater Mussel Adhesion. Biomacromolecules 2025; 26:1161-1170. [PMID: 39763141 DOI: 10.1021/acs.biomac.4c01506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/11/2025]
Abstract
Mussel byssi form a robust underwater adhesive system, anchoring to various surfaces in harsh marine environments. Central to byssus is foot protein type 4 (fp-4), a junction protein connecting collagenous threads to proteinaceous plaque. This study investigated an anionic plaque-binding domain of fp-4 (fp-4a) and its interactions with cationic foot proteins (fp-1, fp-5, and fp-151 as model substitutes for fp-2) and metal ions (Ca2+, Fe3+, and V3+). Aggregation, a liquid-solid phase transition, was confirmed for recombinant fp-4a (rfp-4a) with rfp-5, rfp-151, and metal ions using turbidity measurements and microscopy. Molecular cohesion forces were measured by the surface forces apparatus, while dynamic light scattering, circular dichroism spectroscopy, and chaotropic agent assay clarified the aggregation mechanisms. Collectively, we discovered that rfp-4a formed aggregates with cationic rfps through electrostatic interactions and hydrogen bonding, further stabilized by metal ion incorporation, emphasizing its critical role in mussel adhesion systems and its potential for bioadhesive applications.
Collapse
Affiliation(s)
- Taehee Yoon
- Department of Chemical Engineering, Pohang University of Science and Technology, Pohang 37673, Republic of Korea
| | - Mincheol Shin
- Department of Chemical Engineering, Pohang University of Science and Technology, Pohang 37673, Republic of Korea
| | - Byeongseon Yang
- Department of Chemical Engineering, Pohang University of Science and Technology, Pohang 37673, Republic of Korea
| | - Hyo Jeong Kim
- Department of Chemical Engineering, Pohang University of Science and Technology, Pohang 37673, Republic of Korea
| | - Seonghye Lim
- Department of Chemical Engineering, Pohang University of Science and Technology, Pohang 37673, Republic of Korea
| | - Hyung Joon Cha
- Department of Chemical Engineering, Pohang University of Science and Technology, Pohang 37673, Republic of Korea
- Medical Science and Engineering, School of Convergence Science and Technology, Pohang University of Science and Technology, Pohang 37673, Republic of Korea
| |
Collapse
|
2
|
Li H, Tolmachev D, Batys P, Sammalkorpi M, Lutkenhaus JL. Solvent-Responsive Glass Transition Behavior of Polyelectrolyte Complexes. Macromolecules 2025; 58:292-303. [PMID: 39831290 PMCID: PMC11741136 DOI: 10.1021/acs.macromol.4c02417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Revised: 11/17/2024] [Accepted: 12/06/2024] [Indexed: 01/22/2025]
Abstract
Polyelectrolyte complexes (PECs) have attracted considerable attention owing to their unique physicochemical properties and potential applications as smart materials. Herein, the glass transitions of PECs solvated with varying alcohols are investigated in poly(diallyldimethylammonium)/poly(acrylic acid) (PDADMA/PAA) complexes by using modulated differential scanning calorimetry (MDSC). Solvents with one or two hydroxyl groups are selected to examine the effect of PAA-solvent interactions on the glass transition temperature (T g). Except for glycerol, all alcohol solvents yield PECs with detectable T g's and plasticization behavior. Furthermore, a linear relationship for 1/T g and the natural logarithm of the number of hydroxyl groups to intrinsic ion pair ratio [ln(n hydroxyl/n intrinsic-ion-pair)] is found. This result is significant because prior work demonstrated the relationship only for water and no other solvents. All-atom molecular dynamics (MD) simulations analyze the ability of the solvent to form hydrogen bonds via the solvent's OH groups to the PAA, revealing that the solvent molecule size and available hydroxyl groups govern the change in the glass transition. Overall, the clear dependence of a PEC's glass transition on the solvent's chemical structure provides a simple guideline for predicting their relationship.
Collapse
Affiliation(s)
- Hongwei Li
- Artie
McFerrin Department of Chemical Engineering, Texas A&M University, College
Station, Texas 77843, United States
| | - Dmitry Tolmachev
- Department
of Chemistry and Materials Science, Aalto
University, P.O. Box 16100, 00076 Aalto, Finland
- Academy
of Finland Center of Excellence in Life-Inspired Hybrid Materials
(LIBER), Aalto University, P.O. Box 16100, 00076 Aalto, Finland
| | - Piotr Batys
- Jerzy
Haber Institute of Catalysis and Surface Chemistry, Polish Academy of Sciences, Niezapominajek 8, 30-239 Krakow, Poland
| | - Maria Sammalkorpi
- Department
of Chemistry and Materials Science, Aalto
University, P.O. Box 16100, 00076 Aalto, Finland
- Academy
of Finland Center of Excellence in Life-Inspired Hybrid Materials
(LIBER), Aalto University, P.O. Box 16100, 00076 Aalto, Finland
| | - Jodie L. Lutkenhaus
- Artie
McFerrin Department of Chemical Engineering, Texas A&M University, College
Station, Texas 77843, United States
- Department
of Materials Science and Engineering, Texas
A&M University, College Station, Texas 77840, United States
| |
Collapse
|
3
|
Lim C, Blocher McTigue WC. Form Equals Function: Influence of Coacervate Architecture on Drug Delivery Applications. ACS Biomater Sci Eng 2024; 10:6766-6789. [PMID: 39423330 PMCID: PMC11558567 DOI: 10.1021/acsbiomaterials.4c01105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Revised: 09/26/2024] [Accepted: 10/03/2024] [Indexed: 10/21/2024]
Abstract
Complex coacervates, formed through electrostatic interactions between oppositely charged polymers, present a versatile platform for drug delivery, providing rapid assembly, selective encapsulation, and responsiveness to environmental stimuli. The architecture and properties of coacervates can be tuned by controlling structural and environmental design factors, which significantly impact the stability and delivery efficiency of the drugs. While environmental design factors such as salt, pH, and temperature play a crucial role in coacervate formation, structural design factors such as polymer concentration, polymer structure, mixing ratio, and chain length serve as the core framework that shapes coacervate architecture. These elements modulate the phase behavior and material properties of coacervates, allowing for a highly tunable system. In this review, we primarily analyze how these structural design factors contribute to the formation of diverse coacervate architecture, ranging from bulk coacervates to polyion complex micelles, vesicles, and cross-linked gels, though environmental design factors are considered. We then examine the effectiveness of these architectures in enhancing the delivery and efficacy of drugs across various administration routes, such as noninvasive (e.g., oral and transdermal) and invasive delivery. This review aims to provide foundational insights into the design of advanced drug delivery systems by examining how the origin and chemical structure of polymers influence coacervate architecture, which in turn defines their material properties. We then explore how the architecture can be tailored to optimize drug delivery for specific administration routes. This approach leverages the intrinsic properties derived from the coacervate architecture to enable targeted, controlled, and efficient drug release, ultimately enhancing therapeutic outcomes in precision medicine.
Collapse
Affiliation(s)
- Chaeyoung Lim
- Department of Chemical and Biomolecular
Engineering, Lehigh University, Bethlehem, Pennsylvania 18015, United States
| | - Whitney C. Blocher McTigue
- Department of Chemical and Biomolecular
Engineering, Lehigh University, Bethlehem, Pennsylvania 18015, United States
| |
Collapse
|
4
|
Ziółkowska D, Shyichuk A, Shyychuk I. Narrow Range of Coagulation of Ion Associates of Poly(styrene sulfonate) with Alcian Blue Dye. Molecules 2024; 29:4017. [PMID: 39274865 PMCID: PMC11396345 DOI: 10.3390/molecules29174017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 08/20/2024] [Accepted: 08/21/2024] [Indexed: 09/16/2024] Open
Abstract
The ionic association of Alcian Blue dye with poly(styrene sulfonate) in aqueous solutions was studied for analytical purposes. The quadruple-charged cationic dye, Alcian Blue, was found to form colloidal ionic associates with poly(styrene sulfonate) anions. When the amounts of opposite charges are nearly equal, the resulting ionic associates lose solubility and coagulate rapidly. This effect occurs within a narrow range of the ratio of poly(styrene sulfonate) to Alcian Blue. At the point of charge equivalence, the zeta potential of the resulting particles is zero, which facilitates flocculation. The resulting flocs enlarge to approximately 0.05-0.5 mm and precipitate rapidly. FTIR spectroscopy confirms that the precipitate contains both poly(styrene sulfonate) and Alcian Blue dye. Sedimentation kinetics was studied in detail using scanning turbidimetry. Due to the high molar absorbance of the Alcian Blue dye at 600 nm, the point of equimolar charge ratio was precisely determined by spectrophotometry. The complete precipitation of ionic associates occurs when the amount of poly(styrene sulfonate) ranges from 1.4 to 1.55 mmol per 1 g of Alcian Blue dye. Such a narrow coagulation range allows for the use of the studied effect for quantitative analysis. Both Alcian Blue dye and poly(styrene sulfonate) can be quantified if one of their concentrations is known.
Collapse
Affiliation(s)
- Dorota Ziółkowska
- Faculty of Chemical Technology and Engineering, Bydgoszcz University of Science and Technology, Seminaryjna 3, 85-326 Bydgoszcz, Poland
| | - Alexander Shyichuk
- Faculty of Chemical Technology and Engineering, Bydgoszcz University of Science and Technology, Seminaryjna 3, 85-326 Bydgoszcz, Poland
| | - Iryna Shyychuk
- Faculty of Chemical Technology and Engineering, Bydgoszcz University of Science and Technology, Seminaryjna 3, 85-326 Bydgoszcz, Poland
| |
Collapse
|
5
|
Prajapati BG, Sharma JB, Sharma S, Trivedi ND, Gaur M, Kapoor DU. Harnessing polyelectrolyte complexes for precision cancer targeting: a comprehensive review. Med Oncol 2024; 41:145. [PMID: 38727885 DOI: 10.1007/s12032-024-02354-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Accepted: 03/07/2024] [Indexed: 06/14/2024]
Abstract
Polyelectrolytes represent a unique class of polymers abundant in ionizable functional groups. In a solution, ionized polyelectrolytes can intricately bond with oppositely charged counterparts, giving rise to a fascinating phenomenon known as a polyelectrolyte complex. These complexes arise from the interaction between oppositely charged entities, such as polymers, drugs, and combinations thereof. The polyelectrolyte complexes are highly appealing in cancer management, play an indispensable role in chemotherapy, crafting biodegradable, biocompatible 3D membranes, microcapsules, and nano-sized formulations. These versatile complexes are pivotal in designing controlled and targeted release drug delivery systems. The present review emphasizes on classification of polyelectrolyte complex along with their formation mechanisms. This review comprehensively explores the applications of polyelectrolyte complex, highlighting their efficacy in targeted drug delivery strategies for combating different forms of cancer. The innovative use of polyelectrolyte complex presents a potential breakthrough in cancer therapeutics, demonstrating their role in enhancing treatment precision and effectiveness.
Collapse
Affiliation(s)
- Bhupendra G Prajapati
- Shree S. K. Patel College of Pharmaceutical Education and Research, Ganpat University, Kherva, Gujarat, 384012, India.
| | - Jai Bharti Sharma
- MM College of Pharmacy, Maharishi Markandeshwar (Deemed to be University), Mullana, Ambala, Haryana, 133207, India
| | - Swapnil Sharma
- Department of Pharmacy, Banasthali Vidyapith, Banasthali, Rajasthan, 304022, India
| | - Naitik D Trivedi
- AR College of Pharmacy & GH Institute of Pharmacy, VV Nagar, Anand, Gujarat, 388120, India
| | - Mansi Gaur
- Rajasthan Pharmacy College, Rajasthan University of Health Sciences, Jaipur, Rajasthan, 302026, India
| | - Devesh U Kapoor
- Dr. Dayaram Patel Pharmacy College, Bardoli, Gujarat, 394601, India.
| |
Collapse
|
6
|
Li H, Lalwani SM, Eneh CI, Braide T, Batys P, Sammalkorpi M, Lutkenhaus JL. A Perspective on the Glass Transition and the Dynamics of Polyelectrolyte Multilayers and Complexes. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2023; 39:14823-14839. [PMID: 37819874 PMCID: PMC10863056 DOI: 10.1021/acs.langmuir.3c00974] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 09/11/2023] [Indexed: 10/13/2023]
Abstract
Polyelectrolyte multilayers (PEMs) or polyelectrolyte complexes (PECs), formed by layer-by-layer assembly or the mixing of oppositely charged polyelectrolytes (PEs) in aqueous solution, respectively, have potential applications in health, energy, and the environment. PEMs and PECs are very tunable because their structure and properties are influenced by factors such as pH, ionic strength, salt type, humidity, and temperature. Therefore, it is increasingly important to understand how these factors affect PECs and PEMs on a molecular level. In this Feature Article, we summarize our contributions to the field in the development of approaches to quantify the swelling, thermal properties, and dynamic mechanical properties of PEMs and PECs. First, the role of water as a plasticizer and in the glass-transition temperature (Tg) in both strong poly(diallyldimethylammonium)/poly(sodium 4-styrenesulfonate) (PDADMA/PSS) and weak poly(allylamine hydrochloride)/poly(acrylic acid) (PAH/PAA) systems is presented. Then, factors influencing the dynamics of PECs and PEMs are discussed. We also reflect on the swelling of PEMs in response to different salts and solvent additives. Last, the nature of water's microenvironment in PEMs/PECs is discussed. A special emphasis is placed on experimental techniques, along with molecular simulations. Taken together, this review presents an outlook and offers recommendations for future research directions, such as studying the additional effects of hydrogen-bonding hydrophobic interactions.
Collapse
Affiliation(s)
- Hongwei Li
- Artie
McFerrin Department of Chemical Engineering, Texas A&M University, College Station, Texas 77843, United States
| | - Suvesh Manoj Lalwani
- Artie
McFerrin Department of Chemical Engineering, Texas A&M University, College Station, Texas 77843, United States
| | - Chikaodinaka I. Eneh
- Artie
McFerrin Department of Chemical Engineering, Texas A&M University, College Station, Texas 77843, United States
| | - Tamunoemi Braide
- Artie
McFerrin Department of Chemical Engineering, Texas A&M University, College Station, Texas 77843, United States
| | - Piotr Batys
- Jerzy
Haber Institute of Catalysis and Surface Chemistry, Polish Academy
of Sciences, Niezapominajek 8, 30-239 Krakow, Poland
| | - Maria Sammalkorpi
- Department
of Chemistry and Materials Science, Aalto
University, P.O. Box 16100, 00076 Aalto, Finland
- Department
of Bioproducts and Biosystems, Aalto University, P.O. Box 16100, 00076 Aalto, Finland
- Academy
of Finland Center of Excellence in Life-Inspired Hybrid Materials
(LIBER), Aalto University, P.O. Box 16100, 00076 Aalto, Finland
| | - Jodie L. Lutkenhaus
- Artie
McFerrin Department of Chemical Engineering, Texas A&M University, College Station, Texas 77843, United States
- Department
of Materials Science and Engineering, Texas
A&M University, College
Station, Texas 77840, United States
| |
Collapse
|
7
|
Wu C, Jia H, Almuaalemi HYM, Sohan ASMMF, Yin B. RETRACTED: Preparation and Analysis of Structured Color Janus Droplets Based on Microfluidic 3D Droplet Printing. MICROMACHINES 2023; 14:1911. [PMID: 37893348 PMCID: PMC10609099 DOI: 10.3390/mi14101911] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2023] [Revised: 10/05/2023] [Accepted: 10/05/2023] [Indexed: 10/29/2023]
Abstract
The microfluidic technique for the three-dimensional (3D) printing of Janus droplets offers precise control over their size, orientation, and positioning. The proposed approach investigates the impact of variables such as the volume ratio of the oil phase, droplet size, and the ratio of nonionic surfactants on the dimensions of the structured color apertures of Janus droplets. The findings reveal that structured color apertures modulate accurately. Furthermore, fabricating color patterns facilitates cat, fish, and various other specific shapes using structured color Janus droplets. The color patterns exhibit temperature-sensitive properties, enabling them to transition between display and concealed states. Herein, the adopted microfluidic technique creates Janus droplets with customizable characteristics and uniform size, solving orientation as well as space arrangement problems. This approach holds promising applications for optical devices, sensors, and biomimetic systems.
Collapse
Affiliation(s)
- Chuang Wu
- School of Mechanical Engineering, Yangzhou University, Yangzhou 225127, China; (H.J.); (H.Y.M.A.)
| | - Hanqi Jia
- School of Mechanical Engineering, Yangzhou University, Yangzhou 225127, China; (H.J.); (H.Y.M.A.)
| | | | | | - Binfeng Yin
- School of Mechanical Engineering, Yangzhou University, Yangzhou 225127, China; (H.J.); (H.Y.M.A.)
| |
Collapse
|
8
|
Mathews HF, Pieper MI, Jung SH, Pich A. Compartmentalized Polyampholyte Microgels by Depletion Flocculation and Coacervation of Nanogels in Emulsion Droplets. Angew Chem Int Ed Engl 2023; 62:e202304908. [PMID: 37387670 DOI: 10.1002/anie.202304908] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 06/16/2023] [Accepted: 06/28/2023] [Indexed: 07/01/2023]
Abstract
In pH-responsive drug carriers, the distribution of charges has been proven to affect delivery efficiency but is difficult to control and verify. Herein, we fabricate polyampholyte nanogel-in-microgel colloids (NiM-C) and show that the arrangement of the nanogels (NG) can easily be manipulated by adapting synthesis conditions. Positively and negatively charged pH-responsive NG are synthesized by precipitation polymerization and labelled with different fluorescent dyes. The obtained NG are integrated into microgel (MG) networks by subsequent inverse emulsion polymerization in droplet-based microfluidics. By confocal laser scanning microscopy (CLSM), we verify that depending on NG concentration, pH value and ionic strength, NiM-C with different NG arrangements are obtained, including Janus-like phase-separation of NG, statistical distribution of NG, and core-shell arrangements. Our approach is a major step towards uptake and release of oppositely charged (drug) molecules.
Collapse
Affiliation(s)
- Hannah F Mathews
- DWI-Leibniz Institute for Interactive Materials, RWTH Aachen University, Forckenbeckstr. 50, 52074, Aachen, Germany
- Institute of Technical and Macromolecular Chemistry, RWTH Aachen University, Worringerweg 2, 52074, Aachen, Germany
| | - Maria I Pieper
- DWI-Leibniz Institute for Interactive Materials, RWTH Aachen University, Forckenbeckstr. 50, 52074, Aachen, Germany
- Institute of Technical and Macromolecular Chemistry, RWTH Aachen University, Worringerweg 2, 52074, Aachen, Germany
| | - Se-Hyeong Jung
- DWI-Leibniz Institute for Interactive Materials, RWTH Aachen University, Forckenbeckstr. 50, 52074, Aachen, Germany
- Institute of Technical and Macromolecular Chemistry, RWTH Aachen University, Worringerweg 2, 52074, Aachen, Germany
- Laboratory for Soft Materials and Interfaces, Department of Materials, ETH Zürich, Vladimir-Prelog-Weg 1-5/10, 8093, Zürich, Switzerland
| | - Andrij Pich
- DWI-Leibniz Institute for Interactive Materials, RWTH Aachen University, Forckenbeckstr. 50, 52074, Aachen, Germany
- Institute of Technical and Macromolecular Chemistry, RWTH Aachen University, Worringerweg 2, 52074, Aachen, Germany
- Aachen Maastricht Institute for Biobased Materials (AMIBM), Brightlands Chemelot Campus, Maastricht University, 6167 RD, Geleen, The Netherlands
| |
Collapse
|
9
|
An Overview of Coacervates: The Special Disperse State of Amphiphilic and Polymeric Materials in Solution. COLLOIDS AND INTERFACES 2022. [DOI: 10.3390/colloids6030045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Individual amphiphiles, polymers, and colloidal dispersions influenced by temperature, pH, and environmental conditions or interactions between their oppositely charged pairs in solvent medium often produce solvent-rich and solvent-poor phases in the system. The solvent-poor denser phase found either on the top or the bottom of the system is called coacervate. Coacervates have immense applications in various technological fields. This review comprises a concise introduction, focusing on the types of coacervates, and the influence of different factors in their formation, structures, and stability. In addition, their physicochemical properties, thermodynamics of formation, and uses and multifarious applications are also concisely presented and discussed.
Collapse
|
10
|
Balzer C, Zhang P, Wang ZG. Wetting behavior of polyelectrolyte complex coacervates on solid surfaces. SOFT MATTER 2022; 18:6326-6339. [PMID: 35976083 DOI: 10.1039/d2sm00859a] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
The wetting behavior of complex coacervates underpins their use in many emerging applications of surface science, particularly wet adhesives and coatings. Many factors dictate if a coacervate phase will condense on a solid surface, including solution conditions, the nature of the polymer-substrate interaction, and the underlying supernatant-coacervate bulk phase behavior. In this work, we use a simple inhomogeneous mean-field theory to study the wetting behavior of complex coacervates on solid surfaces both off-coexistence (wetting transitions) and on-coexistence (contact angles). We focus on the effects of salt concentration, the polycation/polyanion surface affinity, and the applied electrostatic potential on the wettability. We find that the coacervate generally wets the surface via a first order wetting transition with second order transitions possible above a surface critical point. Applying an electrostatic potential to a solid surface always improves the surface wettability when the polycation/polyanion-substrate interaction is symmetric. For asymmetric surface affinity, the wettability has a nonmonotonic dependence with the applied potential. We use simple scaling and thermodynamic arguments to explain our results.
Collapse
Affiliation(s)
- Christopher Balzer
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California 91125, USA.
| | - Pengfei Zhang
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Center for Advanced Low-Dimension Materials, College of Material Science and Engineering, Donghua University, Shanghai 201620, China
| | - Zhen-Gang Wang
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California 91125, USA.
| |
Collapse
|
11
|
Complexation in Aqueous Solution of a Hydrophobic Polyanion (PSSNa) Bearing Different Charge Densities with a Hydrophilic Polycation (PDADMAC). Polymers (Basel) 2022; 14:polym14122404. [PMID: 35745980 PMCID: PMC9229680 DOI: 10.3390/polym14122404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2022] [Revised: 06/03/2022] [Accepted: 06/05/2022] [Indexed: 11/16/2022] Open
Abstract
In this work the electrostatic complexation of two strong polyelectrolytes (PEs) was studied, the hydrophilic and positively charged poly (diallyldimethylammonium chloride) (PDADMAC) and the hydrophobic and negatively charged poly (styrene-co-sodium styrene sulfonate) (P(St-co-SSNa)), which was prepared at different sulfonation rates. The latter is known to adopt a pearl necklace conformation in solution for intermediate sulfonation rates, suggesting that a fraction of the P(St-co-SSNa) charges might be trapped in these hydrophobic domains; thus making them unavailable for complexation. The set of complementary techniques (DLS, zetametry, ITC, binding experiment with a cationic and metachromatic dye) used in this work highlighted that this was not the case and that all anionic charges of P(St-co-SSNa) were in fact available for complexation either with the polycationic PDADMAC or the monocationic o-toluidine blue dye. Only minor differences were observed between these techniques, consistently showing a complexation stoichiometry close to 1:1 at the charge equivalence for the different P(St-co-SSNa) compositions. A key result emphasizing that (i) the strength of the electrostatic interaction overcomes the hydrophobic effect responsible for pearl formation, and (ii) the efficiency of complexation does not depend significantly on differences in charge density between PDADMAC and P(St-co-SSNa), highlighting that PE chains can undergo conformational rearrangements favoring the juxtaposition of segments of opposite charge. Finally, these data have shown that the formation of colloidal PECs, such as PDADMAC and P(St-co-SSNa), occurs in two distinct steps with the formation of small primary complex particles (<50 nm) by pairing of opposite charges (exothermic step) followed by their aggregation within finite-size clusters (endothermic step). This observation is in agreement with the previously described mechanism of PEC particle formation from strongly interacting systems containing a hydrophobic PE.
Collapse
|