1
|
Jung DB, Song Y, Lee YR, Cha MJ, Jeong K, Choi J, Na J, Seo JY, Baek KY. Quaternarized chitosan nanofiber and ZIF aerogel composites for synergetic CO 2 cycloaddition catalysis. Carbohydr Polym 2025; 347:122685. [PMID: 39486928 DOI: 10.1016/j.carbpol.2024.122685] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 08/27/2024] [Accepted: 08/28/2024] [Indexed: 11/04/2024]
Abstract
Chemical upcycling of CO2, a major greenhouse gas, is attracting significant attention as a crucial strategy to combat global warming. The production of cyclic carbonate using metal-organic frameworks and their composites using nanofibrous carbohydrate polymer are promising ways to convert CO2 into valuable products. However, the current role of fibrous polymers is restricted to serving as physical substrates. This study seeks to expand the functionality of quaternarized chitosan nanofibers into synergistic catalysts in addition to their physical support role. A novel aerogel composite using Co/Zn-ZIF catalyst and quaternarized chitosan nanofiber (Q-CsNF+) was fabricated, and its hierarchical pore structure was extensively discussed. The obtained ZIF/Q-CsNF+ composite can synergistically convert epoxide to cyclic carbonate by acting as a co-catalyst. Moreover, we determined the predominant factors influencing catalytic activity in CO2 cycloaddition, especially by examining the interplay between CO2 affinity and co-catalyst effects. This research provides fundamental insight into developing CO2 cycloaddition catalysts using nature-derived fibrous polymers, opening new avenues for sustainable and efficient CO2 utilization.
Collapse
Affiliation(s)
- Dan Bee Jung
- Materials Architecturing Research Center, Korea Institute of Science Technology, Seoul 02792, Republic of Korea; Department of Chemical and Biological Engineering, Korea University, Seoul 02481, Republic of Korea
| | - Younghan Song
- Materials Architecturing Research Center, Korea Institute of Science Technology, Seoul 02792, Republic of Korea
| | - Yu-Ri Lee
- Greenhouse Gas Research Laboratory, Korea Institute of Energy Research, Daejeon 34101, Republic of Korea
| | - Min Jun Cha
- Materials Architecturing Research Center, Korea Institute of Science Technology, Seoul 02792, Republic of Korea; Department of Chemical and Biological Engineering, Korea University, Seoul 02481, Republic of Korea
| | - Keunhong Jeong
- Department of Chemistry, Korea Military Academy, Seoul, 01805, Republic of Korea
| | - Jungkyu Choi
- Department of Chemical and Biological Engineering, Korea University, Seoul 02481, Republic of Korea.
| | - Jongbeom Na
- Materials Architecturing Research Center, Korea Institute of Science Technology, Seoul 02792, Republic of Korea; School of Chemical Engineering and Australian Institute for Bioengineering and Nanotechnology (AIBN), The University of Queensland, Brisbane, QLD 4072, Australia; KHU-KIST Department of Converging Science and Technology, Kyung Hee University, Seoul 02447, Republic of Korea.
| | - Jin Young Seo
- Materials Architecturing Research Center, Korea Institute of Science Technology, Seoul 02792, Republic of Korea; Research Center for Bio-Based Chemistry, Korea Research Institute of Chemical Technology, Ulsan 44429, Republic of Korea..
| | - Kyung-Youl Baek
- Materials Architecturing Research Center, Korea Institute of Science Technology, Seoul 02792, Republic of Korea
| |
Collapse
|
2
|
Dupont J, Leal BC, Lozano P, Monteiro AL, Migowski P, Scholten JD. Ionic Liquids in Metal, Photo-, Electro-, and (Bio) Catalysis. Chem Rev 2024; 124:5227-5420. [PMID: 38661578 DOI: 10.1021/acs.chemrev.3c00379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/26/2024]
Abstract
Ionic liquids (ILs) have unique physicochemical properties that make them advantageous for catalysis, such as low vapor pressure, non-flammability, high thermal and chemical stabilities, and the ability to enhance the activity and stability of (bio)catalysts. ILs can improve the efficiency, selectivity, and sustainability of bio(transformations) by acting as activators of enzymes, selectively dissolving substrates and products, and reducing toxicity. They can also be recycled and reused multiple times without losing their effectiveness. ILs based on imidazolium cation are preferred for structural organization aspects, with a semiorganized layer surrounding the catalyst. ILs act as a container, providing a confined space that allows modulation of electronic and geometric effects, miscibility of reactants and products, and residence time of species. ILs can stabilize ionic and radical species and control the catalytic activity of dynamic processes. Supported IL phase (SILP) derivatives and polymeric ILs (PILs) are good options for molecular engineering of greener catalytic processes. The major factors governing metal, photo-, electro-, and biocatalysts in ILs are discussed in detail based on the vast literature available over the past two and a half decades. Catalytic reactions, ranging from hydrogenation and cross-coupling to oxidations, promoted by homogeneous and heterogeneous catalysts in both single and multiphase conditions, are extensively reviewed and discussed considering the knowledge accumulated until now.
Collapse
Affiliation(s)
- Jairton Dupont
- Institute of Chemistry - Universidade Federal do Rio Grande do Sul - UFRGS, Avenida Bento Gonçalves, 9500, Porto Alegre 91501-970 RS, Brasil
- Departamento de Bioquímica y Biología Molecular B e Inmunología, Facultad de Química, Universidad de Murcia, P.O. Box 4021, E-30100 Murcia, Spain
| | - Bárbara C Leal
- Institute of Chemistry - Universidade Federal do Rio Grande do Sul - UFRGS, Avenida Bento Gonçalves, 9500, Porto Alegre 91501-970 RS, Brasil
| | - Pedro Lozano
- Departamento de Bioquímica y Biología Molecular B e Inmunología, Facultad de Química, Universidad de Murcia, P.O. Box 4021, E-30100 Murcia, Spain
| | - Adriano L Monteiro
- Institute of Chemistry - Universidade Federal do Rio Grande do Sul - UFRGS, Avenida Bento Gonçalves, 9500, Porto Alegre 91501-970 RS, Brasil
| | - Pedro Migowski
- Institute of Chemistry - Universidade Federal do Rio Grande do Sul - UFRGS, Avenida Bento Gonçalves, 9500, Porto Alegre 91501-970 RS, Brasil
| | - Jackson D Scholten
- Institute of Chemistry - Universidade Federal do Rio Grande do Sul - UFRGS, Avenida Bento Gonçalves, 9500, Porto Alegre 91501-970 RS, Brasil
| |
Collapse
|
3
|
Obeso JL, Flores JG, Flores CV, López-Cervantes VB, Martínez-Jiménez V, de Los Reyes JA, Lima E, Solis-Ibarra D, Ibarra IA, Leyva C, Peralta RA. SU-101: a Bi(III)-based metal-organic framework as an efficient heterogeneous catalyst for the CO 2 cycloaddition reaction. Dalton Trans 2023; 52:12490-12495. [PMID: 37602766 DOI: 10.1039/d3dt01743e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/22/2023]
Abstract
A non-porous version of SU-101 (herein n-SU-101) was evaluated for the CO2 cycloaddition reaction. The findings revealed that open metal sites (Bi3+) are necessary for the reaction. n-SU-101 displays a high styrene oxide conversion of 96.6% under mild conditions (3 bar and 80 °C). The catalytic activity of n-SU-101 demonstrated its potential application for the cycloaddition of CO2 using styrene oxide.
Collapse
Affiliation(s)
- Juan L Obeso
- Instituto Politécnico Nacional, CICATA U. Legaria, Laboratorio Nacional de Ciencia, Tecnología y Gestión Integrada del Agua (LNAgua), Legaria 694, Irrigación, 11500, Miguel Hidalgo, CDMX, Mexico.
- Laboratorio de Fisicoquímica y Reactividad de Superficies (LaFReS), Instituto de Investigaciones en Materiales, Universidad Nacional Autónoma de México, Circuito Exterior s/n, CU, Coyoacán, 04510, Ciudad de México, Mexico.
| | - J Gabriel Flores
- Departamento de Ingeniería de Procesos e Hidráulica, División de Ciencias Básicas e Ingeniería, Universidad Autónoma Metropolitana-Iztapalapa, 09340, Ciudad de México, Mexico
- Área de Química Aplicada, Departamento de Ciencias Básicas, Universidad Autónoma Metropolitana-Azcapotzalco, 02200, Ciudad de México, Mexico
| | - Catalina V Flores
- Instituto Politécnico Nacional, CICATA U. Legaria, Laboratorio Nacional de Ciencia, Tecnología y Gestión Integrada del Agua (LNAgua), Legaria 694, Irrigación, 11500, Miguel Hidalgo, CDMX, Mexico.
- Laboratorio de Fisicoquímica y Reactividad de Superficies (LaFReS), Instituto de Investigaciones en Materiales, Universidad Nacional Autónoma de México, Circuito Exterior s/n, CU, Coyoacán, 04510, Ciudad de México, Mexico.
| | - Valeria B López-Cervantes
- Laboratorio de Fisicoquímica y Reactividad de Superficies (LaFReS), Instituto de Investigaciones en Materiales, Universidad Nacional Autónoma de México, Circuito Exterior s/n, CU, Coyoacán, 04510, Ciudad de México, Mexico.
| | - V Martínez-Jiménez
- Departamento de Ingeniería de Procesos e Hidráulica, División de Ciencias Básicas e Ingeniería, Universidad Autónoma Metropolitana-Iztapalapa, 09340, Ciudad de México, Mexico
| | - José Antonio de Los Reyes
- Departamento de Ingeniería de Procesos e Hidráulica, División de Ciencias Básicas e Ingeniería, Universidad Autónoma Metropolitana-Iztapalapa, 09340, Ciudad de México, Mexico
| | - Enrique Lima
- Laboratorio de Fisicoquímica y Reactividad de Superficies (LaFReS), Instituto de Investigaciones en Materiales, Universidad Nacional Autónoma de México, Circuito Exterior s/n, CU, Coyoacán, 04510, Ciudad de México, Mexico.
| | - Diego Solis-Ibarra
- Laboratorio de Fisicoquímica y Reactividad de Superficies (LaFReS), Instituto de Investigaciones en Materiales, Universidad Nacional Autónoma de México, Circuito Exterior s/n, CU, Coyoacán, 04510, Ciudad de México, Mexico.
| | - Ilich A Ibarra
- Laboratorio de Fisicoquímica y Reactividad de Superficies (LaFReS), Instituto de Investigaciones en Materiales, Universidad Nacional Autónoma de México, Circuito Exterior s/n, CU, Coyoacán, 04510, Ciudad de México, Mexico.
| | - Carolina Leyva
- Instituto Politécnico Nacional, CICATA U. Legaria, Laboratorio Nacional de Ciencia, Tecnología y Gestión Integrada del Agua (LNAgua), Legaria 694, Irrigación, 11500, Miguel Hidalgo, CDMX, Mexico.
| | - Ricardo A Peralta
- Departamento de Química, División de Ciencias Básicas e Ingeniería. Universidad Autónoma Metropolitana (UAM-I), 09340, Mexico.
| |
Collapse
|
4
|
He Z, Xian W, Ding Z, Wang C, Huang Z, Song L, Liu B. Synthesis of novel propylene carbonate diol(PCD)and application in CO2-based polyols waterborne polyurethane. JOURNAL OF POLYMER RESEARCH 2022. [DOI: 10.1007/s10965-022-03288-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/10/2022]
|
5
|
Chiu NC, Loughran RP, Gładysiak A, Vismara R, Park AHA, Stylianou KC. Wet flue gas CO 2 capture and utilization using one-dimensional metal-organic chains. NANOSCALE 2022; 14:14962-14969. [PMID: 36200609 DOI: 10.1039/d2nr04156a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Herein, we describe the use of an ultramicroporous metal-organic framework (MOF) with a composition of [Ni3(pzdc)2(ade)2(H2O)1.5]·(H2O)1.3 (pzdc: 3,5-pyrazole dicarboxylic acid; ade: adenine), for the selective capture of carbon dioxide (CO2) from wet flue gas followed by its conversion to value-added products. This MOF is comprised of one-dimensional Ni(II)-pyrazole dicarboxylate-adenine chains; through pi-pi stacking and H-bonding interactions, these one-dimensional chains stack into a three-dimensional supramolecular structure with a one-dimensional pore network. Upon heating, our MOF undergoes a color change from light blue to lavender, indicating a change in the coordination geometry of Ni(II). Variable temperature ultraviolet-visible (UV/vis) spectroscopy data revealed a blue shift of the d-d transitions, suggesting a change in the Ni-coordination geometry from octahedral to a mixture of square planar and square pyramidal. The removal of the water molecules coordinated to Ni(II) leads to the generation of a MOF with open Ni(II) sites. Nitrogen isotherms collected at 77 K and 1 bar revealed that this MOF is microporous with a pore volume of 0.130 cm3 g-1. Carbon dioxide isotherms show a step in the uptake at low pressure, after which the CO2 uptake is saturated. The step in the CO2 uptake is likely attributable to the rearrangement of the three-dimensional supramolecular structure to accommodate CO2 within its pores. The affinity of this MOF for CO2 is 35.5 kJ mol-1 at low loadings, and it increases to 41.9 kJ mol-1 at high loadings. While our MOF is porous to CO2 and water (H2O) at 298 K, it is not porous to N2, and the CO2/N2 selectivity increases from 28.5 to 31.5 as a function of pressure. Breakthrough experiments reveal that this MOF can capture CO2 from dry and wet flue gas with uptake capacities of 1.48 ± 0.01 and 1.14 ± 0.06 mmol g-1, respectively. The MOF can be regenerated and reused at least three times, demonstrating consistent CO2 uptake capacities. Upon understanding the sorption behavior of this MOF, catalysis experiments show that the MOF is catalytically active in the fixation of CO2 into an epoxide ring for the formation of a cyclic carbonate. The turnover frequency for this reaction is 21.95 ± 0.03 h-1. The MOF showed no catalytic deterioration after two cycles and maintained comparable catalytic activity when dry and wet CO2/N2 mixtures were used. This highlights that both N2 and H2O do not dramatically affect the catalytic activity of our MOF toward CO2 fixation.
Collapse
Affiliation(s)
- Nan Chieh Chiu
- Materials Discovery Laboratory (MaD Lab), Department of Chemistry, Oregon State University, Corvallis, Oregon, USA.
| | - Ryan P Loughran
- Materials Discovery Laboratory (MaD Lab), Department of Chemistry, Oregon State University, Corvallis, Oregon, USA.
| | - Andrzej Gładysiak
- Department of Earth and Environmental Engineering, Department of Chemical Engineering, Lenfest Center for Sustainable Energy, Columbia University, New York, USA
| | - Rebecca Vismara
- Departamento de Química Inorgánica, Universidad de Granada, 18071 Granada, Spain
| | - Ah-Hyung Alissa Park
- Department of Earth and Environmental Engineering, Department of Chemical Engineering, Lenfest Center for Sustainable Energy, Columbia University, New York, USA
| | - Kyriakos C Stylianou
- Materials Discovery Laboratory (MaD Lab), Department of Chemistry, Oregon State University, Corvallis, Oregon, USA.
| |
Collapse
|
6
|
Musa SG, Aljunid Merican ZM, Haruna A. Investigation of isotherms and isosteric heat of adsorption for PW11@HKUST-1 composite. J SOLID STATE CHEM 2022. [DOI: 10.1016/j.jssc.2022.123363] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|