1
|
Kavlak S, Kandemir AC, Can HK. Assessment of compatibility of dextran/PEMA blends by thermal, topologic and viscoelastic analysis. Carbohydr Polym 2025; 348:122846. [PMID: 39562117 DOI: 10.1016/j.carbpol.2024.122846] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 09/25/2024] [Accepted: 10/07/2024] [Indexed: 11/21/2024]
Abstract
In this study, the compatibility of polymer blends of dextran (DEX) and poly(ethylene-alt-maleic anhydride) (PEMA) was evaluated with their enhanced thermal and dynamic mechanical properties as well as structural and topological properties. Blends were prepared in various ratios via solution casting method. The effects of composition and dispersion on interactions, thermal, viscoelastic and topological properties of the blends were investigated using thermogravimetric analysis (TGA), dynamic mechanical analysis (DMA), atomic force microscopy (AFM) and attenuated total reflectance-Fourier transform infrared (ATR-FTIR) spectroscopy and X-ray diffraction (XRD) analysis. TGA results indicated that blends exhibited higher thermal stability than the individual polymers, with residue percentages increasing from 13.57 % and 11.43 % for DEX and PEMA, respectively, to 27.42 %-16.86 % for the blends at 605 °C. DMA results showed that all blends remained intact at higher temperatures compared to the polymers, with higher Tg values due to the H-bonding interactions confirmed by ATR-FTIR. AFM phase imaging enabled the visualization of miscibility distinctions, revealing that the 30/70 DEX/PEMA blend had a uniform phase distribution and minimal phase shifts, suggesting improved miscibility. In contrast, other blends exhibited more heterogeneous miscibility. These findings highlight that DEX/PEMA blends, with their enhanced thermal and dynamic mechanical properties, have significant potential for various applications.
Collapse
Affiliation(s)
- Serap Kavlak
- Hacettepe University, Faculty of Science, Department of Chemistry, Polymer Chemistry Division, 06800 Ankara, Turkey.
| | - A Cagil Kandemir
- TED University, Faculty of Engineering, Mechanical Engineering, 06420 Ankara, Turkey
| | - Hatice Kaplan Can
- Hacettepe University, Faculty of Science, Department of Chemistry, Polymer Chemistry Division, 06800 Ankara, Turkey
| |
Collapse
|
2
|
Ahmed YW, Loukanov A, Tsai HC. State-of-the-Art Synthesis of Porous Polymer Materials and Their Several Fantastic Biomedical Applications: a Review. Adv Healthc Mater 2024:e2403743. [PMID: 39723689 DOI: 10.1002/adhm.202403743] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2024] [Revised: 12/04/2024] [Indexed: 12/28/2024]
Abstract
Porous polymers, including hydrogels, covalent organic frameworks (COFs), and hyper crosslinked polymers (HCPs), have become essential in biomedical research for their tunable pore architectures, large surface areas, and functional versatility. This review provides a comprehensive overview of their classification and updated synthesis mechanisms, such as 3D printing, electrospinning, and molecular imprinting. Their pivotal roles in drug delivery, tissue engineering, wound healing, and photodynamic/photothermal therapies, focusing on how pore size, distribution, and architecture impact drug release, cellular interactions, and therapeutic outcomes, are explored. Key challenges, including biocompatibility, mechanical strength, controlled degradation, and scalability, are critically assessed alongside emerging strategies to enhance clinical potential. Finally, recent challenges and future perspectives, emphasizing the broader biomedical applications of porous polymers, are addressed. This work provides valuable insights for advancing next-generation biomedical innovations through these materials.
Collapse
Affiliation(s)
- Yohannis Wondwosen Ahmed
- Graduate Institute of Applied Science and Technology, National Taiwan University of Science and Technology, Taipei, Taiwan, 106, P. R. China
| | - Alexandre Loukanov
- Department of Chemistry and Material Science, National Institute of Technology, Gunma College, Maebashi, 371-8530, Japan
- Laboratory of Engineering NanoBiotechnology, University of Mining and Geology, St Ivan Rilski, Sofia, 1100, Bulgaria
| | - Hsieh-Chih Tsai
- Graduate Institute of Applied Science and Technology, National Taiwan University of Science and Technology, Taipei, Taiwan, 106, P. R. China
- Advanced Membrane Material Center, National Taiwan University of Science and Technology, Taipei, Taiwan, 106, P. R. China
- R&D Center for Membrane Technology, Chung Yuan Christian University, Chungli, Taoyuan, Taiwan, 320, P. R. China
| |
Collapse
|
3
|
Ramasamy C, Tan JC, Low HY. Nanoimprinting of Crosslinked Polyurethane / Polycaprolactone Blends: Scratch Recovery of Surface Topographies. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024:e2406479. [PMID: 39449213 DOI: 10.1002/smll.202406479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 09/18/2024] [Indexed: 10/26/2024]
Abstract
Scratch recovery of micro-nano-patterned polymer surfaces extends the service life of products that require tunable surface properties and contributes to more sustainable development. Scratch recovery has been widely studied in bulk and 4D-printed polymers via intrinsic self-healing mechanisms. Existing studies on self-healing of micro/nano-scale polymeric surfaces are limited to the recovery of controlled tensile or compressive strain. Scratch recovery requires material transport to close the gap created by a scratch. Here, for the first time, scratch recovery of thermally nanoimprinted polymer surfaces in a heterogeneous polymer is reported. A blend of Polyurethane (TPU) and poly(caprolactone) (PCL) with selectively crosslinked TPU imparts shape-memory properties, and the uncrosslinked PCL retains chain mobility for molecular diffusion during scratch recovery. Scratch recovery of nanoimprinted micro-pillars has been achieved spontaneously and completely by heat and without any pressure input. The healing temperature is determined to be the melting point of PCL at 60 °C. Rapid recovery is also achieved at 60 s with complete closure of scratch width of 5 µm and topography recovery of the nanoimprinted micro-pillars.
Collapse
Affiliation(s)
- Chitrakala Ramasamy
- Engineering Product Development, Singapore University of Technology and Design, Singapore, 487372, Singapore
| | - Jeck Chuang Tan
- Engineering Product Development, Singapore University of Technology and Design, Singapore, 487372, Singapore
| | - Hong Yee Low
- Engineering Product Development, Singapore University of Technology and Design, Singapore, 487372, Singapore
| |
Collapse
|
4
|
El-Ghoul Y, Altuwayjiri AS, Alharbi GA. Synthesis and characterization of new electrospun medical scaffold-based modified cellulose nanofiber and bioactive natural propolis for potential wound dressing applications. RSC Adv 2024; 14:26183-26197. [PMID: 39161434 PMCID: PMC11332191 DOI: 10.1039/d4ra04231j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2024] [Accepted: 08/14/2024] [Indexed: 08/21/2024] Open
Abstract
Recently, the design of polymer nanofibers using the electrospinning process has attracted much interest. Particularly the use of natural polymers has promoted many advantages in their biomedical applications. However, the combination of multiple natural polymers remains a great challenge in terms of electrospun production and applied performance. From this perspective, the current investigation highlights the study of the preparation of electrospun nanomaterial scaffolds based on combined natural polymers for improved wound healing performance. First, we have synthesized a crosslinked polymer by reacting microcrystalline cellulose (MC) and chitosan (CS) biopolymer via the intermediate of citric acid as a crosslinking agent. Then a natural propolis biomolecule was incorporated into the polymer network. Different MC/CS blend ratios of 90/10 and 70/30 were then used and various machine parameters were optimized to obtain nanofiber scaffolds with excellent strength and structures. SEM, IR, physicochemical, mechanical, and morpho-logical characterization were then performed. SEM evaluation revealed homogeneous and bead-free nanofibrous structures, with well-defined morphology and a random deposition that could accurately mimic the extracellular matrix of native skin. The calculated average nanofiber diameters for the MC/CS blend ratios at 90/10 and 70/30 were 431.4 and 441.2 nm, respectively. The results showed that when the chitosan amount increased, larger nanofibers with narrow diameter distribution appeared. The prepared nanomaterials had a significant and close water vapor permeability of about 1735.12 and 1698.52 g per m per day for the two blend ratios of 90/10 and 70/30, respectively. The examination of swelling behavior revealed a noteworthy enhancement in hydrophilicity, a necessary attribute for improved healing efficacy. FT-IR analysis confirmed the success and the stability of the chemical crosslinking reaction between the two biopolymers before nanofiber conception. Excellent mechanical properties were acquired, based on the chitosan content. Both developed nanofiber scaffolds exhibited high tensile strength and Young's modulus values. The incorporation of 30% chitosan versus 10% results in an increase in tensile strength of 11% and 14% in Young's modulus. Therefore, we could adjust the different mechanical properties simply by varying the mixing rate of the electrospun polymers. Using epithelial HepG2 cells, viability and kinetic cell adhesion assays were assessed to obtain biological evaluation. No cytotoxicity was observed and good cytocompatibility was confirmed. Functionalized nanofiber biomaterials with different MC/CS ratios substantiated significant bactericidal effectiveness against Gram-positive and Gram-negative bacterial culture strains. The novel functional electrospun wound dressing scaffold demonstrated effective and promising biomedical performance, healing both acute and chronic wounds.
Collapse
Affiliation(s)
- Yassine El-Ghoul
- Department of Chemistry, College of Science, Qassim University Buraidah 51452 Saudi Arabia
- Textile Engineering Laboratory, University of Monastir Monastir 5019 Tunisia
| | | | - Ghadah A Alharbi
- Department of Chemistry, College of Science, Qassim University Buraidah 51452 Saudi Arabia
| |
Collapse
|
5
|
Kronek J, Minarčíková A, Kroneková Z, Majerčíková M, Strasser P, Teasdale I. Poly(2-isopropenyl-2-oxazoline) as a Versatile Functional Polymer for Biomedical Applications. Polymers (Basel) 2024; 16:1708. [PMID: 38932057 PMCID: PMC11207257 DOI: 10.3390/polym16121708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 04/16/2024] [Accepted: 05/23/2024] [Indexed: 06/28/2024] Open
Abstract
Functional polymers play an important role in various biomedical applications. From many choices, poly(2-isopropenyl-2-oxazoline) (PIPOx) represents a promising reactive polymer with great potential in various biomedical applications. PIPOx, with pendant reactive 2-oxazoline groups, can be readily prepared in a controllable manner via several controlled/living polymerization methods, such as living anionic polymerization, atom transfer radical polymerization (ATRP), reversible addition-fragmentation transfer (RAFT) or rare earth metal-mediated group transfer polymerization. The reactivity of pendant 2-oxazoline allows selective reactions with thiol and carboxylic group-containing compounds without the presence of any catalyst. Moreover, PIPOx has been demonstrated to be a non-cytotoxic polymer with immunomodulative properties. Post-polymerization functionalization of PIPOx has been used for the preparation of thermosensitive or cationic polymers, drug conjugates, hydrogels, brush-like materials, and polymer coatings available for drug and gene delivery, tissue engineering, blood-like materials, antimicrobial materials, and many others. This mini-review covers new achievements in PIPOx synthesis, reactivity, and use in biomedical applications.
Collapse
Affiliation(s)
- Juraj Kronek
- Department for Biomaterials Research, Polymer Institute of the Slovak Academy of Sciences, Dúbravská cesta 9, 845 41 Bratislava, Slovakia; (A.M.); (Z.K.); (M.M.)
| | - Alžbeta Minarčíková
- Department for Biomaterials Research, Polymer Institute of the Slovak Academy of Sciences, Dúbravská cesta 9, 845 41 Bratislava, Slovakia; (A.M.); (Z.K.); (M.M.)
| | - Zuzana Kroneková
- Department for Biomaterials Research, Polymer Institute of the Slovak Academy of Sciences, Dúbravská cesta 9, 845 41 Bratislava, Slovakia; (A.M.); (Z.K.); (M.M.)
| | - Monika Majerčíková
- Department for Biomaterials Research, Polymer Institute of the Slovak Academy of Sciences, Dúbravská cesta 9, 845 41 Bratislava, Slovakia; (A.M.); (Z.K.); (M.M.)
| | - Paul Strasser
- Institute of Polymer Chemistry, Johannes Kepler University, Altenbergerstrasse 69, 4040 Linz, Austria; (P.S.); (I.T.)
| | - Ian Teasdale
- Institute of Polymer Chemistry, Johannes Kepler University, Altenbergerstrasse 69, 4040 Linz, Austria; (P.S.); (I.T.)
| |
Collapse
|
6
|
Kavimani V, Lakkaboyana SK, Trilaksana H, Atanase LI. Mechanical Properties and Degradation Rate of Poly(Sorbitol Adipate-Co-Dioladipate) Copolymers Obtained with a Catalyst-Free Melt Polycondensation Method. Polymers (Basel) 2024; 16:499. [PMID: 38399877 PMCID: PMC10893197 DOI: 10.3390/polym16040499] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 02/07/2024] [Accepted: 02/08/2024] [Indexed: 02/25/2024] Open
Abstract
A new family of polyester-based copolymers-poly(sorbitol adipate-co-ethylene glycol adipate) (PSAEG), poly(sorbitol adipate-co-1,4 butane diol adipate) (PSABD), and poly (sorbitol adipate-co-1,6 hexane diol adipate) (PSAHD)-was obtained with a catalyst-free melt polycondensation procedure using the multifunctional non-toxic monomer sorbitol, adipic acid, and diol, which are acceptable to the human metabolism. Synthesized polyesters were characterized by FTIR and 1H NMR spectroscopy. The molecular weight and thermal properties of the polymers were determined by MALDI mass spectroscopy, differential scanning calorimetry (DSC), and thermogravimetric analysis. The degradation rate was investigated, at 37 °C, in 0.1M NaOH (pH 13) and in phosphate-buffered solution (PBS) at pH 7.4. It was found that the polymers degraded faster in NaOH (i.e., in a day) compared to their degradation in PBS, which was much slower (in a week). The highest degradation rate was noticed for the PSAEG sample in both media, whereas PSAHD was the most stable polymer at pH 7.4 and 13. A reduced hydrophilicity of the polymers with diol length was indicated by low swelling percentage and sol content in water and DMSO. Mechanical studies prove that all the polymers are elastomers whose flexibility increases with diol length, shown by the increase in percentage of elongation at break and the decrease in tensile stress and Young's modulus. These biodegradable copolymers with adaptable physicochemical characteristics might be useful for a broad variety of biological applications by merely varying the length of the diol.
Collapse
Affiliation(s)
- V. Kavimani
- Department of Chemistry, Prathyusha Engineering College, Chennai 600025, India;
| | - Sivarama Krishna Lakkaboyana
- Department of Chemistry, Vel Tech Rangarajan Dr. Sagunthala R&D Institute of Science and Technology, Avadi, Chennai 600062, India;
| | - Herri Trilaksana
- Department of Physics, Faculty of Science and Technology, Airlangga University, Surabaya 60115, Indonesia
| | - Leonard I. Atanase
- Faculty of Medical Dentistry, Apollonia University of Iasi, 700511 Iasi, Romania
- Academy of Romanian Scientists, 050045 Bucharest, Romania
| |
Collapse
|
7
|
Babers N, El-Sherbiny MGD, El-Shazly M, Kamel BM. Mechanical and antibacterial properties of hybrid polymers composite reinforcement for biomedical applications. JOURNAL OF BIOMATERIALS SCIENCE. POLYMER EDITION 2024; 35:85-108. [PMID: 37812148 DOI: 10.1080/09205063.2023.2268949] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Accepted: 08/11/2023] [Indexed: 10/10/2023]
Abstract
This research investigates the biocompatibility, mechanical strength, and tribological properties of a hybrid composite material composed of high-density polyethylene (HDPE), hydroxyapatite (HAp), and titanium dioxide nanoparticles (Ti O 2 ). The study explores the microstructural characteristics of the composite material using scanning electron microscopy (SEM), transmission electron microscopy (TEM), and X-ray diffraction (XRD). Samples of HDPE-30%HAp with varying concentrations of Ti O 2 (5, 10, 15, and 20%) were prepared and extruded using a twin-screw machine. The hybrid composite materials underwent mechanical tests (tensile, flexural, and hardness), tribological tests (friction and wear rate), and antibacterial tests (resistance to Escherichia coli and Staphylococcus aureus bacteria). The results indicate that the optimal hybrid composite sample was HDPE-30%HAP-10% Ti O 2 , which demonstrated excellent mechanical properties (maximum tensile strength of 25.93 MPa and young modulus of 480 MPa) and a low coefficient of friction (COF∼ 0.07) while achieving high wear resistance (wear rate in the order of 10 - 4 m m 3 N - 1 m - 1 ). The study shows that the improvement in mechanical properties results in a corresponding improvement in tribological properties. The antibacterial tests revealed that the hybrid composite material exhibited resistance to E. coli and S. aureus bacteria. The findings of this study suggest that the HDPE-30%HAP-10% Ti O 2 composite is a promising material for use in biomedical applications due to its excellent biocompatibility and desirable mechanical and tribological properties. The study demonstrates the potential of reinforced hybrid composite materials in overcoming the disadvantages of monolithic and hybrid micro-composites and highlights the importance of investigating the microstructural, tribological, and mechanical strength characteristics of composite materials for biomedical applications.
Collapse
Affiliation(s)
- N Babers
- Mechatronic Program Faculty of Engineering and Technology, Egyptian Chinese University, Cairo, Egypt
| | - M G D El-Sherbiny
- Mechanical Design and Production Engineering Department, Cairo University, Giza, Egypt
| | - M El-Shazly
- Mechanical Design and Production Engineering Department, Cairo University, Giza, Egypt
| | - Bahaa M Kamel
- Mechanical Engineering Department, National Research Centre, Giza, Egypt
- Korean Egyptian Faculty for Industry and Energy Technology, Beni-Suef Technological University, Egypt
| |
Collapse
|
8
|
Xiang S, Feng J, Yang H, Feng X. Synthesis and Applications of Supramolecular Flame Retardants: A Review. Molecules 2023; 28:5518. [PMID: 37513390 PMCID: PMC10383342 DOI: 10.3390/molecules28145518] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 07/12/2023] [Accepted: 07/13/2023] [Indexed: 07/30/2023] Open
Abstract
The development of different efficient flame retardants (FRs) to improve the fire safety of polymers has been a hot research topic. As the concept of green sustainability has gradually been raised to the attention of the whole world, it has even dominated the research direction of all walks of life. Therefore, there is an urgent calling to explore the green and simple preparation methods of FRs. The development of supramolecular chemistry in the field of flame retardancy is expanding gradually. It is worth noting that the synthesis of supramolecular flame retardants (SFRs) based on non-covalent bonds is in line with the current concepts of environmental protection and multi-functionality. This paper introduces the types of SFRs with different dimensions. SFRs were applied to typical polymers to improve their flame retardancy. The influence on mechanical properties and other material properties under the premise of flame retardancy was also summarized.
Collapse
Affiliation(s)
- Simeng Xiang
- College of Materials Science and Engineering, Chongqing University, Shapingba, Chongqing 400044, China
| | - Jiao Feng
- College of Materials Science and Engineering, Chongqing University, Shapingba, Chongqing 400044, China
| | - Hongyu Yang
- College of Materials Science and Engineering, Chongqing University, Shapingba, Chongqing 400044, China
| | - Xiaming Feng
- College of Materials Science and Engineering, Chongqing University, Shapingba, Chongqing 400044, China
| |
Collapse
|
9
|
Structural Characterization of Polysaccharides from Coriandrum sativum Seeds: Hepatoprotective Effect against Cadmium Toxicity In Vivo. Antioxidants (Basel) 2023; 12:antiox12020455. [PMID: 36830010 PMCID: PMC9952120 DOI: 10.3390/antiox12020455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Revised: 01/20/2023] [Accepted: 02/02/2023] [Indexed: 02/15/2023] Open
Abstract
Coriandrum sativum is one of the most widespread curative plants in the world, being vastly cultivated in arid and semi-arid regions as one of the oldest spice plants. The present study explored the extraction of polysaccharides from Coriandrum sativum seeds and the evaluation of their antioxidant potential and hepatoprotective effects in vivo. The polysaccharide from coriander seeds was extracted, and the structural characterization was performed by FT-IR, UV-vis, DSC, NMR (1D and 2D), GC-MS, and SEC analysis. The polysaccharide extracted from Coriandrum sativum (CPS) seeds was characterized to evaluate its antioxidant and hepatoprotective capacities in rats. Results showed that CPS was composed of arabinose, rhamnose, xylose, mannose, fructose, galactose, and glucose in molar percentages of 6.2%, 3.6%, 8.8%, 17.7%, 5.2%, 32.9%, and 25.6%, respectively. Further, CPS significantly hindered cadmium-induced oxidation damage and exercised a protective effect against Cd hepatocytotoxicity, with a considerable reduction in MDA production and interesting CAT and SOD enzyme levels. Results suggest that CPS might be employed as a natural antioxidant source.
Collapse
|
10
|
Sithambaranathan P, Nasef MM, Ahmad A, Abbasi A, Ting TM. Composite Proton-Conducting Membrane with Enhanced Phosphoric Acid Doping of Basic Films Radiochemically Grafted with Binary Vinyl Heterocyclic Monomer Mixtures. MEMBRANES 2023; 13:105. [PMID: 36676912 PMCID: PMC9865669 DOI: 10.3390/membranes13010105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/11/2022] [Revised: 01/06/2023] [Accepted: 01/09/2023] [Indexed: 06/17/2023]
Abstract
A composite proton conducting membrane (PCM) was prepared by radiation-induced grafting (RIG) of binary mixtures of 4-vinyl pyridine (4-VP) and 1-vinylimidazole (1-VIm) onto poly(ethylene-co-tetrafluoroethylene) (ETFE) film followed by phosphoric acid (PA) doping. The grafting parameters such as absorbed dose, temperature, monomer concentration, time, and monomer ratio were varied to control the degree of grafting (DG%). The effect of the reactivity ratio of 4-VP and 1-VIm on the composition and degree of monomer unit alternation in the formed graft copolymer was investigated. The changes in the chemical and physical properties endowed by grafting and subsequent PA acid doping were monitored using analytical instruments. The mechanical properties and proton conductivity of the obtained membrane were evaluated and its performance was tested in H2/O2 fuel cell at 120 °C under anhydrous and partially wet conditions. The acid doping level was affected by the treatment parameters and enhanced by increasing DG. The proton conductivity was boosted by incorporating the combination of pyridine and imidazole rings originating from the formed basic graft copolymer of 4-VP/1-VIm dominated by 4-VP units in the structure. The proton conductivity showed a strong dependence on the temperature. The membrane demonstrated superior properties compared to its counterpart obtained by grafting 4-VP alone. The membrane also showed a strong potential for application in proton exchange membrane fuel cells (PEMFC) operating at 120 °C.
Collapse
Affiliation(s)
- Paveswari Sithambaranathan
- Centre of Hydrogen Energy, Institute of Future Energy, Universiti Teknologi Malaysia, Jalan Sultan Yahya Petra, Kuala Lumpur 54100, Malaysia
| | - Mohamed Mahmoud Nasef
- Centre of Hydrogen Energy, Institute of Future Energy, Universiti Teknologi Malaysia, Jalan Sultan Yahya Petra, Kuala Lumpur 54100, Malaysia
- Malaysia-Japan International Institute of Technology, Universiti Teknologi Malaysia, Jalan Sultan Yahya Petra, Kuala Lumpur 54100, Malaysia
| | - Arshad Ahmad
- Centre of Hydrogen Energy, Institute of Future Energy, Universiti Teknologi Malaysia, Jalan Sultan Yahya Petra, Kuala Lumpur 54100, Malaysia
| | - Amin Abbasi
- Chemical Engineering Department, Universiti Teknologi PETRONAS, Seri Iskandar 32610, Perak, Malaysia
| | - T. M. Ting
- Radiation Processing Technology Division, Malaysian Nuclear Agency, Kajang 43000, Selangor, Malaysia
| |
Collapse
|
11
|
Observation of Spectacular hysteresis In Poly(methyl methacrylate) Thin Films: Studies On Charge Storage Properties. Chem Phys Lett 2023. [DOI: 10.1016/j.cplett.2023.140317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
|
12
|
End functionalization of polyisoprene and polymyrcene obtained by anionic polymerization via one-pot ring-opening mono-addition of epoxides. Eur Polym J 2022. [DOI: 10.1016/j.eurpolymj.2022.111755] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
13
|
Ferrocene-Based Terpolyamides and Their PDMS-Containing Block Copolymers: Synthesis and Physical Properties. Polymers (Basel) 2022; 14:polym14235087. [PMID: 36501482 PMCID: PMC9735706 DOI: 10.3390/polym14235087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 11/15/2022] [Accepted: 11/17/2022] [Indexed: 11/25/2022] Open
Abstract
Aromatic polyamides are well-known as high-performance materials due to their outstanding properties making them useful in a wide range of applications. However, their limited solubility in common organic solvents restricts their processability and becomes a hurdle in their applicability. This study is focused on the synthesis of processable ferrocene-based terpolyamides and their polydimethylsiloxane (PDMS)-containing block copolymers, using low-temperature solution polycondensation methodology. All the synthesized materials were structurally characterized using FTIR and 1H NMR spectroscopic techniques. The ferrocene-based terpolymers and block copolymers were soluble in common organic solvents, while the organic analogs were found only soluble in sulfuric acid. WXRD analysis showed the amorphous nature of the materials, while the SEM analysis exposed the modified surface of the ferrocene-based block copolymers. The structure-property relationship of the materials was further elucidated by their water absorption and thermal behavior. These materials showed low to no water absorption along with their high limiting oxygen index (LOI) values depicting their good flame-retardant behavior. DFT studies also supported the role of various monomers in the polycondensation reaction where the electron pair donation from HOMO of diamine monomer to the LUMO of acyl chloride was predicted, along with the calculation of various other parameters of the representative terpolymers and block copolymers.
Collapse
|
14
|
Al-Hazmy SM, EL-Ghoul Y, Al-Harby J, Tar H, Alminderej FM. Synthesis, Characterization, and Performance of Pyridomethene-BF2 Fluorescence Dye-Doped PVA Thin Film and PVP Nanofibers as Low γ-ray Dosimeters. ACS OMEGA 2022; 7:34002-34011. [PMID: 36188249 PMCID: PMC9520551 DOI: 10.1021/acsomega.2c03174] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/21/2022] [Accepted: 08/09/2022] [Indexed: 06/16/2023]
Abstract
Currently, particular attention is paid to public health related to the field of γ-ray dosimetry, which is becoming increasingly important in medical diagnostic processes. Incorporating sensitive dyes as radiation dose sensors in different material hosts has shown promising radiation dosimetry application routes. In this perspective, the current study proposes a new fluorescent dye based on boron difluoride complex, the pyridomethene-BF2 named 2-(1-(difluoroboraneyl)-1,2-dihydroquinolin-2-yl)-2-(1-methylquinoxalin-2-ylidene) acetonitrile (DBDMA) as an indicator for low γ-ray doses. The different optical and quantum chemical parameters and the spectral behavior of the selected fluorescent dye were first studied. Then, PVP/DBDMA electrospun nanofibers and PVA/DBDMA thin films were prepared. The different UV-vis spectrophotometric and fluorescence studies revealed a clear change after exposure to different γ-ray doses. Thermogravimetric analysis exhibited excellent thermal stability of the prepared nanocomposite films, showing altered thermal behavior after γ-ray treatment. Furthermore, the SEM evaluation displayed a significant modification in the surface morphology of the two designed nanomaterials with increased radiation dose intensity. These novel forms of dosimeter designed in nanoscale composites could therefore constitute a promising and efficient alternative for rapid and accurate detection of low doses of γ-rays in various medical applications.
Collapse
Affiliation(s)
- Sadeq M. Al-Hazmy
- Department
of Chemistry, College of Science, Qassim
University, Buraidah 51452, Saudi Arabia
- Department
of Chemistry, College of Science, Sana’a
University, Sana’a 1247, Yemen
| | - Yassine EL-Ghoul
- Department
of Chemistry, College of Science, Qassim
University, Buraidah 51452, Saudi Arabia
- Textile
Engineering Laboratory, University of Monastir, Monastir 5019, Tunisia
| | - Jameelah Al-Harby
- Department
of Chemistry, College of Science, Qassim
University, Buraidah 51452, Saudi Arabia
| | - Haja Tar
- Department
of Chemistry, College of Science, Qassim
University, Buraidah 51452, Saudi Arabia
| | - Fahad M. Alminderej
- Department
of Chemistry, College of Science, Qassim
University, Buraidah 51452, Saudi Arabia
| |
Collapse
|
15
|
Teka N, Alminderej FM, Souid G, El-Ghoul Y, Le Cerf D, Majdoub H. Characterization of Polysaccharides Sequentially Extracted from Allium roseum Leaves and Their Hepatoprotective Effects against Cadmium Induced Toxicity in Mouse Liver. Antioxidants (Basel) 2022; 11:antiox11101866. [PMID: 36290591 PMCID: PMC9599006 DOI: 10.3390/antiox11101866] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2022] [Revised: 09/16/2022] [Accepted: 09/18/2022] [Indexed: 12/02/2022] Open
Abstract
Allium roseum is one of the medicinal plants of the Liliaceae family, widely used in the food industry and traditional medicine. It is known for its various biological properties, such as its antioxidant, antiviral, antidiabetic, and anti-inflammatory activities. The present work aims to extract the polysaccharides from Allium roseum leaves and evaluate their antioxidant activities and hepatoprotective effects in vivo. Three polysaccharides from the leaves of Allium roseum were sequentially extracted in three media: water, chelating, and basic, respectively. They were characterized by size exclusion chromatography, gas chromatography mass spectrometry, FTIR-ATR, and NMR spectroscopy (1D and 2D). The different polysaccharides principally consist of glucose, galactose, mannose, rhamnose, xylose, and galacturonic acid. The antioxidant activity and hepatoprotective effect of the extracts against Cd-caused oxidative stress in liver mouse were tested. Cd treatment, during 24 h, enhanced significantly lipid peroxidation by a high production of malondyaldehyd (MDA) and superoxide dismutase (SOD) activity. In contrast, catalase activity (CAT) was decreased after the same period of exposure to the metal. The polysaccharides pre-treatment improved the antioxidant defense system to a great degree, mainly explained by the modulating levels of oxydative stress biomarkers (MDA, SOD, and CAT). This research clearly shows that Allium roseum polysaccharides, especially those extracted in aqueous medium, can be used as natural antioxidants with hepatoprotective properties.
Collapse
Affiliation(s)
- Nesrine Teka
- Laboratory of Interfaces and Advanced Materials, Faculty of Sciences of Monastir, University of Monastir, Monastir 5000, Tunisia
| | - Fahad M. Alminderej
- Department of Chemistry, College of Science, Qassim University, Buraidah 51452, Saudi Arabia
- Correspondence: (F.M.A.); (Y.E.-G.); (H.M.)
| | - Ghada Souid
- Research Unit: Mycotoxins, Phycotoxins and Associated Pathologies, Faculty of Pharmacy, University of Monastir, Monastir 5000, Tunisia
| | - Yassine El-Ghoul
- Department of Chemistry, College of Science, Qassim University, Buraidah 51452, Saudi Arabia
- Textile Engineering Laboratory, University of Monastir, Monastir 5019, Tunisia
- Correspondence: (F.M.A.); (Y.E.-G.); (H.M.)
| | - Didier Le Cerf
- Normandie University, UNIROUEN, INSA Rouen, CNRS, PBS, UMR 6270 & FR 3038, 76000 Rouen, France
| | - Hatem Majdoub
- Laboratory of Interfaces and Advanced Materials, Faculty of Sciences of Monastir, University of Monastir, Monastir 5000, Tunisia
- Correspondence: (F.M.A.); (Y.E.-G.); (H.M.)
| |
Collapse
|