1
|
Zhou L, Zhang Z, Sangroniz A, Shi C, Gowda RR, Scoti M, Barange DK, Lincoln C, Beckham GT, Chen EYX. Chain-End Controlled Depolymerization Selectivity in α,α-Disubstituted Propionate PHAs with Dual Closed-Loop Recycling and Record-High Melting Temperature. J Am Chem Soc 2024; 146:29895-29904. [PMID: 39413833 DOI: 10.1021/jacs.4c11920] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2024]
Abstract
Within the large poly(3-hydroxyalkanoate) (PHA) family, C3 propionates are much less studied than C4 butyrates, with the exception of α,α-disubstituted propionate PHAs, particularly poly(3-hydroxy-2,2-dimethylpropionate), P3H(Me)2P, due to its high melting temperature (Tm ∼ 230 °C) and crystallinity (∼76%). However, inefficient synthetic routes to its monomer 2,2-dimethylpropiolactone [(Me)2PL] and extreme brittleness of P3H(Me)2P largely hinder its broad applications. Here, we introduce simple, efficient step-growth polycondensation (SGP) of a hydroxyacid or methyl ester to afford P3H(Me)2P with low to medium molar mass, which is then utilized to produce lactones through base-catalyzed depolymerization. The ring-opening polymerization (ROP) of the 4-membered lactone leads to high-molar-mass P3H(Me)2P, which can be depolymerized by hydrolysis to the hydroxyacid in 99% yield or methanolysis to the hydroxyester in 91% yield, achieving closed-loop recycling via both SGP and ROP routes. Intriguingly, the chain end of the SGP-P3H(Me)2P determines the depolymerization selectivity toward 4- or 12-membered lactone formation, while both can be repolymerized back to P3H(Me)2P. Through the formation of copolymers P3H(Me/R)2P (R = Et, nPr), PHAs with high tensile strength and ductility, coupled with high barriers to water vapor and oxygen, have been created. Notably, the PHA structure-property study led to P3H(nPr)2P with a record-high Tm of 266 °C within the PHA family.
Collapse
Affiliation(s)
- Li Zhou
- Department of Chemistry, Colorado State University, Fort Collins, Colorado 80523-1872, United States
| | - Zhen Zhang
- Department of Chemistry, Colorado State University, Fort Collins, Colorado 80523-1872, United States
| | - Ainara Sangroniz
- Department of Chemistry, Colorado State University, Fort Collins, Colorado 80523-1872, United States
- POLYMAT and Department of Polymers and Advanced Materials: Physics, Chemistry and Technology, Faculty of Chemistry, University of the Basque Country UPV/EHU, Paseo Manuel de Lardizábal 3, 20018 Donostia-San Sebastián, Spain
| | - Changxia Shi
- Department of Chemistry, Colorado State University, Fort Collins, Colorado 80523-1872, United States
| | - Ravikumar R Gowda
- Department of Chemistry, Colorado State University, Fort Collins, Colorado 80523-1872, United States
| | - Miriam Scoti
- Department of Chemistry, Colorado State University, Fort Collins, Colorado 80523-1872, United States
- Dipartimento di Scienze Chimiche, Università di Napoli Federico II, Complesso Monte S. Angelo, Via Cintia, 80126 Napoli, Italy
| | - Deepak K Barange
- Department of Chemistry, Colorado State University, Fort Collins, Colorado 80523-1872, United States
| | - Clarissa Lincoln
- Renewable Resources and Enabling Sciences Center, National Renewable Energy Laboratory, Golden, Colorado 80401, United States
- BOTTLE Consortium, Golden, Colorado 80401, United States
| | - Gregg T Beckham
- Renewable Resources and Enabling Sciences Center, National Renewable Energy Laboratory, Golden, Colorado 80401, United States
- BOTTLE Consortium, Golden, Colorado 80401, United States
| | - Eugene Y-X Chen
- Department of Chemistry, Colorado State University, Fort Collins, Colorado 80523-1872, United States
| |
Collapse
|
2
|
Palenzuela M, Mula E, Blanco C, Sessini V, Shakaroun RM, Li H, Guillaume SM, Mosquera MEG. Copolymerization of β-Butyrolactones into Functionalized Polyhydroxyalkanoates Using Aluminum Catalysts: Influence of the Initiator in the Ring-Opening Polymerization Mechanism. Macromol Rapid Commun 2024; 45:e2400091. [PMID: 38690992 DOI: 10.1002/marc.202400091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Revised: 04/22/2024] [Indexed: 05/03/2024]
Abstract
Within bioplastics, natural poly(3-hydroxybutyrate) (PHB) stands out as fully biocompatible and biodegradable, even in marine environments; however, its high isotacticity and crystallinity limits its mechanical properties and hence its applications. PHB can also be synthesized with different tacticities via a catalytic ring-opening polymerization (ROP) of rac-β-butyrolactone (BBL), paving the way to PHB with better thermomechanical and processability properties. In this work, the catalyst family is extended based on aluminum phenoxy-imine methyl catalyst [AlMeL2], that reveals efficient in the ROP of BBL, to the halogeno analogous complex [AlClL2]. As well, the impact on the ROP mechanism of different initiators is further explored with a particular focus in dimethylaminopyridine (DMAP), a hardly studied initiator for the ROP of BBL. A thorough mechanistic study is performed that evidences the presence of two concomitant DMAP-mediated mechanisms, that lead to either a DMAP or a crotonate end-capping group. Besides, in order to increase the possibilities of PHB post-polymerization functionalization, the introduction of a side-chain functionality is explored, establishing the copolymerization of BBL with β-allyloxymethylene propiolactone (BPLOAll), resulting in well-defined P(BBL-co-BPLOAll) copolymers.
Collapse
Affiliation(s)
- Miguel Palenzuela
- Departamento de Química Orgánica y Química Inorgánica, Instituto de Investigación en Química "Andrés M. del Río" (IQAR), Universidad de Alcalá, Campus Universitario, Alcalá de Henares, Madrid, 28871, Spain
| | - Esther Mula
- Departamento de Química Orgánica y Química Inorgánica, Instituto de Investigación en Química "Andrés M. del Río" (IQAR), Universidad de Alcalá, Campus Universitario, Alcalá de Henares, Madrid, 28871, Spain
| | - Carlos Blanco
- Departamento de Química Orgánica y Química Inorgánica, Instituto de Investigación en Química "Andrés M. del Río" (IQAR), Universidad de Alcalá, Campus Universitario, Alcalá de Henares, Madrid, 28871, Spain
| | - Valentina Sessini
- Departamento de Química Orgánica y Química Inorgánica, Instituto de Investigación en Química "Andrés M. del Río" (IQAR), Universidad de Alcalá, Campus Universitario, Alcalá de Henares, Madrid, 28871, Spain
| | - Rama M Shakaroun
- Univ. Rennes, CNRS, Institut des Sciences Chimiques de Rennes, UMR 6226, Rennes, F-35042, France
| | - Hui Li
- Univ. Rennes, CNRS, Institut des Sciences Chimiques de Rennes, UMR 6226, Rennes, F-35042, France
| | - Sophie M Guillaume
- Univ. Rennes, CNRS, Institut des Sciences Chimiques de Rennes, UMR 6226, Rennes, F-35042, France
| | - Marta E G Mosquera
- Departamento de Química Orgánica y Química Inorgánica, Instituto de Investigación en Química "Andrés M. del Río" (IQAR), Universidad de Alcalá, Campus Universitario, Alcalá de Henares, Madrid, 28871, Spain
| |
Collapse
|
3
|
Yuan H, Takahashi K, Hayashi S, Suzuki M, Fujikake N, Kasuya KI, Zhou J, Nakagawa S, Yoshie N, Li C, Yamaguchi K, Nozaki K. Synthesis of Novel Polymers with Biodegradability by Main-Chain Editing of Chiral Polyketones. J Am Chem Soc 2024; 146:13658-13665. [PMID: 38710172 DOI: 10.1021/jacs.4c04389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/08/2024]
Abstract
Although the use of biodegradable plastics is suitable for unrecoverable, single-use plastic, their high production cost and much lower variety compared to commodity plastics limit their application. In this study, we developed a new polymer with potential biodegradability, poly(ketone/ester), synthesized from propylene and carbon monoxide. Propylene and carbon monoxide are easily available at low costs from fossil resources, and they can also be derived from biomass. Using an atom insertion reaction to the main chain of the polymer, the main-chain editing of the polymer molecule proceeded with up to 89% selectivity for atom insertion over main-chain cleavage.
Collapse
Affiliation(s)
- Haobo Yuan
- Graduate School of Engineering, The University of Tokyo, Tokyo 113-8656, Japan
| | - Kohei Takahashi
- Graduate School of Engineering, The University of Tokyo, Tokyo 113-8656, Japan
| | - Shinya Hayashi
- Graduate School of Engineering, The University of Tokyo, Tokyo 113-8656, Japan
| | - Miwa Suzuki
- Gunma University Center for Food Science and Wellness, Maebashi, Gunma 371-8510, Japan
| | - Nobuhiro Fujikake
- Gunma University Center for Food Science and Wellness, Maebashi, Gunma 371-8510, Japan
| | - Ken-Ichi Kasuya
- Graduate School of Science and Technology, Gunma University, Kiryu, Gunma 376-8515, Japan
- Gunma University Center for Food Science and Wellness, Maebashi, Gunma 371-8510, Japan
| | - Jian Zhou
- Institute of Industrial Science, The University of Tokyo, Tokyo 153-8505, Japan
| | - Shintaro Nakagawa
- Institute of Industrial Science, The University of Tokyo, Tokyo 153-8505, Japan
| | - Naoko Yoshie
- Institute of Industrial Science, The University of Tokyo, Tokyo 153-8505, Japan
| | - Chifeng Li
- Graduate School of Engineering, The University of Tokyo, Tokyo 113-8656, Japan
| | - Kazuya Yamaguchi
- Graduate School of Engineering, The University of Tokyo, Tokyo 113-8656, Japan
| | - Kyoko Nozaki
- Graduate School of Engineering, The University of Tokyo, Tokyo 113-8656, Japan
| |
Collapse
|
4
|
Cheng HN, Asakura T, Suganuma K, Lagaron JM, Melendez-Rodriguez B, Biswas A. NMR Analyses and Statistical Modeling of Biobased Polymer Microstructures-A Selected Review. Polymers (Basel) 2024; 16:620. [PMID: 38475303 DOI: 10.3390/polym16050620] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2024] [Revised: 02/20/2024] [Accepted: 02/21/2024] [Indexed: 03/14/2024] Open
Abstract
NMR analysis combined with statistical modeling offers a useful approach to investigate the microstructures of polymers. This article provides a selective review of the developments in both the NMR analysis of biobased polymers and the statistical models that can be used to characterize these materials. The information obtained from NMR and statistical models can provide insights into the microstructure and stereochemistry of appropriate biobased polymers and establish a systematic approach to their analysis. In suitable cases, the analysis can help optimize the synthetic procedures and facilitate the development of new or modified polymeric materials for various applications. Examples are given of the studies of poly(hydroxyalkanoates), poly(lactic acid), and selected polysaccharides, e.g., alginate, pectin, and chitosan. This article may serve as both a reference and a guide for future workers interested in the NMR sequence analysis of biobased materials.
Collapse
Affiliation(s)
- Huai N Cheng
- USDA Agricultural Research Service, Southern Regional Research Center, New Orleans, LA 70124, USA
| | - Tetsuo Asakura
- Department of Biotechnology, Tokyo University of Agriculture and Technology, Koganei, Tokyo 184-8588, Japan
| | - Koto Suganuma
- Material Analysis Research Center, Teijin Ltd., Hino, Tokyo 191-8512, Japan
| | - Jose M Lagaron
- Novel Materials and Nanotechnology Group, IATA, CSIC, Av. Agustín Escardino 7, 46980 Paterna, Valencia, Spain
| | - Beatriz Melendez-Rodriguez
- Novel Materials and Nanotechnology Group, IATA, CSIC, Av. Agustín Escardino 7, 46980 Paterna, Valencia, Spain
| | - Atanu Biswas
- USDA Agricultural Research Service, National Center for Agricultural Utilization Research, Peoria, IL 61604, USA
| |
Collapse
|
5
|
Zhang Z, Quinn EC, Olmedo-Martínez JL, Caputo MR, Franklin KA, Müller AJ, Chen EYX. Toughening Brittle Bio-P3HB with Synthetic P3HB of Engineered Stereomicrostructures. Angew Chem Int Ed Engl 2023; 62:e202311264. [PMID: 37878997 DOI: 10.1002/anie.202311264] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 10/12/2023] [Accepted: 10/25/2023] [Indexed: 10/27/2023]
Abstract
Poly(3-hydroxybutyrate) (P3HB), a biologically produced, biodegradable natural polyester, exhibits excellent thermal and barrier properties but suffers from mechanical brittleness, largely limiting its applications. Here we report a mono-material product design strategy to toughen stereoperfect, brittle bio or synthetic P3HB by blending it with stereomicrostructurally engineered P3HB. Through tacticity ([mm] from 0 to 100 %) and molecular weight (Mn to 788 kDa) tuning, high-performance synthetic P3HB materials with tensile strength to ≈30 MPa, fracture strain to ≈800 %, and toughness to 126 MJ m-3 (>110× tougher than bio-P3HB) have been produced. Physical blending of the brittle P3HB with such P3HB in 10 to 90 wt % dramatically enhances its ductility from ≈5 % to 95-450 % and optical clarity from 19 % to 85 % visible light transmittance while maintaining desirably high elastic modulus (>1 GPa), tensile strength (>35 MPa), and melting temperature (160-170 °C). This P3HB-toughening-P3HB methodology departs from the traditional approach of incorporating chemically distinct components to toughen P3HB, which hinders chemical or mechanical recycling, highlighting the potential of the mono-material product design solely based on biodegradable P3HB to deliver P3HB materials with diverse performance properties.
Collapse
Affiliation(s)
- Zhen Zhang
- Department of Chemistry, Colorado State University, Fort Collins, CO 80523-1872, USA
| | - Ethan C Quinn
- Department of Chemistry, Colorado State University, Fort Collins, CO 80523-1872, USA
| | - Jorge L Olmedo-Martínez
- POLYMAT and Department of Polymers and Advanced Materials: Physics, Chemistry and Technology, Faculty of Chemistry, University of the Basque Country UPV/EHU, Paseo Manuel de Lardizábal 3, 20018, Donostia-San Sebastián, Spain
| | - Maria Rosaria Caputo
- POLYMAT and Department of Polymers and Advanced Materials: Physics, Chemistry and Technology, Faculty of Chemistry, University of the Basque Country UPV/EHU, Paseo Manuel de Lardizábal 3, 20018, Donostia-San Sebastián, Spain
| | - Kevin A Franklin
- Department of Chemistry, Colorado State University, Fort Collins, CO 80523-1872, USA
| | - Alejandro J Müller
- POLYMAT and Department of Polymers and Advanced Materials: Physics, Chemistry and Technology, Faculty of Chemistry, University of the Basque Country UPV/EHU, Paseo Manuel de Lardizábal 3, 20018, Donostia-San Sebastián, Spain
- IKERBASQUE, Basque Foundation for Science, Plaza Euskadi 5, 48009, Bilbao, Spain
| | - Eugene Y-X Chen
- Department of Chemistry, Colorado State University, Fort Collins, CO 80523-1872, USA
| |
Collapse
|
6
|
Westlie AH, Hesse SA, Tang X, Quinn EC, Parker CR, Takacs CJ, Tassone CJ, Chen EYX. All-Polyhydroxyalkanoate Triblock Copolymers via a Stereoselective-Chemocatalytic Route. ACS Macro Lett 2023; 12:619-625. [PMID: 37094112 DOI: 10.1021/acsmacrolett.3c00162] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/26/2023]
Abstract
Biodegradable polyhydroxyalkanoate (PHA) homopolymers and statistical copolymers are ubiquitous in microbially produced PHAs, but the step-growth polycondensation mechanism the biosynthesis operates on presents a challenge to access well-defined block copolymers (BCPs), especially higher-order tri-BCP PHAs. Here we report a stereoselective-chemocatalytic route to produce discrete hard-soft-hard ABA all-PHA tri-BCPs based on the living chain-growth ring-opening polymerization of racemic (rac) 8-membered diolides (rac-8DLR; R denotes the two substituents on the ring). Depending on the composition of the soft B block, originated from rac-8DLR (R = Et, nBu), and its ratio to the semicrystalline, high-melting hard A block, derived from rac-8DLMe, the resulting all-PHA tri-BCPs with high molar mass (Mn up to 238 kg mol-1) and low dispersity (Đ = 1.07) exhibit tunable mechanical properties characteristic of a strong and tough thermoplastic, elastomer, or a semicrystalline thermoplastic elastomer.
Collapse
Affiliation(s)
- Andrea H Westlie
- Department of Chemistry, Colorado State University, Fort Collins, Colorado 80523-1872, United States
| | - Sarah A Hesse
- Stanford Synchrotron Radiation Lightsource, SLAC National Accelerator Laboratory, Menlo Park, California 94025, United States
| | - Xiaoyan Tang
- Department of Chemistry, Colorado State University, Fort Collins, Colorado 80523-1872, United States
| | - Ethan C Quinn
- Department of Chemistry, Colorado State University, Fort Collins, Colorado 80523-1872, United States
| | - Celine R Parker
- Department of Chemistry, Colorado State University, Fort Collins, Colorado 80523-1872, United States
| | - Christopher J Takacs
- Stanford Synchrotron Radiation Lightsource, SLAC National Accelerator Laboratory, Menlo Park, California 94025, United States
| | - Christopher J Tassone
- Stanford Synchrotron Radiation Lightsource, SLAC National Accelerator Laboratory, Menlo Park, California 94025, United States
| | - Eugene Y-X Chen
- Department of Chemistry, Colorado State University, Fort Collins, Colorado 80523-1872, United States
| |
Collapse
|
7
|
Quinn EC, Westlie AH, Sangroniz A, Caputo MR, Xu S, Zhang Z, Urgun-Demirtas M, Müller AJ, Chen EYX. Installing Controlled Stereo-Defects Yields Semicrystalline and Biodegradable Poly(3-Hydroxybutyrate) with High Toughness and Optical Clarity. J Am Chem Soc 2023; 145:5795-5802. [PMID: 36867587 DOI: 10.1021/jacs.2c12897] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/04/2023]
Abstract
Stereo-defects present in stereo-regular polymers often diminish thermal and mechanical properties, and hence suppressing or eliminating them is a major aspirational goal for achieving polymers with optimal or enhanced properties. Here, we accomplish the opposite by introducing controlled stereo-defects to semicrystalline biodegradable poly(3-hydroxybutyrate) (P3HB), which offers an attractive biodegradable alternative to semicrystalline isotactic polypropylene but is brittle and opaque. We enhance the specific properties and mechanical performance of P3HB by drastically toughening it and also rendering it with the desired optical clarity while maintaining its biodegradability and crystallinity. This toughening strategy of stereo-microstructural engineering without changing the chemical compositions also departs from the conventional approach of toughening P3HB through copolymerization that increases chemical complexity, suppresses crystallization in the resulting copolymers, and is thus undesirable in the context of polymer recycling and performance. More specifically, syndio-rich P3HB (sr-P3HB), readily synthesized from the eight-membered meso-dimethyl diolide, has a unique set of stereo-microstructures comprising enriched syndiotactic [rr] and no isotactic [mm] triads but abundant stereo-defects randomly distributed along the chain. This sr-P3HB material is characterized by high toughness (UT = 96 MJ/m3) as a result of its high elongation at break (>400%) and tensile strength (34 MPa), crystallinity (Tm = 114 °C), optical clarity (due to its submicron spherulites), and good barrier properties, while it still biodegrades in freshwater and soil.
Collapse
Affiliation(s)
- Ethan C Quinn
- Department of Chemistry, Colorado State University, Fort Collins, Colorado 80523-1872, United States
| | - Andrea H Westlie
- Department of Chemistry, Colorado State University, Fort Collins, Colorado 80523-1872, United States
| | - Ainara Sangroniz
- Department of Chemistry, Colorado State University, Fort Collins, Colorado 80523-1872, United States.,POLYMAT and Department of Polymers and Advanced Materials: Physics, Chemistry and Technology, Faculty of Chemistry, University of the Basque Country UPV/EHU, Paseo Manuel de Lardizábal 3, Donostia-San Sebastián 20018, Spain
| | - Maria Rosaria Caputo
- POLYMAT and Department of Polymers and Advanced Materials: Physics, Chemistry and Technology, Faculty of Chemistry, University of the Basque Country UPV/EHU, Paseo Manuel de Lardizábal 3, Donostia-San Sebastián 20018, Spain
| | - Shu Xu
- Argonne National Laboratory, Lemont, Illinois 60439, United States
| | - Zhen Zhang
- Department of Chemistry, Colorado State University, Fort Collins, Colorado 80523-1872, United States
| | | | - Alejandro J Müller
- POLYMAT and Department of Polymers and Advanced Materials: Physics, Chemistry and Technology, Faculty of Chemistry, University of the Basque Country UPV/EHU, Paseo Manuel de Lardizábal 3, Donostia-San Sebastián 20018, Spain.,IKERBASQUE, Basque Foundation for Science, Plaza Euskadi 5, Bilbao 48009, Spain
| | - Eugene Y-X Chen
- Department of Chemistry, Colorado State University, Fort Collins, Colorado 80523-1872, United States
| |
Collapse
|
8
|
Li H, Tang Y, Li Z, Li Y, Chen B, Shen C, Huang Z, Dong K. Cobalt-catalyzed carbonylation of epoxides to β-lactones promoted by gallium porphyrin. MOLECULAR CATALYSIS 2022. [DOI: 10.1016/j.mcat.2022.112779] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
9
|
Synthesis and characterization of block copolymer: thermal and morphological properties of SiO2-filled block copolymer nanocomposites. Polym Bull (Berl) 2022. [DOI: 10.1007/s00289-022-04468-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
|