1
|
Kapoor DU, Vaishnav DJ, Garg R, Saini PK, Prajapati BG, Castro GR, Suttiruengwong S, Limmatvapirat S, Sriamornsak P. Exploring the impact of material selection on the efficacy of hot-melt extrusion. Int J Pharm 2025; 668:124966. [PMID: 39561905 DOI: 10.1016/j.ijpharm.2024.124966] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Revised: 10/15/2024] [Accepted: 11/15/2024] [Indexed: 11/21/2024]
Abstract
Hot-melt extrusion (HME) has emerged as a versatile and efficient technique in pharmaceutical formulation development, particularly for enhancing the solubility and bioavailability of poorly water-soluble drugs. This review delves into the fundamental principles of HME, exploring its application in drug delivery systems. A comprehensive analysis of polymers utilized in HME, such as hydroxypropyl methylcellulose, ethyl cellulose, hydroxypropyl cellulose, and polyvinylpyrrolidone, is presented, highlighting their roles in achieving controlled drug release and improved stability. The incorporation of plasticizers, such as triacetin, poly(propylene glycol), glycerol, and sorbitol, is critical in reducing the glass transition temperature (Tg) of polymer blends, thereby enhancing the processability of HME formulations. A comparison of Tg values for various polymer-plasticizer combinations is discussed using different predictive models. For researchers and industry professionals looking to optimize drug formulation strategies, this article offers valuable insights into the mechanisms through which HME enhances drug solubility and bioavailability two critical factors in oral drug delivery. Furthermore, by reviewing recent patents and marketed formulations, the article serves as a comprehensive resource for understanding both the technical advancements and commercial applications of HME. Readers will gain a deep understanding of the role of polymers and additives in HME, alongside future perspectives on how emerging materials and techniques could further revolutionize pharmaceutical development. This review is essential for those aiming to stay at the forefront of pharmaceutical extrusion technologies and their potential to improve therapeutic outcomes. The review concludes that meticulous material selection is vital for advancing pharmaceutical manufacturing processes and ensuring optimal outcomes in HME applications, thereby enhancing the overall efficacy of drug delivery systems.
Collapse
Affiliation(s)
- Devesh U Kapoor
- Dr. Dayaram Patel Pharmacy College, Bardoli 394601, Gujarat, India
| | - Devendra J Vaishnav
- CK Pithawala Institute of Pharmaceutical Education and Research, Surat 395007, Gujarat, India
| | - Rahul Garg
- Asian College of Pharmacy, Udaipur 313001, Rajasthan, India
| | - Pushpendra Kumar Saini
- Department of Pharmaceutics, Sri Balaji College of Pharmacy, Jaipur 302026, Rajasthan, India
| | - Bhupendra G Prajapati
- Shree S. K. Patel College of Pharmaceutical Education and Research, Ganpat University, Kherva 384012, Gujarat, India.
| | - Guillermo R Castro
- Nanomedicine Research Unit, Center for Natural and Human Sciences, Federal University of ABC, Santo André, Sao Paulo 09210-580, Brazil
| | - Supakij Suttiruengwong
- Sustainable Materials Laboratory, Department of Materials Science and Engineering, Faculty of Engineering and Industrial Technology, Silpakorn University, Nakhon Pathom 73000, Thailand
| | - Sontaya Limmatvapirat
- Department of Industrial Pharmacy, Faculty of Pharmacy, Silpakorn University, Nakhon Pathom 73000, Thailand
| | - Pornsak Sriamornsak
- Department of Industrial Pharmacy, Faculty of Pharmacy, Silpakorn University, Nakhon Pathom 73000, Thailand; Academy of Science, The Royal Society of Thailand, Bangkok 10300, Thailand; Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok 10330, Thailand; Center for Global Health Research, Saveetha Medical College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai 602105, Tamil Nadu, India.
| |
Collapse
|
2
|
Krupali Ashokbhai M, Ghatole S, Gupta U, Rahul Sanjay L, Roy S, Ravichandiran V, Kaity S. Leveraging solid solubility and miscibility of etoricoxib in Soluplus® towards manufacturing of 3D printed etoricoxib tablets by additive manufacturing. Int J Pharm 2024; 667:124881. [PMID: 39490553 DOI: 10.1016/j.ijpharm.2024.124881] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Revised: 10/25/2024] [Accepted: 10/25/2024] [Indexed: 11/05/2024]
Abstract
This research focuses on exploring the solid solubility and miscibility of Etoricoxib, a poorly water-soluble anti-inflammatory drug, within Soluplus®, a polymer used as a matrix for 3D-printed tablets. By utilizing hot-melt extrusion (HME), the drug was dispersed within Soluplus® to enhance its solubility. The extrudates were then employed in 3D printing to create customized solid oral dosage form. This study's novelty lies in combining HME and 3D printing, aiming to improve drug incorporation, stability, and effectiveness in the final formulation. Comprehensive characterization techniques, including hot stage microscopy (HSM), scanning electron microscopy (SEM), micro-computed tomography (Micro-CT), florescence microscopy, optical microscopy, X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FT-IR), solubility studies, differential scanning calorimetry (DSC), thermogravimetric analysis (TGA), and aqueous solubility study were utilized to elucidate the physicochemical properties, thermal stability, and structural integrity for the extruded filaments (the printing ink), and 3D printed tablets made thereof. Furthermore, the in vitro drug release profile of the 3D printed tablet was systematically evaluated, revealing a controlled drug release pattern from the finished dosage form. The systematic investigation reported herein, starting from theoretical miscibility to the printing ink development through HME, detailed characterization of the extruded filaments, and further solid oral formulation development by additive manufacturing can be utilized as a platform technology or a pathway for the development of personalized medicine with drugs having similar physicochemical properties.
Collapse
Affiliation(s)
- Makka Krupali Ashokbhai
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Kolkata, West Bengal 700054, India
| | - Shubham Ghatole
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Kolkata, West Bengal 700054, India
| | - Ujjwal Gupta
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Kolkata, West Bengal 700054, India
| | - Lohare Rahul Sanjay
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Kolkata, West Bengal 700054, India
| | - Subhadeep Roy
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Kolkata, West Bengal 700054, India
| | - Velayutham Ravichandiran
- Department of Natural Products, National Institute of Pharmaceutical Education and Research (NIPER), Kolkata, West Bengal 700054, India
| | - Santanu Kaity
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Kolkata, West Bengal 700054, India.
| |
Collapse
|
3
|
Liang H, Zhao M, Wang S, Wang D, Gou J, Bai Y, Shen M, Wang J, Cheng Y, Ge N, Zhao Y, Zeng J, Sun L, Xu H. Novel Sustained Release Azithromycin Resinate Fabricated by One-Pot Ion-exchange Performed in Hydro-alcoholic Solution. AAPS PharmSciTech 2024; 25:226. [PMID: 39327374 DOI: 10.1208/s12249-024-02947-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Accepted: 09/16/2024] [Indexed: 09/28/2024] Open
Abstract
Drug-resin complexes usually form in the aqueous phase. For poorly water-soluble drugs, low drug loading limits the use of resin in drug formulation. In this study, we used a new method to prepare azithromycin resinates, improving the drug loading rate, shortening the preparation time and simplifying the process. We used hydro-alcoholic solution as the drug loading solvent and the ion exchange resin as the carrier, and this method enabled the resin to adsorb both the retardant and the drug. The sustained release effect of retardant Eudragit RL, RS100 was analyzed. Drug loading efficiency, release profiles, morphology, physicochemical characterization and pharmacokinetic study were assessed. Preparation of drug resinate by batch method resulted in 14% higher drug loading of azithromycin and 3.5 h shorter loading time as compared to pure water for hydroalcoholic solution as drug loading solvent. Raman mappings demonstrated that the retardant with higher molecular weight was more likely to adsorb to the outer layer of the resin compared to the drug. The in vitro release and in vivo pharmacokinetic study of azithromycin resinates showed a sustained release profile with few gastrointestinal adverse effects. Therefore, the addition of ethanol not only improved the efficiency of drug loading but also showed sustained-release effect with one-pot preparation of azithromycin resinates.
Collapse
Affiliation(s)
- Hongyu Liang
- Department of Pharmaceutical Sciences, School of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, 110016, Liaoning, China
| | - Meihui Zhao
- Department of Pharmaceutical Sciences, School of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, 110016, Liaoning, China
| | - Shaoning Wang
- School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, 110016, Liaoning, China
| | - Da Wang
- Department of Pharmaceutical Sciences, School of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, 110016, Liaoning, China
| | - Jingxin Gou
- Department of Pharmaceutical Sciences, School of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, 110016, Liaoning, China
| | - Yanjie Bai
- Department of Stomatology, People's Hospital of Liaoning Province, Shenyang, 110016, People's Republic of China
| | - Mingyue Shen
- Department of Pharmaceutical Sciences, School of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, 110016, Liaoning, China
| | - Junfeng Wang
- Department of Pharmaceutical Sciences, School of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, 110016, Liaoning, China
| | - Yujie Cheng
- Department of Pharmaceutical Sciences, School of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, 110016, Liaoning, China
| | - Ning Ge
- Department of Pharmaceutical Sciences, School of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, 110016, Liaoning, China
| | - Yi Zhao
- School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, 110016, Liaoning, China
| | - Jie Zeng
- Department of Pharmaceutical Sciences, School of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, 110016, Liaoning, China
| | - Lu Sun
- Department of Pharmaceutical Sciences, School of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, 110016, Liaoning, China.
| | - Hui Xu
- Department of Pharmaceutical Sciences, School of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, 110016, Liaoning, China.
| |
Collapse
|
4
|
Düphans V, Kimmel V, Messing L, Schaldach G, Thommes M. Experimental and numerical characterization of screw elements used in twin-screw extrusion. Pharm Dev Technol 2024; 29:675-683. [PMID: 38979559 DOI: 10.1080/10837450.2024.2378323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 05/29/2024] [Accepted: 07/06/2024] [Indexed: 07/10/2024]
Abstract
Hot melt extrusion by a co-rotating twin screw extruder is an important process in the pharmaceutical industry. Especially for quality by design aspects, a comprehensive process understanding is indispensable. The performance of conveying elements was determined as critical process parameter, and therefore an experimental and numerical framework was developed to analyze and compare variations. A test rig capable of measuring volume flow, pressure and torque with high accuracy and precision was designed and built. The 3D simulation was performed using computational fluid dynamics (CFD). A stationary model with impulse transmission and an apparent motion of the screws was applied. The experimental data were fitted to the model of Pawlowski, and parameters for the pressure (A1, A2) and power characteristics (B1, B2) were determined. Good agreement between experimental data and the model was observed. The simulation was significantly faster compared to common methods, and the results were consistent with the literature. Systematic investigations of a native and worn screw were performed with CFD resulting in a transport capacity increase and a pressure build up decrease for all tested screw elements. An experimental and simulation setup was generated to assess the performance of co-rotating twin screw elements. The experiments provided high-quality data, and the simulations exhibited high flexibility with low computational effort.
Collapse
Affiliation(s)
- Vanessa Düphans
- Department of Biochemical and Chemical Engineering, Laboratory of Solids Process Engineering, TU Dortmund University, Dortmund, Germany
| | - Vincent Kimmel
- Department of Biochemical and Chemical Engineering, Laboratory of Solids Process Engineering, TU Dortmund University, Dortmund, Germany
| | - Lukas Messing
- Department of Biochemical and Chemical Engineering, Laboratory of Solids Process Engineering, TU Dortmund University, Dortmund, Germany
| | - Gerhard Schaldach
- Department of Biochemical and Chemical Engineering, Laboratory of Solids Process Engineering, TU Dortmund University, Dortmund, Germany
| | - Markus Thommes
- Department of Biochemical and Chemical Engineering, Laboratory of Solids Process Engineering, TU Dortmund University, Dortmund, Germany
| |
Collapse
|
5
|
Tripathi D, B H MP, Sahoo J, Kumari J. Navigating the Solution to Drug Formulation Problems at Research and Development Stages by Amorphous Solid Dispersion Technology. RECENT ADVANCES IN DRUG DELIVERY AND FORMULATION 2024; 18:79-99. [PMID: 38062659 DOI: 10.2174/0126673878271641231201065151] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 10/20/2023] [Accepted: 10/26/2023] [Indexed: 08/30/2024]
Abstract
Amorphous Solid Dispersions (ASDs) have indeed revolutionized the pharmaceutical industry, particularly in drug solubility enhancement. The amorphous state of a drug, which is a highenergy metastable state, can lead to an increase in the apparent solubility of the drug. This is due to the absence of a long-range molecular order, which results in higher molecular mobility and free volume, and consequently, higher solubility. The success of ASD preparation depends on the selection of appropriate excipients, particularly polymers that play a crucial role in drug solubility and physical stability. However, ASDs face challenges due to their thermodynamic instability or tendency to recrystallize. Measuring the crystallinity of the active pharmaceutical ingredient (API) and drug solubility is a complex process that requires a thorough understanding of drug-polymer miscibility and molecular interactions. Therefore, it is important to monitor drug solids closely during preparation, storage, and application. Techniques such as solid-state nuclear magnetic resonance (ssNMR), attenuated total reflectance Fourier transform infrared spectroscopy (ATR-FTIR), Raman spectroscopy, and dielectric spectroscopy have been successful in understanding the mechanism of drug crystallization. In addition, the continuous downstream processing of drug-loaded ASDs has introduced new automated methods for consistent ASD production. Advanced techniques such as hot melt extrusion, KinetiSol, electro spraying, and electrospinning have gained popularity. This review provides a comprehensive overview of Amorphous Solid Dispersions (ASDs) for oral drug delivery. It highlights the critical challenges faced during formulation, the impact of manufacturing variables, theoretical aspects of drug-polymer interaction, and factors related to drug-polymer miscibility. ASDs have been recognized as a promising strategy to improve the oral bioavailability of poorly water-soluble drugs. However, the successful development of an ASD-based drug product is not straightforward due to the complexity of the ASD systems. The formulation and process parameters can significantly influence the performance of the final product. Understanding the interactions between the drug and polymer in ASDs is crucial for predicting their stability and performance.
Collapse
Affiliation(s)
- Devika Tripathi
- Pranveer Singh Institute of Technology (Pharmacy), Uttar Pradesh, Kanpur, India
| | - Manjunatha Prabhu B H
- Department of Food Protection and Infestation Control, CSIR-CFTRI, Central Food Technological Research Institute, Mysore, India
| | - Jagannath Sahoo
- Shobhaben Pratapbhai Patel School of Pharmacy and Technology Management, NIMMS, Mumbai, India
| | - Jyoti Kumari
- Pranveer Singh Institute of Technology (Pharmacy), Uttar Pradesh, Kanpur, India
| |
Collapse
|
6
|
Al-Japairai K, Hamed Almurisi S, Mahmood S, Madheswaran T, Chatterjee B, Sri P, Azra Binti Ahmad Mazlan N, Al Hagbani T, Alheibshy F. Strategies to improve the stability of amorphous solid dispersions in view of the hot melt extrusion (HME) method. Int J Pharm 2023; 647:123536. [PMID: 37865133 DOI: 10.1016/j.ijpharm.2023.123536] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 09/24/2023] [Accepted: 10/18/2023] [Indexed: 10/23/2023]
Abstract
Oral administration of drugs is preferred over other routes for several reasons: it is non-invasive, easy to administer, and easy to store. However, drug formulation for oral administration is often hindered by the drug's poor solubility, which limits its bioavailability and reduces its commercial value. As a solution, amorphous solid dispersion (ASD) was introduced as a drug formulation method that improves drug solubility by changing the molecular structure of the drugs from crystalline to amorphous. The hot melt extrusion (HME) method is emerging in the pharmaceutical industry as an alternative to manufacture ASD. However, despite solving solubility issues, ASD also exposes the drug to a high risk of crystallisation, either during processing or storage. Formulating a successful oral administration drug using ASD requires optimisation of the formulation, polymers, and HME manufacturing processes applied. This review presents some important considerations in ASD formulation, including strategies to improve the stability of the final product using HME to allow more new drugs to be formulated using this method.
Collapse
Affiliation(s)
- Khater Al-Japairai
- Department of Pharmaceutical Engineering, Faculty of Chemical and Process Engineering Technology, Universiti Malaysia Pahang Al-Sultan Abdullah, Gambang 26300, Malaysia.
| | - Samah Hamed Almurisi
- Department of Pharmaceutical Technology, School of Pharmacy, International Medical University, Kuala Lumpur 57000, Malaysia.
| | - Syed Mahmood
- Department of Pharmaceutical Technology, Faculty of Pharmacy, University of Malaya, 50603 Kuala Lumpur, Malaysia.
| | - Thiagarajan Madheswaran
- Department of Pharmaceutical Technology, School of Pharmacy, International Medical University, Kuala Lumpur 57000, Malaysia.
| | - Bappaditya Chatterjee
- Shobhaben Pratapbhai Patel School of Pharmacy and Technology Management, SVKM's NMIMS, V.L.Mehta Road, Mumbai 400055, India.
| | - Prasanthi Sri
- Department of Pharmaceutical Technology, School of Pharmacy, International Medical University, Kuala Lumpur 57000, Malaysia.
| | | | - Turki Al Hagbani
- Department of Pharmaceutics, College of Pharmacy, University of Ha'il, Ha'il 81442, Saudi Arabia.
| | - Fawaz Alheibshy
- Department of Pharmaceutics, College of Pharmacy, University of Ha'il, Ha'il 81442, Saudi Arabia; Department of Pharmaceutics, College of Pharmacy, Aden University, Aden 6075, Yemen.
| |
Collapse
|
7
|
Petkova V, Georgieva D, Dimitrov M, Nikolova I. Off-Label Prescribing in Pediatric Population-Literature Review for 2012-2022. Pharmaceutics 2023; 15:2652. [PMID: 38139994 PMCID: PMC10747118 DOI: 10.3390/pharmaceutics15122652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Revised: 11/05/2023] [Accepted: 11/17/2023] [Indexed: 12/24/2023] Open
Abstract
Off-label prescribing is widespread among pediatricians, and it is unlikely that this trend will soon be bound by a uniform legal framework. This is necessitated by the fact that there are four variables: the patient's health condition, the physician's experience and knowledge, the legislative measures (laws, directives, guidelines, and recommendations), and finally, the pharmaceutical industry. There is considerable concern worldwide about the use of off-label medicines in children. We may call it an enormous global problem that is much talked about and written about; however, we should not forget that the goal around which everyone should unite is the patient's life. For healthcare providers, the most important thing will always be the health and preservation of the patient's life, particularly when it comes to children with life-threatening conditions in neonatal and pediatric intensive care units (NICU and PICU). The study aimed to examine the prevalence of off-label drug use in pediatrics. Literature research was conducted, and we included studies from 2012 to 2022 that evaluated off-label drug prevalence in various pediatric patient populations.
Collapse
Affiliation(s)
- Valentina Petkova
- Department of Social Pharmacy, Faculty of Pharmacy, Medical University of Sofia, 1000 Sofia, Bulgaria
| | - Dilyana Georgieva
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Medical University of Sofia, 1000 Sofia, Bulgaria; (D.G.); (M.D.)
| | - Milen Dimitrov
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Medical University of Sofia, 1000 Sofia, Bulgaria; (D.G.); (M.D.)
| | - Irina Nikolova
- Department of Pharmacology, Pharmacotherapy and Toxicology, Faculty of Pharmacy, Medical University of Sofia, 1000 Sofia, Bulgaria;
| |
Collapse
|
8
|
Ning J, Zheng G, Cai Y, Hu Y, Liu Y, Lai E, Chen B, Liu Y, Liang Z, Fu J, Wei M. The Self-Assembly Soluplus Nanomicelles of Nobiletin in Aqueous Medium Based on Solid Dispersion and Their Increased Hepatoprotective Effect on APAP-Induced Acute Liver Injury. Int J Nanomedicine 2023; 18:5119-5140. [PMID: 37705866 PMCID: PMC10496926 DOI: 10.2147/ijn.s426703] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Accepted: 08/29/2023] [Indexed: 09/15/2023] Open
Abstract
Purpose APAP-induced liver injury (AILI) is a common cause of acute liver failure (ALF). Nobiletin (NOB) is a potential hepatoprotective agent for the treatment of APAP-induced liver injury. However, the poor solubility and low bioavailability of NOB hinders its application. In this study, a novel self-assembly nano-drug delivery system of nobiletin (solid dispersion of NOB, termed as NOB/SD) was developed based on solid dispersion technology to improve the bioavailability and hepatoprotective ability of NOB for APAP-induced liver injury therapy. Methods The optimized NOB/SD system was constructed using the amphiphilic copolymers of Soluplus and PVP/VA 64 via hot melt extrusion technology (HME). NOB/SD was characterized by solubility, physical interaction, drug release behavior, and stability. The bioavailability and hepatoprotective effects of NOB/SD were evaluated in vitro and in vivo. Results NOB/SD maintained NOB in matrix carriers in a stable amorphous state, and self-assembled NOB-loaded nanomicelles in water. Nanostructures based on solid dispersion technology exhibited enhanced solubility, improved release behavior, and promoted cellular uptake and anti-apoptosis in vitro. NOB/SD displayed significantly improved bioavailability in healthy Sprague Dawley (SD) rats in vivo. Furthermore, NOB/SD alleviated the APAP-induced liver injury by improving anti-oxidative stress with reactive oxygen species (ROS) scavenging and nuclear factor erythroid 2-related factor 2 (Nrf2) activation. Conclusion These results suggested that NOB/SD could be considered as a promising hepatoprotective nano-drug delivery system for attenuating APAP-induced acute liver injury with superior bioavailability and efficient hepatoprotection, which might provide an effective strategy for APAP-induced acute liver injury prevention and treatment.
Collapse
Affiliation(s)
- Jinrong Ning
- Key Laboratory of Molecular Target & Clinical Pharmacology and the State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences & The Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, 511436, People’s Republic of China
| | - Guodong Zheng
- Key Laboratory of Molecular Target & Clinical Pharmacology and the State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences & The Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, 511436, People’s Republic of China
| | - Yi Cai
- Key Laboratory of Molecular Target & Clinical Pharmacology and the State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences & The Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, 511436, People’s Republic of China
| | - Yunguang Hu
- Medical Department, Guangdong Yifang Pharmaceutical Co., Ltd, Foshan, Guangdong, 528200, People’s Republic of China
| | - Yiqi Liu
- Key Laboratory of Molecular Target & Clinical Pharmacology and the State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences & The Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, 511436, People’s Republic of China
| | - Enping Lai
- Key Laboratory of Molecular Target & Clinical Pharmacology and the State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences & The Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, 511436, People’s Republic of China
| | - Baizhong Chen
- Guangdong Xinbaotang Biological Technology Co., Ltd, Jiangmen, Guangdong, 529000, People’s Republic of China
| | - Yujie Liu
- Key Laboratory of Molecular Target & Clinical Pharmacology and the State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences & The Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, 511436, People’s Republic of China
| | - Ziqi Liang
- Key Laboratory of Molecular Target & Clinical Pharmacology and the State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences & The Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, 511436, People’s Republic of China
| | - Jijun Fu
- Key Laboratory of Molecular Target & Clinical Pharmacology and the State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences & The Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, 511436, People’s Republic of China
| | - Minyan Wei
- Key Laboratory of Molecular Target & Clinical Pharmacology and the State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences & The Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, 511436, People’s Republic of China
| |
Collapse
|
9
|
Budiman A, Handini AL, Muslimah MN, Nurani NV, Laelasari E, Kurniawansyah IS, Aulifa DL. Amorphous Solid Dispersion as Drug Delivery Vehicles in Cancer. Polymers (Basel) 2023; 15:3380. [PMID: 37631436 PMCID: PMC10457821 DOI: 10.3390/polym15163380] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 08/10/2023] [Accepted: 08/10/2023] [Indexed: 08/27/2023] Open
Abstract
Cancer treatment has improved over the past decades, but a major challenge lies in drug formulation, specifically for oral administration. Most anticancer drugs have poor water solubility which can affect their bioavailability. This causes suboptimal pharmacokinetic performance, resulting in limited efficacy and safety when administered orally. As a result, it is essential to develop a strategy to modify the solubility of anticancer drugs in oral formulations to improve their efficacy and safety. A promising approach that can be implemented is amorphous solid dispersion (ASD) which can enhance the aqueous solubility and bioavailability of poorly water-soluble drugs. The addition of a polymer can cause stability in the formulations and maintain a high supersaturation in bulk medium. Therefore, this study aimed to summarize and elucidate the mechanisms and impact of an amorphous solid dispersion system on cancer therapy. To gather relevant information, a comprehensive search was conducted using keywords such as "anticancer drug" and "amorphous solid dispersion" in the PubMed, Scopus, and Google Scholar databases. The review provides an overview and discussion of the issues related to the ASD system used to improve the bioavailability of anticancer drugs based on molecular pharmaceutics. A thorough understanding of anticancer drugs in this system at a molecular level is imperative for the rational design of the products.
Collapse
Affiliation(s)
- Arif Budiman
- Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy, Universitas Padjadjaran, Jl. Raya Bandung-Sumedang Km. 21, Bandung 45363, Indonesia; (A.L.H.); (M.N.M.); (N.V.N.); (E.L.); (I.S.K.)
| | - Annisa Luthfiyah Handini
- Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy, Universitas Padjadjaran, Jl. Raya Bandung-Sumedang Km. 21, Bandung 45363, Indonesia; (A.L.H.); (M.N.M.); (N.V.N.); (E.L.); (I.S.K.)
| | - Mutia Nur Muslimah
- Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy, Universitas Padjadjaran, Jl. Raya Bandung-Sumedang Km. 21, Bandung 45363, Indonesia; (A.L.H.); (M.N.M.); (N.V.N.); (E.L.); (I.S.K.)
| | - Neng Vera Nurani
- Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy, Universitas Padjadjaran, Jl. Raya Bandung-Sumedang Km. 21, Bandung 45363, Indonesia; (A.L.H.); (M.N.M.); (N.V.N.); (E.L.); (I.S.K.)
| | - Eli Laelasari
- Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy, Universitas Padjadjaran, Jl. Raya Bandung-Sumedang Km. 21, Bandung 45363, Indonesia; (A.L.H.); (M.N.M.); (N.V.N.); (E.L.); (I.S.K.)
| | - Insan Sunan Kurniawansyah
- Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy, Universitas Padjadjaran, Jl. Raya Bandung-Sumedang Km. 21, Bandung 45363, Indonesia; (A.L.H.); (M.N.M.); (N.V.N.); (E.L.); (I.S.K.)
| | - Diah Lia Aulifa
- Department of Pharmaceutical Analysis and Medicinal Chemistry, Faculty of Pharmacy, Universitas Padjadjaran, Jl. Raya Bandung-Sumedang Km. 21, Bandung 45363, Indonesia;
| |
Collapse
|
10
|
Yoo O, von Ungern-Sternberg BS, Lim LY. Paediatric Medicinal Formulation Development: Utilising Human Taste Panels and Incorporating Their Data into Machine Learning Training. Pharmaceutics 2023; 15:2112. [PMID: 37631326 PMCID: PMC10459634 DOI: 10.3390/pharmaceutics15082112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 08/04/2023] [Accepted: 08/07/2023] [Indexed: 08/27/2023] Open
Abstract
This review paper explores the role of human taste panels and artificial neural networks (ANNs) in taste-masking paediatric drug formulations. Given the ethical, practical, and regulatory challenges of employing children, young adults (18-40) can serve as suitable substitutes due to the similarity in their taste sensitivity. Taste panellists need not be experts in sensory evaluation so long as a reference product is used during evaluation; however, they should be screened for bitterness taste detection thresholds. For a more robust evaluation during the developmental phase, considerations of a scoring system and the calculation of an acceptance value may be beneficial in determining the likelihood of recommending a formulation for further development. On the technological front, artificial neural networks (ANNs) can be exploited in taste-masking optimisation of medicinal formulations as they can model complex relationships between variables and enable predictions not possible previously to optimise product profiles. Machine learning classifiers may therefore tackle the challenge of predicting the bitterness intensity of paediatric formulations. While advancements have been made, further work is needed to identify effective taste-masking techniques for specific drug molecules. Continuous refinement of machine learning algorithms, using human panellist acceptability scores, can aid in enhancing paediatric formulation development and overcoming taste-masking challenges.
Collapse
Affiliation(s)
- Okhee Yoo
- Pharmacy, School of Allied Health, University of Western Australia, Perth, WA 6009, Australia;
| | - Britta S. von Ungern-Sternberg
- Perioperative Medicine Team, Perioperative Care Program, Telethon Kids Institute, Perth, WA 6009, Australia;
- Department of Anaesthesia and Pain Medicine, Perth Children’s Hospital, Perth, WA 6009, Australia
- Division of Emergency Medicine, Anaesthesia and Pain Medicine, The University of Western Australia, Perth, WA 6009, Australia
| | - Lee Yong Lim
- Pharmacy, School of Allied Health, University of Western Australia, Perth, WA 6009, Australia;
| |
Collapse
|
11
|
Huynh DTM, Hai HT, Hau NM, Lan HK, Vinh TP, Tran VD, Pham DT. Preparations and characterizations of effervescent granules containing azithromycin solid dispersion for children and elder: Solubility enhancement, taste-masking, and digestive acidic protection. Heliyon 2023; 9:e16592. [PMID: 37292293 PMCID: PMC10245243 DOI: 10.1016/j.heliyon.2023.e16592] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 05/17/2023] [Accepted: 05/22/2023] [Indexed: 06/10/2023] Open
Abstract
Azithromycin, a macrolide antibiotics, is one of the frequently used drugs in the children and elder. However, due to these population difficulty in swallowing and inefficient absorption, and azithromycin inherent poor solubility, bitter taste, and instability in the stomach acidic condition, it is a challenge to reach high oral bioavailability of this drug. To overcome these issues, we developed and characterized the effervescent granules containing azithromycin solid dispersion. Firstly, the solid dispersion was prepared, employing both wet grinding and solvent evaporation methods, with different types/amounts of polymers. The optimal solid dispersion with β-cyclodextrin at a drug:polymer ratio of 1:2 (w/w), prepared by the solvent evaporation method, significantly enhanced the azithromycin solubility 4-fold compared to the free drug, improved its bitterness from "bitter" to "normal", possessed intermolecular bonding between the drug and polymer, and transformed the azithromycin molecules from crystalline to amorphous state. Secondly, the effervescent granules incorporating the solid dispersion were formulated with varied excipients of sweeteners, gas-generators, pH modulators, and glidants/lubricants. The optimal formula satisfied all the properties stated in the Vietnamese Pharmacopoeia. In summary, the final effervescent granules product could be further investigated in in-vivo and in clinical settings to become a potential azithromycin delivery system with high bioavailability for the children and elder.
Collapse
Affiliation(s)
- Duyen Thi My Huynh
- Department of Pharmaceutical and Pharmaceutical Technology, Faculty of Pharmacy, Can Tho University of Medicine and Pharmacy, Can Tho, 900000, Viet Nam
| | - Huynh Thien Hai
- Faculty of Pharmacy, Can Tho University of Medicine and Pharmacy, Can Tho, 900000, Viet Nam
| | - Nguyen Minh Hau
- Faculty of Pharmacy, Can Tho University of Medicine and Pharmacy, Can Tho, 900000, Viet Nam
| | - Huynh Kim Lan
- Faculty of Pharmacy, Can Tho University of Medicine and Pharmacy, Can Tho, 900000, Viet Nam
| | - Truong Phu Vinh
- Faculty of Pharmacy, Can Tho University of Medicine and Pharmacy, Can Tho, 900000, Viet Nam
| | - Van De Tran
- Department of Health Organization and Management, Can Tho University of Medicine and Pharmacy, Can Tho, 900000, Viet Nam
| | - Duy Toan Pham
- Department of Chemistry, College of Natural Sciences, Can Tho University, Can Tho, 900000, Viet Nam
| |
Collapse
|
12
|
Kikionis S, Papakyriakopoulou P, Mavrogiorgis P, Vasileva EA, Mishchenko NP, Fedoreyev SA, Valsami G, Ioannou E, Roussis V. Development of Novel Pharmaceutical Forms of the Marine Bioactive Pigment Echinochrome A Enabling Alternative Routes of Administration. Mar Drugs 2023; 21:md21040250. [PMID: 37103389 PMCID: PMC10147083 DOI: 10.3390/md21040250] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2023] [Revised: 04/13/2023] [Accepted: 04/14/2023] [Indexed: 04/28/2023] Open
Abstract
Echinochrome A (EchA), a marine bioactive pigment isolated from various sea urchin species, is the active agent of the clinically approved drug Histochrome®. EchA is currently only available in the form of an isotonic solution of its di- and tri-sodium salts due to its poor water solubility and sensitivity to oxidation. Electrospun polymeric nanofibers have lately emerged as promising drug carriers capable of improving the dissolution and bioavailability of drugs with limited water solubility. In the current study, EchA isolated from sea urchins of the genus Diadema collected at the island of Kastellorizo was incorporated in electrospun micro-/nanofibrous matrices composed of polycaprolactone and polyvinylpyrrolidone in various combinations. The physicochemical properties of the micro-/nanofibers were characterized using SEM, FT-IR, TGA and DSC analyses. The fabricated matrices exhibited variable dissolution/release profiles of EchA, as evidenced in in vitro experiments using gastrointestinal-like fluids (pH 1.2, 4.5 and 6.8). Ex vivo permeability studies using the EchA-loaded micro-/nanofibrous matrices showed an increased permeation of EchA across the duodenum barrier. The results of our study clearly show that electrospun polymeric micro-/nanofibers represent promising carriers for the development of new pharmaceutical formulations with controlled release, as well as increased stability and solubility of EchA, suitable for oral administration, while offering the potential for targeted delivery.
Collapse
Affiliation(s)
- Stefanos Kikionis
- Section of Pharmacognosy and Chemistry of Natural Products, Department of Pharmacy, National and Kapodistrian University of Athens, Panepistimiopolis Zografou, 15771 Athens, Greece
| | - Paraskevi Papakyriakopoulou
- Section of Pharmaceutical Technology, Department of Pharmacy, National and Kapodistrian University of Athens, Panepistimiopolis Zografou, 15784 Athens, Greece
| | - Panagiotis Mavrogiorgis
- Section of Pharmacognosy and Chemistry of Natural Products, Department of Pharmacy, National and Kapodistrian University of Athens, Panepistimiopolis Zografou, 15771 Athens, Greece
| | - Elena A Vasileva
- Laboratory of the Chemistry of Natural Quinonoid Compounds of the G. B. Elyakov Pacific Institute of Bioorganic Chemistry, Far-Eastern Branch of the Russian Academy of Science, Prospect 100 let Vladivostoku, 159, 690022 Vladivostok, Russia
| | - Natalia P Mishchenko
- Laboratory of the Chemistry of Natural Quinonoid Compounds of the G. B. Elyakov Pacific Institute of Bioorganic Chemistry, Far-Eastern Branch of the Russian Academy of Science, Prospect 100 let Vladivostoku, 159, 690022 Vladivostok, Russia
| | - Sergey A Fedoreyev
- Laboratory of the Chemistry of Natural Quinonoid Compounds of the G. B. Elyakov Pacific Institute of Bioorganic Chemistry, Far-Eastern Branch of the Russian Academy of Science, Prospect 100 let Vladivostoku, 159, 690022 Vladivostok, Russia
| | - Georgia Valsami
- Section of Pharmaceutical Technology, Department of Pharmacy, National and Kapodistrian University of Athens, Panepistimiopolis Zografou, 15784 Athens, Greece
| | - Efstathia Ioannou
- Section of Pharmacognosy and Chemistry of Natural Products, Department of Pharmacy, National and Kapodistrian University of Athens, Panepistimiopolis Zografou, 15771 Athens, Greece
| | - Vassilios Roussis
- Section of Pharmacognosy and Chemistry of Natural Products, Department of Pharmacy, National and Kapodistrian University of Athens, Panepistimiopolis Zografou, 15771 Athens, Greece
| |
Collapse
|
13
|
Stegarescu A, Lung I, Ciorîță A, Kacso I, Opriș O, Soran ML, Soran A. The Antibacterial Properties of Nanocomposites Based on Carbon Nanotubes and Metal Oxides Functionalized with Azithromycin and Ciprofloxacin. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:4115. [PMID: 36500738 PMCID: PMC9735462 DOI: 10.3390/nano12234115] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 11/17/2022] [Accepted: 11/21/2022] [Indexed: 06/17/2023]
Abstract
Different microorganisms are present in nature, some of which are assumed to be hazardous to the human body. It is crucial to control their continuing growth to improve human life. Nanomaterial surface functionalization represents a current topic in continuous evolution that supports the development of new materials with multiple applications in biology, medicine, and the environment. This study focused on the antibacterial activity of different nanocomposites based on functionalized multi-walled carbon nanotubes against four common bacterial strains. Two metal oxides (CuO and NiO) and two antibiotics (azithromycin and ciprofloxacin) were selected for the present study to obtain the following nanocomposites: MWCNT-COOH/Antibiotic, MWCNT-COOH/Fe3O4/Antibiotic, and MWCNT-COOH/Fe3O4/MO/Antibiotic. The present study included two Gram-positive bacteria (Staphylococcus aureus and Enterococcus faecalis) and two Gram-negative bacteria (Escherichia coli and Pseudomonas aeruginosa). Ciprofloxacin (Cip) functionalized materials (MWCNT-COOH/Fe3O4/Cip) were most efficient against all tested bacterial strains; therefore, we conclude that Cu and Ni reduce the effects of Cip. The obtained results indicate that the nanocomposites functionalized with Cip are more effective against selected bacteria strains compared to azithromycin (Azi) functionalized nanocomposites. The current work determined the antibacterial activities of different nanocomposites and gave fresh insights into their manufacture for future research regarding environmental depollution.
Collapse
Affiliation(s)
- Adina Stegarescu
- National Institute for Research and Development of Isotopic and Molecular Technologies, 67-103 Donat, 400293 Cluj-Napoca, Romania
| | - Ildiko Lung
- National Institute for Research and Development of Isotopic and Molecular Technologies, 67-103 Donat, 400293 Cluj-Napoca, Romania
| | - Alexandra Ciorîță
- National Institute for Research and Development of Isotopic and Molecular Technologies, 67-103 Donat, 400293 Cluj-Napoca, Romania
- Faculty of Biology and Geology, Babeș-Bolyai University, 5-7 Clinicilor, 400006 Cluj-Napoca, Romania
| | - Irina Kacso
- National Institute for Research and Development of Isotopic and Molecular Technologies, 67-103 Donat, 400293 Cluj-Napoca, Romania
| | - Ocsana Opriș
- National Institute for Research and Development of Isotopic and Molecular Technologies, 67-103 Donat, 400293 Cluj-Napoca, Romania
| | - Maria-Loredana Soran
- National Institute for Research and Development of Isotopic and Molecular Technologies, 67-103 Donat, 400293 Cluj-Napoca, Romania
| | - Albert Soran
- Department of Chemistry, Supramolecular Organic and Organometallic Chemistry Centre (SOOMCC), Faculty of Chemistry and Chemical Engineering, Babeş-Bolyai University, 11 Arany Janos, 400028 Cluj-Napoca, Romania
| |
Collapse
|
14
|
Nambiar AG, Singh M, Mali AR, Serrano DR, Kumar R, Healy AM, Agrawal AK, Kumar D. Continuous Manufacturing and Molecular Modeling of Pharmaceutical Amorphous Solid Dispersions. AAPS PharmSciTech 2022; 23:249. [PMID: 36056225 DOI: 10.1208/s12249-022-02408-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2022] [Accepted: 08/24/2022] [Indexed: 11/30/2022] Open
Abstract
Amorphous solid dispersions enhance solubility and oral bioavailability of poorly water-soluble drugs. The escalating number of drugs with poor aqueous solubility, poor dissolution, and poor oral bioavailability is an unresolved problem that requires adequate interventions. This review article highlights recent solubility and bioavailability enhancement advances using amorphous solid dispersions (ASDs). The review also highlights the mechanism of enhanced dissolution and the challenges faced by ASD-based products, such as stability and scale-up. The role of process analytical technology (PAT) supporting continuous manufacturing is highlighted. Accurately predicting interactions between the drug and polymeric carrier requires long experimental screening methods, and this is a space where computational tools hold significant potential. Recent advancements in data science, computational tools, and easy access to high-end computation power are set to accelerate ASD-based research. Hence, particular emphasis has been given to molecular modeling techniques that can address some of the unsolved questions related to ASDs. With the advancement in PAT tools and artificial intelligence, there is an increasing interest in the continuous manufacturing of pharmaceuticals. ASDs are a suitable option for continuous manufacturing, as production of a drug product from an ASD by direct compression is a reality, where the addition of multiple excipients is easy to avoid. Significant attention is necessary for ongoing clinical studies based on ASDs, which is paving the way for the approval of many new ASDs and their introduction into the market.
Collapse
Affiliation(s)
- Amritha G Nambiar
- Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology (BHU), Varanasi, 221005, India
| | - Maan Singh
- Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology (BHU), Varanasi, 221005, India
| | - Abhishek R Mali
- Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology (BHU), Varanasi, 221005, India
| | | | - Rajnish Kumar
- Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology (BHU), Varanasi, 221005, India
| | - Anne Marie Healy
- School of Pharmacy and Pharmaceutical Sciences, Trinity College Dublin, Dublin 2, Ireland
| | - Ashish Kumar Agrawal
- Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology (BHU), Varanasi, 221005, India
| | - Dinesh Kumar
- Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology (BHU), Varanasi, 221005, India.
| |
Collapse
|
15
|
Kolev I, Ivanova N, Topouzova-Hristova T, Dimova T, Koseva P, Vasileva I, Ivanova S, Apostolov A, Alexieva G, Tzonev A, Strashilov V. Ammonio Methacrylate Copolymer (Type B)-Diltiazem Interactions in Solid Dispersions and Microsponge Drug-Delivery Systems. Polymers (Basel) 2022; 14:polym14102125. [PMID: 35632008 PMCID: PMC9144411 DOI: 10.3390/polym14102125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Revised: 04/23/2022] [Accepted: 05/20/2022] [Indexed: 12/10/2022] Open
Abstract
This paper presents a complex analytical study on the distribution, solubility, amorphization, and compatibility of diltiazem within the composition of Eudragit RS 100-based particles of microspongeous type. For this purpose, a methodology combining attenuated total reflectance Fourier transform infrared (ATR-FTIR) absorption spectroscopy, differential scanning calorimetry (DSC), scanning electron microscopy with energy-dispersive X-ray microanalysis (SEM-EDX), and in vitro dissolution study is proposed. The correct interpretation of the FTIR and drug-dissolution results was guaranteed by the implementation of two contrasting reference models: physical drug–polymer mixtures and casting-obtained, molecularly dispersed drug–polymer composites (solid dispersions). The spectral behavior of the drug–polymer composites in the carbonyl frequency (νCO) region was used as a quality marker for the degree of their interaction/mutual solubility. A spectral-pattern similarity between the microsponge particles and the solid dispersions indicated the molecular-type dispersion of the former. The comparative drug-desorption study and the qualitative observations over the DSC and SEM-EDX results confirmed the successful synthesis of a homogeneous coamorphous microsponge-type formulation with excellent drug-loading capacity and “controlled” dissolution profile. Among them, the drug-delivery particles with 25% diltiazem content (M-25) were recognized as the most promising, with the highest population of drug molecules in the polymer bulk and the most suitable desorption profile. Furthermore, an economical and effective analytical algorithm was developed for the comprehensive physicochemical characterization of complex delivery systems of this kind.
Collapse
Affiliation(s)
- Iliyan Kolev
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Medical University “Prof. Dr. Paraskev Stoyanov”–Varna, 84 “Tzar Osvoboditel” Blvd., 9000 Varna, Bulgaria; (T.D.); (P.K.); (I.V.); (S.I.)
- Correspondence: (I.K.); (N.I.)
| | - Nadezhda Ivanova
- Department of Pharmaceutical Technologies, Faculty of Pharmacy, Medical University “Prof. Dr. Paraskev Stoyanov”–Varna, 84 “Tzar Osvoboditel” Blvd., 9000 Varna, Bulgaria
- Correspondence: (I.K.); (N.I.)
| | - Tanya Topouzova-Hristova
- Department of Cytology, Histology and Embryology, Faculty of Biology, Sofia University “St. Kl. Ohridski”, 8 Dragan Tzankov Str., 1164 Sofia, Bulgaria;
| | - Tanya Dimova
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Medical University “Prof. Dr. Paraskev Stoyanov”–Varna, 84 “Tzar Osvoboditel” Blvd., 9000 Varna, Bulgaria; (T.D.); (P.K.); (I.V.); (S.I.)
| | - Pavlina Koseva
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Medical University “Prof. Dr. Paraskev Stoyanov”–Varna, 84 “Tzar Osvoboditel” Blvd., 9000 Varna, Bulgaria; (T.D.); (P.K.); (I.V.); (S.I.)
| | - Ivalina Vasileva
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Medical University “Prof. Dr. Paraskev Stoyanov”–Varna, 84 “Tzar Osvoboditel” Blvd., 9000 Varna, Bulgaria; (T.D.); (P.K.); (I.V.); (S.I.)
| | - Sonya Ivanova
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Medical University “Prof. Dr. Paraskev Stoyanov”–Varna, 84 “Tzar Osvoboditel” Blvd., 9000 Varna, Bulgaria; (T.D.); (P.K.); (I.V.); (S.I.)
| | - Anton Apostolov
- Laboratory on Structure and Properties of Polymers, Faculty of Chemistry and Pharmacy, Sofia University “St. Kl. Ohridski”, 1 J. Bourchier Blvd., 1164 Sofia, Bulgaria;
| | - Gergana Alexieva
- Department of General Physics, Faculty of Physics, Sofia University “St. Kl. Ohridski”, 5 J. Bourchier Blvd., 1164 Sofia, Bulgaria;
| | - Atanas Tzonev
- Department of Condensed Matter Physics and Microelectronics, Faculty of Physics, Sofia University “St. Kl. Ohridski”, 5 J. Bourchier Blvd., 1164 Sofia, Bulgaria; (A.T.); (V.S.)
| | - Vesselin Strashilov
- Department of Condensed Matter Physics and Microelectronics, Faculty of Physics, Sofia University “St. Kl. Ohridski”, 5 J. Bourchier Blvd., 1164 Sofia, Bulgaria; (A.T.); (V.S.)
| |
Collapse
|