1
|
Essam D, Ahmed AM, Abdel-Khaliek AA, Shaban M, Rabia M. One pot synthesis of poly m-toluidine incorporated silver and silver oxide nanocomposite as a promising electrode for supercapacitor devices. Sci Rep 2025; 15:2698. [PMID: 39837976 PMCID: PMC11750978 DOI: 10.1038/s41598-024-84848-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 12/10/2023] [Accepted: 12/27/2024] [Indexed: 01/23/2025] Open
Abstract
The design and fabrication of novel electrodes with strong electrochemical responses are crucial in advanced supercapacitor technology. In this study, a poly(m-toluidine)/silver-silver oxide (PMT/Ag-Ag2O) nanocomposite was prepared using the photopolymerization method. Various characterization techniques were employed to analyze the prepared nanomaterials. The resulting structure of Ag-Ag2O minimizes ion diffusion distances, increases active sites, and accelerates redox reactions. The electrochemical response of PMT and PMT/Ag-Ag2O electrodes was evaluated in three different electrolyte solutions (Na2SO4, H2SO4, and HCl). The specific capacitance of PMT/Ag-Ag2O nanocomposite was found to be higher than that of PMT alone. Among the tested electrolytes, HCl exhibited the highest specific capacitance of 443 F g-1 at a gravimetric current density of 0.4 A g-1, surpassing H2SO4 (104 F g-1) and Na2SO4 (32 F g-1). Also, the PMT/Ag-Ag2O nanocomposite has demonstrated good cycling stability. It exhibited a high specific power density of 156 W Kg-1 and a specific energy density of 1.8 Wh Kg-1. These results highlight the potential of the prepared PMT/Ag-Ag2O nanocomposite as a nanoelectrode material for high-performance supercapacitors.
Collapse
Affiliation(s)
- Doaa Essam
- Nanomaterials Science Research Laboratory, Chemistry Department, Faculty of Science, Beni-Suef University, Beni-Suef, Egypt.
- Physical Chemistry Laboratory, Chemistry Department, Faculty of Science, Beni-Suef University, Beni-Suef, 62514, Egypt.
- Nanophotonics and Applications Lab, Physics Department, Faculty of Science, Beni-Suef University, Beni-Suef, 62514, Egypt.
| | - Ashour M Ahmed
- Physics Department, College of Science, Imam Mohammad Ibn Saud Islamic University (IMSIU), 11623, Riyadh, Saudi Arabia
- Nanophotonics and Applications Lab, Physics Department, Faculty of Science, Beni-Suef University, Beni-Suef, 62514, Egypt
| | - Ahmed A Abdel-Khaliek
- Physical Chemistry Laboratory, Chemistry Department, Faculty of Science, Beni-Suef University, Beni-Suef, 62514, Egypt
| | - Mohamed Shaban
- Physics Department, Faculty of Science, Islamic University of Madinah, P. O. Box: 170, 42351, Al Madinah Al Monawara, Saudi Arabia
| | - Mohamed Rabia
- Nanomaterials Science Research Laboratory, Chemistry Department, Faculty of Science, Beni-Suef University, Beni-Suef, Egypt
| |
Collapse
|
2
|
Elsayed AM, Ahmed AM, Tammam MT, Eissa MF, Aly AH. Sensing of heavy metal Pb 2+ ions in water utilizing the photonic structure of highly controlled hexagonal TiON/TiO 2 nanotubes. Sci Rep 2024; 14:1015. [PMID: 38200033 PMCID: PMC10781679 DOI: 10.1038/s41598-023-50428-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 09/26/2023] [Accepted: 12/19/2023] [Indexed: 01/12/2024] Open
Abstract
The detection of heavy metals in water, especially Pb2+ ions, is important due to their severe hazardous effects. To address this issue, a highly controlled hexagonal TiON/TiO2 heterostructure has been synthesized in this study. The fabrication process involved the utilization of atomic layer deposition and direct current sputtering techniques to deposit TiO2 and TiON layers onto a porous Al2O3 membrane used as a template. The resulting heterostructure exhibits a well-ordered hollow tube structure with a diameter of 345 nm and a length of 1.2 µm. The electrochemical sensing of Pb2+ ions in water is carried out using a cyclic voltammetry technique under both light and dark conditions. The concentration range for the Pb2+ ions ranges from 10-5 to 10-1 M. The sensitivity values obtained for the sensor are 1.0 × 10-6 in dark conditions and 1.0 × 10-4 in light conditions. The remarkable enhancement in sensitivity under light illumination can be attributed to the increased activity and electron transfer facilitated by the presence of light. The sensor demonstrates excellent reproducibility, highlighting its reliability and consistency. These findings suggest that the proposed sensor holds great promise for the detection of Pb2+ ions in water, thereby facilitating environmental monitoring, water quality assessment, and safety regulation across various industries. Furthermore, the eco-friendly and straightforward preparation techniques employed in its fabrication provide a significant advantage for practical and scalable implementation.
Collapse
Affiliation(s)
- Asmaa M Elsayed
- Nanophotonics and Applications Lab, Physics Department, Faculty of Science, Beni-Suef University, Beni-Suef, 62514, Egypt
- TH-PPM Group, Physics Department, Faculty of Science, Beni-Suef University, Beni Suef, 62514, Egypt
- Physics Department, Faculty of Science, Beni-Suef University, Beni Suef, 62514, Egypt
| | - Ashour M Ahmed
- Physics Department, Faculty of Science, Beni-Suef University, Beni Suef, 62514, Egypt
- Physics Department, College of Science, Imam Mohammad Ibn Saud Islamic University (IMSIU), 11623, Riyadh, Saudi Arabia
| | - M T Tammam
- Physics Department, Faculty of Science, Beni-Suef University, Beni Suef, 62514, Egypt
| | - M F Eissa
- Physics Department, Faculty of Science, Beni-Suef University, Beni Suef, 62514, Egypt
| | - Arafa H Aly
- TH-PPM Group, Physics Department, Faculty of Science, Beni-Suef University, Beni Suef, 62514, Egypt.
| |
Collapse
|
3
|
Bodkhe RG, Shrivastava RL, Soni VK, Chadge RB. A review of renewable hydrogen generation and proton exchange membrane fuel cell technology for sustainable energy development. INT J ELECTROCHEM SC 2023. [DOI: 10.1016/j.ijoes.2023.100108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 04/03/2023]
|
4
|
Alruqi M, Rabia M, Elsayed AM, Hanafi HA, Shaban M, Abdel Hamid MM. Development of polypyrrole/Ni(
OH
)
2
‐NiO
core‐shell nanocomposite as an optoelectronic device. J Appl Polym Sci 2023. [DOI: 10.1002/app.53833] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 03/11/2023]
Affiliation(s)
- Mansoor Alruqi
- Department of Mechanical Engineering College of Engineering, Shaqra University Al Riyadh Saudi Arabia
| | - Mohamed Rabia
- Nanophotonics and Applications Lab, Physics Department, Faculty of Science Beni‐Suef University Beni‐Suef Egypt
- Nanomaterials Science Research Laboratory, Chemistry Department, Faculty of Science Beni‐Suef University Beni‐Suef Egypt
| | - Asmaa M. Elsayed
- Nanophotonics and Applications Lab, Physics Department, Faculty of Science Beni‐Suef University Beni‐Suef Egypt
- TH‐PPM Group, Physics Department, Faculty of Science Beni‐Suef University Beni‐Suef Egypt
| | - Hassan A. Hanafi
- Chemistry Department College of Science and Humanities Al‐Quwayiyah, Shaqra University Saudi Arabia
| | - Mohamed Shaban
- Nanophotonics and Applications Lab, Physics Department, Faculty of Science Beni‐Suef University Beni‐Suef Egypt
- Physics Department, Faculty of Science Islamic University of Madinah Madinah Saudi Arabia
| | - Mostafa M. Abdel Hamid
- Charged Particles Lab., Radiation Physics Department National Center for Radiation Research and Technology, Egyptian Atomic Energy Authority (AEA) Cairo Egypt
| |
Collapse
|
5
|
Elsayed AM, Alkallas FH, Ben Gouider Trabelsi A, AlFaify S, Shkir M, Alrebdi TA, Almugren KS, Kusmatsev FV, Rabia M. Photodetection Enhancement via Graphene Oxide Deposition on Poly 3-Methyl Aniline. MICROMACHINES 2023; 14:606. [PMID: 36985012 PMCID: PMC10056141 DOI: 10.3390/mi14030606] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Academic Contribution Register] [Received: 12/26/2022] [Revised: 02/18/2023] [Accepted: 02/23/2023] [Indexed: 06/18/2023]
Abstract
A graphene oxide (GO)/poly 3-methyl aniline (P3MA) photodetector has been developed for light detection in a broad optical region: UV, Vis, and IR. The 3-methyl aniline was initially synthesized via radical polymerization using an acid medium, i.e., K2S2O8 oxidant. Consequently, the GO/P3MA composite was obtained through the adsorption of GO into the surface of P3MA. The chemical structure and optical properties of the prepared materials have been illustrated via XRD, FTIR, SEM, and TEM analysis. The absorbance measurements demonstrate good optical properties in the UV, Vis, and near-IR regions, although a decrease in the bandgap from 2.4 to 1.6 eV after the composite formation was located. The current density (Jph) varies between 0.29 and 0.68 mA·cm-2 (at 2.0 V) under dark and light, respectively. The photodetector has been tested using on/off chopped light at a low potential, in which the produced Jph values decrease from 0.14 to 0.04 µA·cm-2, respectively. The GO/P3MA photodetector exhibits excellent R (and D) values of 4 and 2.7 mA·W-1 (0.90 × 109 and 0.60 × 109 Jones) in the UV (340 nm) and IR (730 nm) regions, respectively. The R and D values obtained here make the prepared photodetector a promising candidate for future light detection instruments.
Collapse
Affiliation(s)
- Asmaa M. Elsayed
- Nanophotonics and Applications Lab, Physics Department, Faculty of Science, Beni-Suef University, Beni-Suef 62514, Egypt
- TH-PPM Group, Physics Department, Faculty of Science, Beni-Suef University, Beni-Suef 62514, Egypt
| | - Fatemah H. Alkallas
- Department of Physics, College of Science, Princess Nourah bint Abdulrahman University, P.O. Box 84428, Riyadh 11671, Saudi Arabia
| | - Amira Ben Gouider Trabelsi
- Department of Physics, College of Science, Princess Nourah bint Abdulrahman University, P.O. Box 84428, Riyadh 11671, Saudi Arabia
| | - Salem AlFaify
- Advanced Functional Materials & Optoelectronic Laboratory (AFMOL), Department of Physics, Faculty of Science, King Khalid University, Abha 61413, Saudi Arabia
| | - Mohd Shkir
- Advanced Functional Materials & Optoelectronic Laboratory (AFMOL), Department of Physics, Faculty of Science, King Khalid University, Abha 61413, Saudi Arabia
- Department of Chemistry and University Centre for Research & Development, Chandigarh University, Mohali 140413, India
| | - Tahani A. Alrebdi
- Department of Physics, College of Science, Princess Nourah bint Abdulrahman University, P.O. Box 84428, Riyadh 11671, Saudi Arabia
| | - Kholoud S. Almugren
- Department of Physics, College of Science, Princess Nourah bint Abdulrahman University, P.O. Box 84428, Riyadh 11671, Saudi Arabia
| | - Feodor V. Kusmatsev
- Department of Physics, Khalifa University of Science and Technology, Abu Dhabi 127788, United Arab Emirates
| | - Mohamed Rabia
- Nanophotonics and Applications Lab, Physics Department, Faculty of Science, Beni-Suef University, Beni-Suef 62514, Egypt
- Nanomaterials Science Research Laboratory, Chemistry Department, Faculty of Science, Beni-Suef University, Beni-Suef 62514, Egypt
| |
Collapse
|
6
|
ATO/Polyaniline/PbS Nanocomposite as Highly Efficient Photoelectrode for Hydrogen Production from Wastewater with Theoretical Study for the Water Splitting. ADSORPT SCI TECHNOL 2022. [DOI: 10.1155/2022/5628032] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 11/17/2022] Open
Abstract
Polyaniline-assisted deposition of PbS is carried out on antimony tin oxide (ATO) glass for ATO/PANI/PbS composite formation. The deposition of PbS was carried out inside and outside the polymer chains using the ionic adsorption deposition process. Various analyses were conducted to confirm the chemical structure and morphological, optical, and electrical properties of the resulting composite. TEM and SEM analyses demonstrated the spherical shape of PbS particles inside and outside the PANI network with more dark or white color, respectively. Moreover, the ImageJ program confirmed the composite formation. The XRD characterization showed the shifts in the PANI peaks after the composite formation with the appearance of a new additional peak related to PbS nanoparticles. The optical analyses were massively enhanced after the composite formation with more broadening in the Vis region at 630 nm, in which there was more enhancement in the bandgap that reached 1.5 eV. The electrode application in the H2 generation process was carried out from wastewater (sewage water, third treatment) without any additional sacrificing agent. The electrode responded well to light, where the current density (
) changed from 10-6 to 0.13 mA.cm-2 under dark and light, respectively. The electrode had high reproducibility and stability. The numbers of generated H2 moles were 0.1 mmol/cm2.h. The produced
and
were 7.3 kJ/mol and 273.4 J/mol.K, respectively. Finally, the mechanism explains the H2 generation reaction using three-electrode cell.
Collapse
|
7
|
Poly-3-Methyl Aniline-Assisted Spherical PbS Quantum Dots through the Ionic Adsorption Deposition Method as a Novel and Highly Efficient Photodetector in UV, Vis, and NIR Regions. ADSORPT SCI TECHNOL 2022. [DOI: 10.1155/2022/7693472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 11/18/2022] Open
Abstract
This study describes the preparation and characterization of glass/poly-3-methyl aniline (P3MA)/PbS quantum dot (QD) optoelectronic photodetector to detect and sense the light in broad spectral regions of UV, Vis, and NIR. This work is carried out to solve the drawbacks of other studs that prepare detectors in just one or two optical regions. Previous studies have used high-priced techniques. The deposition of P3MA on the glass surface was carried out by in situ oxidation process. Then, this polymer film was used to assist the deposition of PbS-QD particles through the ionic adsorption deposition method. The latter was performed using four different concentrations of Pb(NO3)2 solution (0.01, 0.03, 0.05, and 0.07 M) to form four P3MA/PbS composites: I, II, III, and IV, respectively. The chemical structure, morphologies, and electrical and optical properties of these composites were determined using different analytical tools. The SEM confirmed the formation of spherical QD particles of PbS on the P3MA surface. The TEM analysis showed that the composite has an average size of 5 nm, with the interatomic distances of 0.4 nm. Furthermore, the optical band gap values were 1.53, 1.52, 1.50, and 1.51 eV, respectively. The optoelectronic device could detect and sense light from 390 to 636 nm under various optical wavelengths. The produced current density (
) values decreased from 0.029 mA.cm-2 at 390 nm to 0.022 mA.cm-2 at 500 nm and then increased until 0.024 mA.cm-2 at 636 nm. The light sensing was determined through the photoresponsivity (
) and detectivity (
) parameters, in which the photodetector has
and
values of 0.29 mA.cm-2 and
Jones, respectively. Finally, a simple mechanism was proposed to explain the light sensing through the prepared optoelectronic device. Soon, our team works on the industrial applications of this optoelectronic device in the industry field related to the great optoelectronic device technical properties and its low cost and easy preparation.
Collapse
|
8
|
Fabrication and Characterization of Nanostructured Rock Wool as a Novel Material for Efficient Water-Splitting Application. NANOMATERIALS 2022; 12:nano12132169. [PMID: 35808005 PMCID: PMC9267974 DOI: 10.3390/nano12132169] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Academic Contribution Register] [Received: 05/17/2022] [Revised: 05/31/2022] [Accepted: 06/02/2022] [Indexed: 11/17/2022]
Abstract
Rock wool (RW) nanostructures of various sizes and morphologies were prepared using a combination of ball-mill and hydrothermal techniques, followed by an annealing process. Different tools were used to explore the morphologies, structures, chemical compositions and optical characteristics of the samples. The effect of initial particle size on the characteristics and photoelectrochemical performance of RW samples generated hydrothermally was investigated. As the starting particle size of ball-milled natural RW rises, the crystallite size of hydrothermally formed samples drops from 70.1 to 31.7 nm. Starting with larger ball-milled particle sizes, the nanoparticles consolidate and seamlessly combine to form a continuous surface with scattered spherical nanopores. Water splitting was used to generate photoelectrochemical hydrogen using the samples as photocatalysts. The number of hydrogen moles and conversion efficiencies were determined using amperometry and voltammetry experiments. When the monochromatic wavelength of light was increased from 307 to 460 nm for the manufactured RW>0.3 photocatalyst, the photocurrent density values decreased from 0.25 to 0.20 mA/mg. At 307 nm and +1 V, the value of the incoming photon-to-current efficiency was ~9.77%. Due to the stimulation of the H+ ion rate under the temperature impact, the Jph value increased by a factor of 5 when the temperature rose from 40 to 75 °C. As a result of this research, for the first time, a low-cost photoelectrochemical catalytic material is highlighted for effective hydrogen production from water splitting.
Collapse
|