1
|
Lu G, Yu C, Cheng J, Xu J, Zhang F. Preparation and Properties of Rosin-based Anthraquinone Fluorescent Waterborne Polyurethane. J Fluoresc 2024:10.1007/s10895-024-03900-9. [PMID: 39153169 DOI: 10.1007/s10895-024-03900-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Accepted: 08/02/2024] [Indexed: 08/19/2024]
Abstract
Fluorescent polyurethane has been widely used as fluorescent probes and switches due to its diverse structure and properties, but most of them are solvent-based and synthesized from petroleum-based products. A new type of rosin-based anthraquinone fluorescent waterborne polyurethane (WPU-DAAQ) with good and stable fluorescence properties was synthesized by reacting rosin modified ester (RAG) as a diol and 2, 6-diaminoanthraquinone (DAAQ) as a fluorescent agent with diisocyanate. The structure of WPU-DAAQ was characterized by Fourier transform infrared spectroscopy, UV-vis absorption spectroscopy, and hydrogen magnetic resonance spectroscopy. The fluorescence properties, water resistance, and solvent resistance of WPU-DAAQ were tested. The results showed that DAAQ was successfully grafted onto the polyurethane molecular chain. The fluorescence intensity of WPU-DAAQ increases and then decreases with increasing excitation wavelengths, and increases with the increase of solvent ether content, and is significantly enhanced compared to DAAQ. The dispersion stability was good with the increase of DAAQ. The introduction of DAAQ into polyurethane improved the thermal stability, hydrophobicity, and solvent resistance of WPU-DAAQ. Therefore, WPU-DAAQ is a new type of fluorescent waterborne polyurethane with stable dispersion properties, good fluorescent properties, heat resistance and water resistance.
Collapse
Affiliation(s)
- Guangjie Lu
- College of Chemical and Biology Engineering, Guilin University of Technology, Guilin, 541004, China
| | - Caili Yu
- College of Chemical and Biology Engineering, Guilin University of Technology, Guilin, 541004, China
| | - Jie Cheng
- College of Chemical and Biology Engineering, Guilin University of Technology, Guilin, 541004, China
| | - Jianben Xu
- College of Materials Science and Engineering, Guilin University of Technology, Guilin, 541004, China.
- College of Chemistry and Bioengineering, Guangxi Minzu Normal University, Chongzuo, 532200, China.
- Guangxi Key Laboratory for High-value Utilization of Manganese Resources, Chongzuo, 532200, China.
| | - Faai Zhang
- College of Materials Science and Engineering, Guilin University of Technology, Guilin, 541004, China.
- Guangxi Colleges and Universities Key Laboratory of Natural and Biomedical Polymer Materials, Guilin, 541004, China.
| |
Collapse
|
2
|
Mondal H, Karmakar M, Datta B. Ligand-selective turn-off sensing, harvesting and post-adsorptive use of Dy(III) and Yb(III) by intrinsically fluorescent flower-shaped Gum Acacia-grafted hydrogels. Sci Rep 2024; 14:18373. [PMID: 39112525 PMCID: PMC11306756 DOI: 10.1038/s41598-024-65932-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Accepted: 06/25/2024] [Indexed: 08/10/2024] Open
Abstract
Rare earth metals (REMs), such as Dysprosium (Dy) and Ytterbium (Yb), have experienced unprecedented demand in recent times due to their applications in high-end technologies. REMs are found only in select geographic locations placing tremendous economic constraints on their use. In this work, we have developed Gum Acacia-grafted hydrogels (GmAc-FluoroTerPs) that are capable of selective detection and capture of Dy and Yb. The intrinsically blue fluorescent polymer hydrogel GmAc-FluoroTerP has been optimized for Dy(III) and Yb(III) specific quenching, enabling limit of detection of the REMs at 0.13 nM and 60.8 pM, respectively. A comprehensive structural characterization of the fluorescent hydrogel has been performed via NMR, FTIR, XPS, EPR, TGA, XRD, TEM, SEM, EDX, TCSPC, and DLS. In addition to an in situ generated fluorophore, GmAc-FluoroTerP displays a distinctive aggregation induced emission enhancement in mixed solvents. The complexation of Dy(III)/Yb(III) with GmAc-FluoroTerP hydrogel has been characterized by XPS, TCSPC, and logic gate analyses, and the adsorptive capacity for Dy(III) and Yb(III) are found to be best reported till date as 125.57 mg g-1 and 102.27 mg g-1, respectively. Desorption at acidic pH allows recovery of the REMs. We also report semiconducting behaviour of the native fluorescent hydrogel, that is enhanced upon adsorptive capture of Dy(III) and Yb(III), with calculated band gaps at 1.37, 0.77, and 0.49 eV, respectively. The convergent sensing, capture, and reuse of Dy(III) and Yb(III) presented in this work promises a hitherto unreported template for application on other REMs.
Collapse
Affiliation(s)
- Himarati Mondal
- Department of Chemistry, Indian Institute of Technology Gandhinagar, Palaj, Gujarat, 382055, India.
| | - Mrinmoy Karmakar
- Department of Chemistry, Indian Institute of Technology Gandhinagar, Palaj, Gujarat, 382055, India
- Department of Pharmacy, College of Pharmacy, Kangwon National University, Chuncheon, Gangwon, 24341, Republic of Korea
| | - Bhaskar Datta
- Department of Chemistry, Indian Institute of Technology Gandhinagar, Palaj, Gujarat, 382055, India.
- Department of Biological Engineering, Indian Institute of Technology Gandhinagar, Palaj, Gujarat, 382055, India.
| |
Collapse
|
3
|
Xiao H, Ren GL, Hu JH, Chen JH, Yang X, Xiao X, Li Q, Yang HP. Cucurbit[8]uril-Based Supramolecular Probe for the Detection of 3-Nitrotyrosine in Human Serum and Plasma. ACS Sens 2024; 9:424-432. [PMID: 38214465 DOI: 10.1021/acssensors.3c02211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2024]
Abstract
The biomarker 3-nitrotyrosine (3-NT) is widely recognized as an indicator of renal oxidative stress injury, making its detection crucial for the early identification of renal insufficiency. This study presents the design and synthesis of a tetraphenylstyrene imidazole derivative (TIPE-MI), which is utilized to create a supramolecular probe in conjunction with cucurbit[8]uril (Q[8]) through host-guest interactions. The resulting supramolecular self-assembly exhibits excellent optical properties and has been employed for the specific detection of 3-NT through fluorescence quenching. The introduction of 3-NT resulted in a decreased fluorescence intensity of the yellow fluorescent probe, which gradually transitioned from bright yellow to light yellow and then became colorless as the 3-NT concentration was increased. A portable detection platform was devised to augment the efficiency of detection. In order to facilitate biological applications, we have substantiated the probe's exceptional precision in detecting 3-NT in biological samples, encompassing human serum and plasma. The probe also exhibited negligible cytotoxicity. The accumulation of the probe in renal cells elicited a fluorescence signal, thereby indicating the prospective viability of this system for visual detection with renal cytocompatibility.
Collapse
Affiliation(s)
- Han Xiao
- Department of Nephrology, Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Pediatric Metabolism and Inflammatory Diseases, Chongqing 400014, China
| | - Guo-Lian Ren
- Department of Nephrology, Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Pediatric Metabolism and Inflammatory Diseases, Chongqing 400014, China
| | - Jian-Hang Hu
- Key Laboratory of Macrocyclic and Supramolecular Chemistry of Guizhou Province, Guizhou University, Guiyang 550025, China
| | - Jia-Huan Chen
- Department of Nephrology, Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Pediatric Metabolism and Inflammatory Diseases, Chongqing 400014, China
| | - Xia Yang
- Department of Nephrology, Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Pediatric Metabolism and Inflammatory Diseases, Chongqing 400014, China
| | - Xin Xiao
- Key Laboratory of Macrocyclic and Supramolecular Chemistry of Guizhou Province, Guizhou University, Guiyang 550025, China
| | - Qiu Li
- Department of Nephrology, Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Pediatric Metabolism and Inflammatory Diseases, Chongqing 400014, China
| | - Hai-Ping Yang
- Department of Nephrology, Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Pediatric Metabolism and Inflammatory Diseases, Chongqing 400014, China
| |
Collapse
|
4
|
Li X, Jin Y, Zhu N, Jin LY. Applications of Supramolecular Polymers Generated from Pillar[ n]arene-Based Molecules. Polymers (Basel) 2023; 15:4543. [PMID: 38231964 PMCID: PMC10708374 DOI: 10.3390/polym15234543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 11/18/2023] [Accepted: 11/23/2023] [Indexed: 01/19/2024] Open
Abstract
Supramolecular chemistry enables the manipulation of functional components on a molecular scale, facilitating a "bottom-up" approach to govern the sizes and structures of supramolecular materials. Using dynamic non-covalent interactions, supramolecular polymers can create materials with reversible and degradable characteristics and the abilities to self-heal and respond to external stimuli. Pillar[n]arene represents a novel class of macrocyclic hosts, emerging after cyclodextrins, crown ethers, calixarenes, and cucurbiturils. Its significance lies in its distinctive structure, comparing an electron-rich cavity and two finely adjustable rims, which has sparked considerable interest. Furthermore, the straightforward synthesis, uncomplicated functionalization, and remarkable properties of pillar[n]arene based on supramolecular interactions make it an excellent candidate for material construction, particularly in generating interpenetrating supramolecular polymers. Polymers resulting from supramolecular interactions involving pillar[n]arene find potential in various applications, including fluorescence sensors, substance adsorption and separation, catalysis, light-harvesting systems, artificial nanochannels, and drug delivery. In this context, we provide an overview of these recent frontier research fields in the use of pillar[n]arene-based supramolecular polymers, which serves as a source of inspiration for the creation of innovative functional polymer materials derived from pillar[n]arene derivatives.
Collapse
Affiliation(s)
| | | | - Nansong Zhu
- Department of Chemistry, National Demonstration Centre for Experimental Chemistry Education, Yanbian University, Yanji 133002, China (Y.J.)
| | - Long Yi Jin
- Department of Chemistry, National Demonstration Centre for Experimental Chemistry Education, Yanbian University, Yanji 133002, China (Y.J.)
| |
Collapse
|
5
|
Bu Q, Li P, Xia Y, Hu D, Li W, Shi D, Song K. Design, Synthesis, and Biomedical Application of Multifunctional Fluorescent Polymer Nanomaterials. Molecules 2023; 28:molecules28093819. [PMID: 37175229 PMCID: PMC10179976 DOI: 10.3390/molecules28093819] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 04/24/2023] [Accepted: 04/27/2023] [Indexed: 05/15/2023] Open
Abstract
Luminescent polymer nanomaterials not only have the characteristics of various types of luminescent functional materials and a wide range of applications, but also have the characteristics of good biocompatibility and easy functionalization of polymer nanomaterials. They are widely used in biomedical fields such as bioimaging, biosensing, and drug delivery. Designing and constructing new controllable synthesis methods for multifunctional fluorescent polymer nanomaterials with good water solubility and excellent biocompatibility is of great significance. Exploring efficient functionalization methods for luminescent materials is still one of the core issues in the design and development of new fluorescent materials. With this in mind, this review first introduces the structures, properties, and synthetic methods regarding fluorescent polymeric nanomaterials. Then, the functionalization strategies of fluorescent polymer nanomaterials are summarized. In addition, the research progress of multifunctional fluorescent polymer nanomaterials for bioimaging is also discussed. Finally, the synthesis, development, and application fields of fluorescent polymeric nanomaterials, as well as the challenges and opportunities of structure-property correlations, are comprehensively summarized and the corresponding perspectives are well illustrated.
Collapse
Affiliation(s)
- Qingpan Bu
- School of Life Science, Changchun Normal University, Changchun 130032, China
| | - Ping Li
- School of Life Science, Changchun Normal University, Changchun 130032, China
| | - Yunfei Xia
- School of Life Science, Changchun Normal University, Changchun 130032, China
| | - Die Hu
- School of Life Science, Changchun Normal University, Changchun 130032, China
| | - Wenjing Li
- School of Education, Changchun Normal University, Changchun 130032, China
| | - Dongfang Shi
- Institute of Science, Technology and Innovation, Changchun Normal University, Changchun 130032, China
| | - Kai Song
- School of Life Science, Changchun Normal University, Changchun 130032, China
- Institute of Science, Technology and Innovation, Changchun Normal University, Changchun 130032, China
| |
Collapse
|
6
|
Madhi A. Smart epoxy/polyurethane/carbon quantum dots hybrid coatings: Synthesis and study of UV-shielding, viscoelastic, and anti-corrosive properties. POLYM-PLAST TECH MAT 2023. [DOI: 10.1080/25740881.2022.2116342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Affiliation(s)
- Abbas Madhi
- Department of Resin and Additives, Institute for Color Science and Technology, Tehran, Iran
| |
Collapse
|
7
|
Carrillo-Betancourt RA, López-Camero AD, Hernández-Cordero J. Luminescent Polymer Composites for Optical Fiber Sensors. Polymers (Basel) 2023; 15:polym15030505. [PMID: 36771805 PMCID: PMC9921745 DOI: 10.3390/polym15030505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 01/06/2023] [Accepted: 01/09/2023] [Indexed: 01/20/2023] Open
Abstract
Optical fiber sensors incorporating luminescent materials are useful for detecting physical parameters and biochemical species. Fluorescent materials integrated on the tips of optical fibers, for example, provide a means to perform fluorescence thermometry while monitoring the intensity or the spectral variations of the fluorescence signal. Similarly, certain molecules can be tracked by monitoring their characteristic emission in the UV wavelength range. A key element for these sensing approaches is the luminescent composite, which may be obtained upon allocating luminescent nanomaterials in glass or polymer hosts. In this work, we explore the fluorescence features of two composites incorporating lanthanide-doped fluorescent powders using polydimethylsiloxane (PDMS) as a host. The composites are obtained by a simple mixing procedure and can be subsequently deposited onto the end faces of optical fibers via dip coating or molding. Whereas one of the composites has shown to be useful for the fabrication of fiber optic temperature sensors, the other shows promising result for detection of UV radiation. The performance of both composites is first evaluated for the fabrication of membranes by examining features such as fluorescent stability. We further explore the influence of parameters such as particle concentration and density on the fluorescence features of the polymer blends. Finally, we demonstrate the incorporation of these PDMS fluorescent composites onto optical fibers and evaluate their sensing capabilities.
Collapse
|
8
|
Fayolle C, Pigeon P, Fischer-Durand N, Salmain M, Buriez O, Vessières A, Labbé E. Synthesis, Electrochemical and Fluorescence Properties of the First Fluorescent Member of the Ferrocifen Family and of Its Oxidized Derivatives. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27196690. [PMID: 36235225 PMCID: PMC9571219 DOI: 10.3390/molecules27196690] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 09/27/2022] [Accepted: 10/05/2022] [Indexed: 11/16/2022]
Abstract
The first fluorescent ferrociphenol derivative (P797) has been synthesized via McMurry cross-coupling followed by copper-catalyzed [3 + 2] azide-alkyne cycloaddition of the fluorescent group coumarin. Cyclic voltammograms of P797 exhibit either a monoelectronic oxidation wave ascribed to the ferrocene Fe(II) → Fe(III) conversion or a three-electron oxidation process in the presence of a base, leading to a Fe(III) quinone methide adduct. This general sequence is consistent with those previously described for non-fluorescent ferrociphenols. Furthermore, the fluorescence properties of P797 and its oxidized intermediates appear to strongly depend on the redox state of the ferrocene group. Indeed, electrochemical generation of Fe(III) (ferrocenium) states markedly increases the fluorescence emission intensity. In contrast, the emission of the Fe(II) (ferrocene) states is partially quenched by photoinduced electron transfer (PET) from the Fe(II) donor to the coumarin acceptor and by concentration-dependent self-quenching. Owing to its switchable fluorescence properties, complex P797 could represent an innovative and useful tool to study the biodistribution and the redox state of ferrocifens in cancer cells.
Collapse
Affiliation(s)
- Charles Fayolle
- PASTEUR, Département de chimie, École Normale Supérieure, PSL University, Sorbonne Université CNRS, 75005 Paris, France
| | - Pascal Pigeon
- Institut Parisien de Chimie Moléculaire (IPCM), CNRS, Sorbonne Université, 75005 Paris, France
- ENSCP Chimie ParisTech, PSL University, 75005 Paris, France
| | - Nathalie Fischer-Durand
- Institut Parisien de Chimie Moléculaire (IPCM), CNRS, Sorbonne Université, 75005 Paris, France
| | - Michèle Salmain
- Institut Parisien de Chimie Moléculaire (IPCM), CNRS, Sorbonne Université, 75005 Paris, France
| | - Olivier Buriez
- PASTEUR, Département de chimie, École Normale Supérieure, PSL University, Sorbonne Université CNRS, 75005 Paris, France
| | - Anne Vessières
- Institut Parisien de Chimie Moléculaire (IPCM), CNRS, Sorbonne Université, 75005 Paris, France
| | - Eric Labbé
- PASTEUR, Département de chimie, École Normale Supérieure, PSL University, Sorbonne Université CNRS, 75005 Paris, France
| |
Collapse
|
9
|
Togawa S, Shintani R. Synthesis of Poly(arylenevinylene)s by Rhodium-Catalyzed Stitching Polymerization/Alkene Isomerization. J Am Chem Soc 2022; 144:18545-18551. [PMID: 36137193 DOI: 10.1021/jacs.2c07835] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Poly(arylenevinylene)s constitute an important class of π-conjugated polymers for their potential utility as optoelectronic materials. Herein, we developed a sequence of rhodium-catalyzed stitching polymerization of 1,2-dialkynyl(hetero)arenes and aromatization-driven alkene isomerization for the synthesis of new poly(arylenevinylene)s. The polymerization and subsequent alkene isomerization proceeded smoothly with high degree of stitching efficiency by employing a Rh/tfb complex as the catalyst, and not only diynes but also triynes and tetraynes could be polymerized to give poly(arylenevinylene)s that are not easily accessible by existing synthetic methods. The polymers obtained by the present method were thermally stable, and their optical properties could be varied depending on the repeating unit structure.
Collapse
Affiliation(s)
- Soya Togawa
- Division of Chemistry, Department of Materials Engineering Science, Graduate School of Engineering Science, Osaka University, Toyonaka, Osaka 560-8531, Japan
| | - Ryo Shintani
- Division of Chemistry, Department of Materials Engineering Science, Graduate School of Engineering Science, Osaka University, Toyonaka, Osaka 560-8531, Japan.,Innovative Catalysis Science Division, Institute for Open and Transdisciplinary Research Initiatives (ICS-OTRI), Osaka University, Suita, Osaka 565-0871, Japan
| |
Collapse
|
10
|
Anas Abderrahmane Lahouel, Miloudi N, Medjahed K, Berrayah A, Sahli N. Green Synthesis Method of Poly[(2,5-diyl pyrrole)(4-hydroxy-3-methoxy benzylidene)] Semiconductor Polymer Using an Ecologic Catalyst. POLYMER SCIENCE SERIES B 2022. [DOI: 10.1134/s1560090422700348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
11
|
Yuan H, Li Z, Wang X, Qi R. Photodynamic Antimicrobial Therapy Based on Conjugated Polymers. Polymers (Basel) 2022; 14:polym14173657. [PMID: 36080734 PMCID: PMC9459975 DOI: 10.3390/polym14173657] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 08/31/2022] [Accepted: 09/01/2022] [Indexed: 11/16/2022] Open
Abstract
Pathogenic microorganisms have been a serious threat to human life and have become a public health problem of global concern. However, in the actual treatment there is a lack of efficient antimicrobial strategies which do not easily develop drug resistance; this can lead to inaccurate drug treatment that worsens the infection and even threatens life. With the emergence of a variety of drug-resistant bacteria and fungi, photodynamic therapy has gradually become one of the most promising treatment methods for drug-resistant bacteria infection; this is because it is controllable, non-invasive, and not prone to cause the development of drug resistance. Organic conjugated polymers that possess high fluorescence intensity, a large molar extinction coefficient, excellent light stability, an adjustable energy band, easy modification, good biocompatibility, and the ability to photosensitize oxygen to produce reactive oxygen species have been widely used in the fields of solar cells, highly sensitive detection systems, biological imaging, and anti-cancer and anti-microbial treatment. Photodynamic therapy is non-invasive and has high temporal and spatial resolution and is a highly effective antimicrobial treatment that does not easily induce drug resistance; it has also stimulated the scientific research enthusiasm of researchers and has become a research hotspot in the antimicrobial field. In this review, the photodynamic antibacterial applications of conjugated polymers with different structure types are summarized, and their development directions are considered.
Collapse
Affiliation(s)
- Huanxiang Yuan
- Department of Chemistry, College of Chemistry and Materials Engineering, Beijing Technology and Business University, Beijing 100048, China
| | - Zelin Li
- Department of Chemistry, College of Chemistry and Materials Engineering, Beijing Technology and Business University, Beijing 100048, China
| | - Xiaoyu Wang
- School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Ruilian Qi
- Department of Chemistry, College of Chemistry and Materials Engineering, Beijing Technology and Business University, Beijing 100048, China
- Correspondence:
| |
Collapse
|
12
|
Bajer D, Kaczmarek H. Thermal Stability of Fluorescent Chitosan Modified with Heterocyclic Aromatic Dyes. MATERIALS 2022; 15:ma15103667. [PMID: 35629691 PMCID: PMC9147818 DOI: 10.3390/ma15103667] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Revised: 05/17/2022] [Accepted: 05/18/2022] [Indexed: 12/07/2022]
Abstract
Fluorescent biopolymer derivatives are increasingly used in biology and medicine, but their resistance to heat and UV radiation, which are sterilizing agents, is relatively unknown. In this work, chitosan (CS) modified by three different heterocyclic aromatic dyes based on benzimidazole, benzothiazole, and benzoxazole (assigned as IBm, BTh, and BOx) has been studied. The thermal properties of these CS derivatives have been determined using the Thermogravimetric Analysis coupled with the Fourier Transform Infrared spectroscopy of volatile degradation products. The influence of UV radiation on the thermal resistance of modified, fluorescent chitosan samples was also investigated. Based on the temperature onset as well as the decomposition temperatures at a maximal rate, IBm was found to be more thermally stable than BOx and BTh. However, this dye gave off the most volatile products (mainly water, ammonia, carbon oxides, and carbonyl/ether compounds). The substitution of dyes for chitosan changes its thermal stability slightly. Characteristic decomposition temperatures in modified CS vary by a few degrees (<10 °C) from the virgin sample. Considering the temperatures of the main decomposition stage, CS-BOx turned out to be the most stable. The UV irradiation of chitosan derivatives leads to minor changes in the thermal parameters and a decrease in the number of volatile degradation products. It was concluded that the obtained CS derivatives are characterized by good resistance to heat and UV irradiation, which extends the possibilities of using these innovative materials.
Collapse
Affiliation(s)
- Dagmara Bajer
- Correspondence: (D.B.); (H.K.); Tel.: +48-56-611-4505 (D.B.); +48-56-611-4312 (H.K.)
| | - Halina Kaczmarek
- Correspondence: (D.B.); (H.K.); Tel.: +48-56-611-4505 (D.B.); +48-56-611-4312 (H.K.)
| |
Collapse
|