1
|
Liu Z, Xing S, Li Y, Sun J, Li H, Gu X, Zhang S. Surface modification of zinc oxide and its application in polypropylene with excellent fire performance and ultra-violet resistance. J Colloid Interface Sci 2024; 661:307-316. [PMID: 38301468 DOI: 10.1016/j.jcis.2024.01.134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 12/26/2023] [Accepted: 01/19/2024] [Indexed: 02/03/2024]
Abstract
Despite the advantages of easy moulding and excellent mechanical properties, there are still some shortcomings with polypropylene (PP) such as high flammability and poor ultra-violet (UV) resistance. In this work, modified zinc oxide (mZnO) was prepared by reacting zinc oxide nanoparticles (ZnO) with polysiloxanes, and the effect of mZnO on the effectiveness of intumescent flame-retardant and on the UV aging resistance of polypropylene were investigated. By introducing 16 wt% (intumescent flame-retardant /mZnO) and 0.3 wt% maleic anhydride-grafted PP (MAH-g-PP), the limiting oxygen index increased to 32.7 %, and passed UL-94V-0 rating. In comparison to the controls, the peak heat release rate and the peak smoke release rate were 88.5 % and 80 % lower, respectively. In addition, PP samples showed improved mechanical properties, with a 5 % increase in tensile properties compared to the pure PP sample. After 100 h of UV irradiation, the surface of the samples was relatively flat and smooth, and the carbonyl index decreased from 81.1 of neat PP to 26.7. PP composites with 100 h aging treatment still had excellent flame retardancy and mechanical properties. The results showed that mZnO was effective in improving the flame retardancy, mechanical properties and light aging tolerance of PP. This study provides a novel approach to fabricate long-life flame-retardant PP composites with low additive content.
Collapse
Affiliation(s)
- Zhishuo Liu
- State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029, China
| | - Shuo Xing
- State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029, China
| | - Yuchun Li
- State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029, China
| | - Jun Sun
- State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029, China; Beijing Key Laboratory of Advanced Functional Polymer Composites, Beijing University of Chemical Technology, Beijing 100029, China.
| | - Hongfei Li
- State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029, China
| | - Xiaoyu Gu
- State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029, China
| | - Sheng Zhang
- State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029, China; Beijing Key Laboratory of Advanced Functional Polymer Composites, Beijing University of Chemical Technology, Beijing 100029, China.
| |
Collapse
|
2
|
Dong S, Wang Y, Liu L, Jia H, Zang Y, Zu L, Lan T, Wang J. Synthesis and Characterization of a Novel DOPO-Based Flame Retardant Intermediate and Its Flame Retardancy as a Polystyrene Intrinsic Flame Retardant. ACS OMEGA 2023; 8:48825-48842. [PMID: 38162735 PMCID: PMC10753556 DOI: 10.1021/acsomega.3c06235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 11/22/2023] [Accepted: 11/24/2023] [Indexed: 01/03/2024]
Abstract
The research on intrinsic flame retardant has become a hot topic in the field of flame retardant. The synthesis of reactive flame-retardant monomer is one of the effective methods to obtain an intrinsic flame retardant. In addition, in view of the small molecular flame retardant easily migrates from the polymer during the use process, which leads to the gradual reduction of the flame retardant effect and even the gradual loss of flame retardant performance, and the advantages of atom transfer radical polymerization (ATRP) technology in polymer structure design and function customization, we first synthesized reactive flame retardant monomer 6-(hydroxymethyl)dibenzo[c,e][1,2]oxaphosphinine 6-oxide (FAA-DOPO), then synthesized polystyrene bromine (PS148-Br) macromolecular initiator by ATRP technology, and finally obtained block copolymer polystyrene-b-poly{6-(hydroxymethyl)dibenzo[c,e][1,2]oxaphosphinine 6-oxide} (PS-b-PFAA-DOPO) by the polymerization of FAA-DOPO initiated by macromolecular initiator PS148-Br by ATRP technology. The chemical structure of FAA-DOPO was characterized by 1D and 2D NMR (1H, 13C, DEPT 135, HSQC, COSY, NOE, and HMBC) spectra, Fourier transform infrared spectroscopy (FTIR), liquid chromatography-tandem mass spectrometry (LC-MS) and X-ray photoelectron spectroscopy (XPS). The chemical structure and molecular weight of PS-b-PFAA-DOPO were characterized by FTIR and gel permeation chromatography (GPC). The thermal and flame-retardant properties of PS-b-PFAA-DOPO were characterized by thermogravimetry analysis (TG), UL-94, limiting oxygen index (LOI), and microscale combustion calorimetry (MCC). It was found that FAA-DOPO could be used as a monomer for polymerization, although FAA-DOPO had a large steric hindrance from the chemical structure of FAA-DOPO, the UL-94 grade of PS-b-PFAA-DOPO reached the V-0 grade, and the LOI increased by 59.12% compared with PS148-Br.
Collapse
Affiliation(s)
- Shaobo Dong
- College
of Chemistry and Chemical Engineering, Northeast
Petroleum University, Daqing 163318, People’s
Republic of China
- Heilongjiang
Province Key Laboratory of Polymeric Composition Material, College
of Materials Science and Engineering, Qiqihar
University, Qiqihar 161006, People’s
Republic of China
| | - Yazhen Wang
- College
of Chemistry and Chemical Engineering, Northeast
Petroleum University, Daqing 163318, People’s
Republic of China
- Heilongjiang
Province Key Laboratory of Polymeric Composition Material, College
of Materials Science and Engineering, Qiqihar
University, Qiqihar 161006, People’s
Republic of China
- College
of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin 150040, People’s Republic of China
| | - Li Liu
- College
of Chemistry and Chemical Engineering, Qiqihar
University, Qiqihar 161006, People’s
Republic of China
| | - Hongge Jia
- Heilongjiang
Province Key Laboratory of Polymeric Composition Material, College
of Materials Science and Engineering, Qiqihar
University, Qiqihar 161006, People’s
Republic of China
| | - Yu Zang
- Heilongjiang
Province Key Laboratory of Polymeric Composition Material, College
of Materials Science and Engineering, Qiqihar
University, Qiqihar 161006, People’s
Republic of China
| | - Liwu Zu
- Heilongjiang
Province Key Laboratory of Polymeric Composition Material, College
of Materials Science and Engineering, Qiqihar
University, Qiqihar 161006, People’s
Republic of China
| | - Tianyu Lan
- College
of Chemistry and Chemical Engineering, Northeast
Petroleum University, Daqing 163318, People’s
Republic of China
- Heilongjiang
Province Key Laboratory of Polymeric Composition Material, College
of Materials Science and Engineering, Qiqihar
University, Qiqihar 161006, People’s
Republic of China
| | - Jun Wang
- College
of Chemistry and Chemical Engineering, Northeast
Petroleum University, Daqing 163318, People’s
Republic of China
| |
Collapse
|
3
|
Huang W, Tu C, Tian Q, Wang K, Yang C, Ma C, Xu X, Yan W. Synergistic Effects of 9,10-Dihydro-9-oxa-10-phosphaphenanthrene-10-oxide-Based Derivative and Modified Sepiolite on Flame-Retarded Poly (Ethylene Oxide)-Poly (Butylene Adipate-Co-Terephthalate) Composites. Polymers (Basel) 2023; 16:45. [PMID: 38201710 PMCID: PMC10781121 DOI: 10.3390/polym16010045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 12/13/2023] [Accepted: 12/19/2023] [Indexed: 01/12/2024] Open
Abstract
A 9,10-dihydro-9-oxa-10-phosphaphenanthrene-10-oxide (DOPO)-based derivative (PN-DOPO) combined with aluminium phosphates-coated sepiolite (Sep@AlPO4) was used to improve the flame retardance, thermal stability and mechanical performances of poly (ethylene oxide) (PEO)/poly (butylene adipate-co-terephthalate) (PBAT) blends. The synergistic effects of PN-DOPO and Sep@AlPO4 on flame-retarded PEO/PBAT composites were systematically discussed. Results indicated that introducing 5 wt% Sep@AlPO4 with 10 wt% PN-DOPO into PEO/PBAT achieved a V-1 rating for the UL-94 test and increased the limiting oxygen index value to 23.7%. Moreover, the peak heat release rate (p-HRR), average HRR and total heat release values of PEO/PBAT/PN10%/Sep5% composites decreased by 35.6%, 11.0% and 23.0% compared with those of PEO/PBAT, respectively. Thermogravimetric analysis (TGA) results confirmed that PN-DOPO/Sep@AlPO4 enhanced the initial thermal stability and char yield of PEO/PBAT matrix, and TGA/Fourier transform infrared spectrometry results revealed that the composites exhibited the characteristic absorption peaks of phosphorous-containing groups and an increase in gas-phase volatiles during thermal degradation. The morphological structures of the residues indicated that PN-DOPO and Sep@AlPO4 mixtures produced a more dense and continuous char layer on the composite surface during burning. Rheological behaviour revealed that higher complex viscosity and modulus values of PEO/PBAT/PN-DOPO/Sep@AlPO4 sample could also promote the crosslinking network structure of condensed phases during combustion. Furthermore, the PEO/PBAT/PN-DOPO/Sep@AlPO4 composites exhibited superior elongation at break and flexural performance than the PEO/PBAT system. All results demonstrated that the PEO/PBAT system modified with PN-DOPO/Sep@AlPO4 showed remarkable flame retardance, and improved thermal stability and mechanical properties, indicating its potential application in areas requiring fire safety.
Collapse
Affiliation(s)
- Weijiang Huang
- College of Materials Science and Engineering, Guiyang University, Guiyang 550005, China; (C.T.); (Q.T.); (K.W.); (C.Y.); (C.M.); (X.X.)
- National Engineering Research Center for Compounding and Modification of Polymer Materials, Guiyang 550014, China
| | - Chunyun Tu
- College of Materials Science and Engineering, Guiyang University, Guiyang 550005, China; (C.T.); (Q.T.); (K.W.); (C.Y.); (C.M.); (X.X.)
| | - Qin Tian
- College of Materials Science and Engineering, Guiyang University, Guiyang 550005, China; (C.T.); (Q.T.); (K.W.); (C.Y.); (C.M.); (X.X.)
- National Engineering Research Center for Compounding and Modification of Polymer Materials, Guiyang 550014, China
| | - Kui Wang
- College of Materials Science and Engineering, Guiyang University, Guiyang 550005, China; (C.T.); (Q.T.); (K.W.); (C.Y.); (C.M.); (X.X.)
| | - Chunlin Yang
- College of Materials Science and Engineering, Guiyang University, Guiyang 550005, China; (C.T.); (Q.T.); (K.W.); (C.Y.); (C.M.); (X.X.)
| | - Chao Ma
- College of Materials Science and Engineering, Guiyang University, Guiyang 550005, China; (C.T.); (Q.T.); (K.W.); (C.Y.); (C.M.); (X.X.)
| | - Xiaolu Xu
- College of Materials Science and Engineering, Guiyang University, Guiyang 550005, China; (C.T.); (Q.T.); (K.W.); (C.Y.); (C.M.); (X.X.)
| | - Wei Yan
- College of Materials Science and Engineering, Guiyang University, Guiyang 550005, China; (C.T.); (Q.T.); (K.W.); (C.Y.); (C.M.); (X.X.)
- National Engineering Research Center for Compounding and Modification of Polymer Materials, Guiyang 550014, China
| |
Collapse
|
4
|
Alosime EM, Basfar AA. A Systematic Investigation on the Influence of Intumescent Flame Retardants on the Properties of Ethylene Vinyl Acetate (EVA)/Liner Low Density Polyethylene (LLDPE) Blends. Molecules 2023; 28:molecules28031023. [PMID: 36770690 PMCID: PMC9921819 DOI: 10.3390/molecules28031023] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2022] [Revised: 12/31/2022] [Accepted: 01/16/2023] [Indexed: 01/20/2023] Open
Abstract
Because of their high filler loadings, commercial-grade clean flame-retardant materials have unstable mechanical properties. To address this issue, intumescent polymers can be used to develop clean flame retardants with very low levels of smoke and toxicity generation. An intumescent flame retardant (IFR) system composed of red phosphorus (RP), zinc borate (ZB), and a terpolymer of ethylene, butyl acrylate, and maleic anhydride (EBM) was used to prepare EVA (ethylene-vinyl acetate) and EVA/LLDPE (linear low-density polyethylene) composites; their mechanical and flammability properties were systematically investigated. The limiting oxygen index (LOI) of the EVA/LLDPE (as base material) composite containing RP and ZB mixed with nonhalogenated flame retardant, mainly magnesium hydroxide (MH) and coadditives, including processing aids and thermal stabilizers, was established. RP was found to have little effect on the tensile properties of EVA/LLDPE 118W/120 phr flame-retardant (MH + RP) composites. There was a minute difference in the effective trend of RP between tensile strength and elongation at break. Following the addition of ZB, the elongation at break of the composites gradually decreased with increasing RP content and then leveled off when the RP content was over 10 phr. Mechanical properties (elongation at break and tensile strength) can be best maintained at below 10 phr content of RP. The mechanical properties decreased with lower amounts of EBM content. In addition, flame retardancy increased when the EBM content decreased. The findings further revealed that MH and RP have poor compatibility, yielding poor mechanical properties. The LOI greatly increased with RP content, even though the total content of flame retardants (main + intumescent flame retardant) was the same in all formulations. Only over 5 phr RP content formulations passed V-0 of the UL-94 test. When under 5 phr, the RP content formulations did not pass V-0 of the UL-94 test.
Collapse
Affiliation(s)
- Eid M. Alosime
- King Abdulaziz City for Science and Technology, P.O. Box 6086, Riyadh 11442, Saudi Arabia
- Correspondence:
| | - Ahmed A. Basfar
- Mechanical Engineering Department, College of Engineering, King Saud University, P.O. Box 800, Riyadh 11421, Saudi Arabia
| |
Collapse
|
5
|
Effects of Phosphorus and Boron Compounds on Thermal Stability and Flame Retardancy Properties of Epoxy Composites. Polymers (Basel) 2022; 14:polym14194005. [PMID: 36235953 PMCID: PMC9573513 DOI: 10.3390/polym14194005] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 09/19/2022] [Accepted: 09/20/2022] [Indexed: 11/17/2022] Open
Abstract
While plastics are regarded as the most resourceful materials nowadays, ranging from countless utilities including protective or decorating coatings, to adhesives, packaging materials, electronic components, paintings, furniture, insulating composites, foams, building blocks and so on, their critical limitation is their advanced flammability, which in fire incidents can result in dramatic human fatalities and irreversible environmental damage. Herein, epoxy-based composites with improved flame-resistant characteristics have been prepared by incorporating two flame retardant additives into epoxy resin, namely 6-(hydroxy(phenyl)methyl)-6H-dibenzo[c,e][1,2]oxaphosphinine-6-oxide (PFR) and boric acid (H3BO3). The additional reaction of 9,10-dihydro-oxa-10-phosphophenanthrene-10-oxide (DOPO) to the carbonyl group of benzaldehyde yielded PFR, which was then used to prepare epoxy composites having a phosphorus content ranging from 1.5 to 4 wt%, while the boron content was 2 wt%. The structure, morphology, thermal stability and flammability of resulted epoxy composites were investigated by FTIR spectroscopy, scanning electron microscopy (SEM), thermogravimetric analysis, differential scanning calorimetry, and microscale combustion calorimetry (MCC). Thermogravimetric analysis indicated that the simultaneous incorporation of PFR and H3BO3 improved the thermal stability of the char residue at high temperatures. The surface morphology of the char residues, studied by SEM measurements, showed improved characteristics in the case of the samples containing both phosphorus and boron atoms. The MCC tests revealed a significant reduction in flammability as well as a significant decrease in heat release capacity for samples containing both PFR and H3BO3 compared to the neat epoxy thermoset.
Collapse
|