1
|
Li H, Song J, Ma C, Shen C, Chen M, Chen D, Zhang H, Su M. Uranium recovery from weakly acidic wastewater using recyclable γ-Fe 2O 3@meso-SiO 2. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 349:119347. [PMID: 37897898 DOI: 10.1016/j.jenvman.2023.119347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 09/28/2023] [Accepted: 10/14/2023] [Indexed: 10/30/2023]
Abstract
U(VI)-containing acidic wastewater produced from uranium mining sites is an environmental hazard. Highly efficient capture of U(VI) from such wastewater is of great significance. In this study, a mesoporous core-shell material (i.e. γ-Fe2O3@meso-SiO2) with magnetically and vertically oriented channels was rationally designed through a surfactant-templating method. Batch experiment results showed that the material had an efficiency level of >99.7% in removing U(VI) and a saturated adsorption capacity of approximately 41.40 mg/g, with its adsorption reaching equilibrium in 15 min. The U(VI) adsorption efficiency of the material remained above 90% in a solution with competing ions and in acidic radioactive wastewater, indicating its ability to selectively adsorb U(VI). The material exhibited high adsorption efficiency and desorption efficiency in five cycles of desorption and regeneration experiments. According to the results, the mechanism through which γ-Fe2O3@meso-SiO2 adsorbs U(VI) was dominated by chemical complexation and electrostatic attraction between these two substances. Therefore, γ-Fe2O3@meso-SiO2 is not only beneficial to control the environmental migration of uranium, but also has good selective adsorption and repeated regeneration performance when used to recover U(VI) from weakly acidic wastewater in uranium mining.
Collapse
Affiliation(s)
- Hong Li
- School of Environmental Science and Engineering, Guangzhou University, Guangzhou, 510006, Guangdong, China
| | - Juexi Song
- College of Mechanical and Electrical Engineering, Qingdao University, Qingdao, 266071, Shandong, China
| | - Chuqin Ma
- School of Environmental Science and Engineering, Guangzhou University, Guangzhou, 510006, Guangdong, China
| | - Congjie Shen
- School of Environmental Science and Engineering, Guangzhou University, Guangzhou, 510006, Guangdong, China
| | - Miaoling Chen
- School of Environmental Science and Engineering, Guangzhou University, Guangzhou, 510006, Guangdong, China
| | - Diyun Chen
- School of Environmental Science and Engineering, Guangzhou University, Guangzhou, 510006, Guangdong, China
| | - Hongguo Zhang
- School of Environmental Science and Engineering, Guangzhou University, Guangzhou, 510006, Guangdong, China
| | - Minhua Su
- School of Environmental Science and Engineering, Guangzhou University, Guangzhou, 510006, Guangdong, China.
| |
Collapse
|
2
|
Wang H, Lu Y, Yang H, Yu DG, Lu X. The influence of the ultrasonic treatment of working fluids on electrospun amorphous solid dispersions. Front Mol Biosci 2023; 10:1184767. [PMID: 37234919 PMCID: PMC10206001 DOI: 10.3389/fmolb.2023.1184767] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Accepted: 05/02/2023] [Indexed: 05/28/2023] Open
Abstract
Based on a working fluid consisting of a poorly water-soluble drug and a pharmaceutical polymer in an organic solvent, electrospinning has been widely exploited to create a variety of amorphous solid dispersions However, there have been very few reports about how to prepare the working fluid in a reasonable manner. In this study, an investigation was conducted to determine the influences of ultrasonic fluid pretreatment on the quality of resultant ASDs fabricated from the working fluids. SEM results demonstrated that nanofiber-based amorphous solid dispersions from the treated fluids treated amorphous solid dispersions exhibited better quality than the traditional nanofibers from untreated fluids in the following aspects: 1) a straighter linear morphology; 2) a smooth surface; and 3) a more evener diameter distribution. The fabrication mechanism associated with the influences of ultrasonic treatments of working fluids on the resultant nanofibers' quality is suggested. Although XRD and ATR-FTIR experiments clearly verified that the drug ketoprofen was homogeneously distributed all over the TASDs and the traditional nanofibers in an amorphous state regardless of the ultrasonic treatments, the in vitro dissolution tests clearly demonstrated that the TASDs had a better sustained drug release performance than the traditional nanofibers in terms of the initial release rate and the sustained release time periods.
Collapse
Affiliation(s)
- Haibin Wang
- Department of Orthopaedics, Shanghai Changzheng Hospital, Naval Medical University, Shanghai, China
| | - Yingying Lu
- Obstetrics and Gynecology Hospital, Fudan University, Shanghai, China
| | - Haisong Yang
- Department of Orthopaedics, Shanghai Changzheng Hospital, Naval Medical University, Shanghai, China
| | - Deng-Guang Yu
- School of Materials and Chemistry, University of Shanghai for Science and Technology, Shanghai, China
| | - Xuhua Lu
- Department of Orthopaedics, Shanghai Changzheng Hospital, Naval Medical University, Shanghai, China
| |
Collapse
|
3
|
Galhoum AA. Mesoporous chitosan derivatives for effective uranyl sorption: Synthesis, characterization, and mechanism-application to ore leachate. Int J Biol Macromol 2023; 242:124634. [PMID: 37119908 DOI: 10.1016/j.ijbiomac.2023.124634] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 04/20/2023] [Accepted: 04/24/2023] [Indexed: 05/01/2023]
Abstract
Two sorbents were developed from chitosan aminophosphonation: via one-pot process to produce aminophosphonated derivative (r-AP), followed by further pyrolysis to produce mesoporous improved biochar (IBC). Sorbents structures were elucidated using CHNP/O, XRD, BET, XPS, DLS, FTIR, and pHZPC-titration. The IBC exhibits an improved specific surface (262.12 m2/g) and mesopore size (8.34 nm) compared to its organic precursor (r-AP), 52.53 m2/g and 3.39 nm. IBC surface is also enriched with high electron density heteroatoms (P/O/N). These unique merits of porosity and surface-active-sites improved sorption efficiency. Sorption characteristics were determined for uranyl recovery, and binding mechanisms were elucidated using FTIR and XPS. The maximum sorption capacity increased from 0.571 to 1.974 mmol/g for r-AP and IBC, respectively, roughly correlated with the active-sites density per mass. Equilibrium occurred within 60/120 min, and the half-sorption-time (tHST) was decreased from 10.73 for r-AP to 5.48 min for IBC. Langmuir and pseudo-second-order equation fits experimental data well. Sorption is endothermic for IBC (whereas exothermic with r-AP), spontaneous, and governed by entropy change. Both sorbents show high durability over multiple-cycles with desorption efficiency >94 % over seven cycles using NaHCO3 (0.25 M). The sorbents efficiently tested for U(VI) recovery from acidic ore leachate with outstanding selectivity coefficients.
Collapse
Affiliation(s)
- Ahmed A Galhoum
- Nuclear Materials Authority, P.O. Box 530, El-Maadi, Cairo, Egypt; Graduate Faculty of Science, Menoufia University, Shebin El-Kom, Egypt.
| |
Collapse
|
4
|
Superparamagnetic Multifunctionalized Chitosan Nanohybrids for Efficient Copper Adsorption: Comparative Performance, Stability, and Mechanism Insights. Polymers (Basel) 2023; 15:polym15051157. [PMID: 36904398 PMCID: PMC10007229 DOI: 10.3390/polym15051157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2023] [Revised: 02/11/2023] [Accepted: 02/18/2023] [Indexed: 03/02/2023] Open
Abstract
To limit the dangers posed by Cu(II) pollution, chitosan-nanohybrid derivatives were developed for selective and rapid copper adsorption. A magnetic chitosan nanohybrid (r-MCS) was obtained via the co-precipitation nucleation of ferroferric oxide (Fe3O4) co-stabilized within chitosan, followed by further multifunctionalization with amine (diethylenetriamine) and amino acid moieties (alanine, cysteine, and serine types) to give the TA-type, A-type, C-type, and S-type, respectively. The physiochemical characteristics of the as-prepared adsorbents were thoroughly elucidated. The superparamagnetic Fe3O4 nanoparticles were mono-dispersed spherical shapes with typical sizes (~8.5-14.7 nm). The adsorption properties toward Cu(II) were compared, and the interaction behaviors were explained with XPS and FTIR analysis. The saturation adsorption capacities (in mmol.Cu.g-1) have the following order: TA-type (3.29) > C-type (1.92) > S-type (1.75) > A-type(1.70) > r-MCS (0.99) at optimal pH0 5.0. The adsorption was endothermic with fast kinetics (except TA-type was exothermic). Langmuir and pseudo-second-order equations fit well with the experimental data. The nanohybrids exhibit selective adsorption for Cu(II) from multicomponent solutions. These adsorbents show high durability over multiple cycles with desorption efficiency > 93% over six cycles using acidified thiourea. Ultimately, QSAR tools (quantitative structure-activity relationships) were employed to examine the relationship between essential metal properties and adsorbent sensitivities. Moreover, the adsorption process was described quantitatively, using a novel three-dimensional (3D) nonlinear mathematical model.
Collapse
|
5
|
A New Year's Message 2023. Polymers (Basel) 2023; 15:polym15030759. [PMID: 36772059 PMCID: PMC9919046 DOI: 10.3390/polym15030759] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2023] [Accepted: 02/01/2023] [Indexed: 02/05/2023] Open
Abstract
We wish you all happiness, health and progress in the new year [...].
Collapse
|
6
|
Xiao Y, Helal AS, Mazario E, Mayoral A, Chevillot-Biraud A, Decorse P, Losno R, Maurel F, Ammar S, Lomas JS, Hémadi M. Functionalized maghemite nanoparticles for enhanced adsorption of uranium from simulated wastewater and magnetic harvesting. ENVIRONMENTAL RESEARCH 2023; 216:114569. [PMID: 36244439 DOI: 10.1016/j.envres.2022.114569] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 10/05/2022] [Accepted: 10/07/2022] [Indexed: 06/16/2023]
Abstract
Maghemite (γ-Fe2O3) nanoparticles (MNPs) were functionalized with 3-aminopropyltriethoxysilane (APTES) to give APTES@Fe2O3 (AMNP) which was then reacted with diethylenetriamine-pentaacetic acid (DTPA) to give a nanohybrid DTPA-APTES@Fe2O3 (DAMNP). Nano-isothermal titration calorimetry shows that DTPA complexation with uranyl ions in water is exothermic and has a stoichiometry of two DTPA to three uranyl ions. Density functional theory calculations indicate the possibility of several complexes between DTPA and UO22+ with different stoichiometries. Interactions between uranyl ions and DAMNP functional groups are revealed by X-photoelectron and Fourier transform infrared spectroscopies. Spherical aberration-corrected Scanning Transmission Electron Microscopy visualizes uranium on the particle surface. Adsorbent performance metrics were evaluated by batch adsorption studies under different conditions of pH, initial uranium concentration and contact time, and the results expressed in terms of equilibrium adsorption capacities (qe) and partition coefficients (PC). By either criterion, performance increases from MNP to AMNP to DAMNP, with the maximum uptake at pH 5.5 in all cases: MNP, qe = 63 mg g-1, PC = 127 mg g-1 mM-1; AMNP, qe = 165 mg g-1, PC = 584 mg g-1 mM-1; DAMNP, qe = 249 mg g-1, PC = 2318 mg g-1 mM-1 (at 25 °C; initial U concentration 0.63 mM; 5 mg adsorbent in 10 mL of solution; contact time, 3 h). The pH maximum is related to the predominance of mono- and di-cationic uranium species. Uptake by DAMNPs follows a pseudo-first-order or pseudo-second-order kinetic model and fits a variety of adsorption models. The maximum adsorption capacity for DAMNPs is higher than for other functionalized magnetic nanohybrids. This adsorbent can be regenerated and recycled for at least 10 cycles with less than 10% loss in activity, and shows high selectivity. These findings suggest that DAMNP could be a promising adsorbent for the recovery of uranium from nuclear wastewaters.
Collapse
Affiliation(s)
- Yawen Xiao
- Université Paris Cité, CNRS, ITODYS, F-75013, Paris, France
| | - Ahmed S Helal
- Université Paris Cité, CNRS, ITODYS, F-75013, Paris, France; Department of Nuclear Science and Engineering, Massachusetts Institute of Technology, USA; Nuclear Materials Authority, P.O. Box 540, El Maadi, Cairo, Egypt
| | - Eva Mazario
- Université Paris Cité, CNRS, ITODYS, F-75013, Paris, France
| | - Alvaro Mayoral
- Universidad de Zaragoza Instituto de Nanociencia de Aragón Zaragoza, Aragon, Spain
| | | | | | - Rémi Losno
- Université Paris Cité, Institut de Physique du Globe de Paris, CNRS, F-75005, Paris, France
| | | | - Souad Ammar
- Université Paris Cité, CNRS, ITODYS, F-75013, Paris, France
| | - John S Lomas
- Université Paris Cité, CNRS, ITODYS, F-75013, Paris, France
| | - Miryana Hémadi
- Université Paris Cité, CNRS, ITODYS, F-75013, Paris, France.
| |
Collapse
|
7
|
Kassab WA. Comparative study for leaching processes of uranium, copper and cadmium from gibbsite ore material of Talet Seleim, Southwestern, Sinai, Egypt. J Radioanal Nucl Chem 2022. [DOI: 10.1007/s10967-022-08727-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
AbstractIn this paper, leaching characteristics are presented, and a cost-effective process for extracting uranium, copper, and cadmium from Talet Seleim’s Gibbsite is developed. H2SO4 was chosen as the preferable leaching agent based on the agitation experiment’s findings. The leaching efficiencies of U, Cu, and Cd attained 95%, 90%, and 89%, respectively, under the investigated ideal circumstances. Kinetic study of leaching process proved diffusion controlling mechanisms with activation energies: 29.59, 29.30, and 34.84 kJ/mol, respectively. U was recovered using Amberlite IRA 400, while Cu and Cd were precipitated from Talet Seleim’s gibbsite’s sulphate leachate. Finally, the tentative treatment procedure's preliminary flowsheet was then given.
Collapse
|
8
|
Wang Y, Yu DG, Liu Y, Liu YN. Progress of Electrospun Nanofibrous Carriers for Modifications to Drug Release Profiles. J Funct Biomater 2022; 13:jfb13040289. [PMID: 36547549 PMCID: PMC9787859 DOI: 10.3390/jfb13040289] [Citation(s) in RCA: 58] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 11/15/2022] [Accepted: 12/07/2022] [Indexed: 12/13/2022] Open
Abstract
Electrospinning is an advanced technology for the preparation of drug-carrying nanofibers that has demonstrated great advantages in the biomedical field. Electrospun nanofiber membranes are widely used in the field of drug administration due to their advantages such as their large specific surface area and similarity to the extracellular matrix. Different electrospinning technologies can be used to prepare nanofibers of different structures, such as those with a monolithic structure, a core-shell structure, a Janus structure, or a porous structure. It is also possible to prepare nanofibers with different controlled-release functions, such as sustained release, delayed release, biphasic release, and targeted release. This paper elaborates on the preparation of drug-loaded nanofibers using various electrospinning technologies and concludes the mechanisms behind the controlled release of drugs.
Collapse
Affiliation(s)
- Ying Wang
- School of Materials and Chemistry, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Deng-Guang Yu
- School of Materials and Chemistry, University of Shanghai for Science and Technology, Shanghai 200093, China
- Shanghai Engineering Technology Research Center for High-Performance Medical Device Materials, Shanghai 200093, China
- Correspondence: (D.-G.Y.); (Y.-N.L.)
| | - Yang Liu
- School of Chemistry and Chemical Engineering, Shanghai University of Engineering Science, 333 Long Teng Road, Shanghai 201620, China
| | - Ya-Nan Liu
- School of Materials and Chemistry, University of Shanghai for Science and Technology, Shanghai 200093, China
- Correspondence: (D.-G.Y.); (Y.-N.L.)
| |
Collapse
|
9
|
The Applications of Ferulic-Acid-Loaded Fibrous Films for Fruit Preservation. Polymers (Basel) 2022; 14:polym14224947. [PMID: 36433073 PMCID: PMC9693208 DOI: 10.3390/polym14224947] [Citation(s) in RCA: 56] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 11/11/2022] [Accepted: 11/12/2022] [Indexed: 11/18/2022] Open
Abstract
The aim of this study was to develop a novel ultrathin fibrous membrane with a core-sheath structure as an antioxidant food packaging membrane. The core-sheath structure was prepared by coaxial electrospinning, and the release of active substances was regulated by its special structure. Ferulic acid (FA) was incorporated into the electrospun zein/polyethylene oxide ultrathin fibers to ensure their synergistic antioxidant properties. We found that the prepared ultrathin fibers had a good morphology and smooth surface. The internal structure of the fibers was stable, and the three materials that we used were compatible. For the different loading positions, it was observed that the core layer ferulic-acid-loaded fibers had a sustained action, while the sheath layer ferulic-acid-loaded fibers had a pre-burst action. Finally, apples were selected for packaging using fibrous membranes to simulate practical applications. The fibrous membrane was effective in reducing water loss and apple quality loss, as well as extending the shelf life. According to these experiments, the FA-loaded zein/PEO coaxial electrospinning fiber can be used as antioxidant food packaging and will also undergo more improvements in the future.
Collapse
|
10
|
Huang C, Xu X, Fu J, Yu DG, Liu Y. Recent Progress in Electrospun Polyacrylonitrile Nanofiber-Based Wound Dressing. Polymers (Basel) 2022; 14:3266. [PMID: 36015523 PMCID: PMC9415690 DOI: 10.3390/polym14163266] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 07/31/2022] [Accepted: 08/08/2022] [Indexed: 02/07/2023] Open
Abstract
Bleeding control plays a very important role in worldwide healthcare, which also promotes research and development of wound dressings. The wound healing process involves four stages of hemostasis, inflammation, proliferation and remodeling, which is a complex process, and wound dressings play a huge role in it. Electrospinning technology is simple to operate. Electrospun nanofibers have a high specific surface area, high porosity, high oxygen permeability, and excellent mechanical properties, which show great utilization value in the manufacture of wound dressings. As one of the most popular reactive and functional synthetic polymers, polyacrylonitrile (PAN) is frequently explored to create nanofibers for a wide variety of applications. In recent years, researchers have invested in the application of PAN nanofibers in wound dressings. Research on spun nanofibers is reviewed, and future development directions and prospects of electrospun PAN nanofibers for wound dressings are proposed.
Collapse
Affiliation(s)
- Chang Huang
- School of Materials and Chemistry, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Xizi Xu
- School of Materials and Chemistry, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Junhao Fu
- School of Materials and Chemistry, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Deng-Guang Yu
- School of Materials and Chemistry, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Yanbo Liu
- School of Textile Science and Engineering, Wuhan Textile University, Wuhan 430200, China
| |
Collapse
|