Rostami-Tapeh-Esmaeil E, Rodrigue D. Morphological, Mechanical and Thermal Properties of Rubber Foams: A Review Based on Recent Investigations.
MATERIALS (BASEL, SWITZERLAND) 2023;
16:1934. [PMID:
36903049 PMCID:
PMC10004622 DOI:
10.3390/ma16051934]
[Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 02/09/2023] [Accepted: 02/22/2023] [Indexed: 06/18/2023]
Abstract
During recent decades, rubber foams have found their way into several areas of the modern world because these materials have interesting properties such as high flexibility, elasticity, deformability (especially at low temperature), resistance to abrasion and energy absorption (damping properties). Therefore, they are widely used in automobiles, aeronautics, packaging, medicine, construction, etc. In general, the mechanical, physical and thermal properties are related to the foam's structural features, including porosity, cell size, cell shape and cell density. To control these morphological properties, several parameters related to the formulation and processing conditions are important, including foaming agents, matrix, nanofillers, temperature and pressure. In this review, the morphological, physical and mechanical properties of rubber foams are discussed and compared based on recent studies to present a basic overview of these materials depending on their final application. Openings for future developments are also presented.
Collapse