1
|
Vazquez-Armenta FJ, Aros-Corrales MO, Alvarez-Ainza ML, Bernal-Mercado AT, Ayala-Zavala JF, Ochoa-Leyva A, Lopez-Zavala AA. Antibacterial and anti-virulence potential of plant phenolic compounds against Vibrio parahaemolyticus. F1000Res 2024; 12:1256. [PMID: 39345269 PMCID: PMC11437291 DOI: 10.12688/f1000research.141268.2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 06/27/2024] [Indexed: 10/01/2024] Open
Abstract
Background: Vibrio parahaemolyticus is a pathogenic bacterium that affects shrimp aquaculture; its infection can lead to severe production losses of up to 90%. On the other hand, plant phenolic compounds have emerged as a promising alternative to combat bacterial infections. The antibacterial and anti-virulence activity of the plant phenolic compounds quercetin, morin, vanillic acid, and protocatechuic acid against two strains of V. parahaemolyticus (Vp124 and Vp320) was evaluated. Methods: The broth microdilution test was carried out to determine phenolic compounds' antibacterial activity. Moreover, the biofilm-forming ability of V. parahaemolyticus strains in the presence of phenolic compounds was determined by total biomass staining assay using the cationic dye crystal violet. The semisolid agar displacement technique was used to observe the effect of phenolic compounds on the swimming-like motility of V. parahaemolyticus. Results: Results showed that phenolic compounds inhibited both strains effectively, with minimum inhibitory concentrations (MICs) ranging from 0.8 to 35.03 mM. Furthermore, at 0.125 - 0.5 × MIC of phenolic compounds, V. parahaemolyticus biofilms biomass was reduced by 63.22 - 92.68%. Also, quercetin and morin inhibited the motility of both strains by 15.86 - 23.64% (Vp124) and 24.28 - 40.71% (Vp320). Conclusions: The results suggest that quercetin, morin, vanillic, and protocatechuic acids may be potential agents for controlling V. parahaemolyticus.
Collapse
Affiliation(s)
- F Javier Vazquez-Armenta
- Departamento de Ciencias Quimico Biologicas, Universidad de Sonora, Hermosillo, Sonora, 83000, Mexico
| | - M Olivia Aros-Corrales
- Departamento de Ciencias Quimico Biologicas, Universidad de Sonora, Hermosillo, Sonora, 83000, Mexico
| | - M Lizeth Alvarez-Ainza
- Departamento de Ciencias Quimico Biologicas, Universidad de Sonora, Hermosillo, Sonora, 83000, Mexico
| | - A Thalia Bernal-Mercado
- Departamento de Investigacion y Posgrado en Alimentos, Universidad de Sonora, Hermosillo, Sonora, 83000, Mexico
| | - J Fernando Ayala-Zavala
- Coordinacion de Tecnologia de Alimentos de Origen Vegetal, Centro de Investigacion en Alimentacion y Desarrollo AC, Hermosillo, Sonora, 83304, Mexico
| | - Adrian Ochoa-Leyva
- Departamento de Microbiologia Molecular, Instituto de Biotecnologia, Universidad Nacional Autonoma de Mexico, Mexico City, Mexico City, 62210, Mexico
| | - A Alexis Lopez-Zavala
- Departamento de Ciencias Quimico Biologicas, Universidad de Sonora, Hermosillo, Sonora, 83000, Mexico
| |
Collapse
|
2
|
Kim SH, Roy PK, Park SY. Synergistic Effects of Combined Flavourzyme and Floating Electrode-Dielectric Barrier Discharge Plasma on Reduction of Escherichia coli Biofilms in Squid ( Todarodes pacificus). Microorganisms 2024; 12:1188. [PMID: 38930569 PMCID: PMC11205502 DOI: 10.3390/microorganisms12061188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 06/04/2024] [Accepted: 06/07/2024] [Indexed: 06/28/2024] Open
Abstract
This study investigated the synergistic effect of combining flavourzyme, a natural enzyme, and floating electrode-dielectric barrier discharge (FE-DBD) plasma (1.1 kV, 43 kHz, N2 1.5 m/s) treatment, a non-thermal decontamination technology, against Escherichia coli biofilms in squid. E. coli (ATCC 35150 and ATCC 14301) biofilms were formed on the surface of squid and treated with different minimum inhibitory concentrations (MICs) of flavourzyme (1/8; 31.25 μL/mL, 1/4; 62.5 μL/mL, 2/4; 125 μL/mL, and 3/4 MIC; 250 μL/mL) and FE-DBD plasma (5, 10, 30, and 60 min). Independently, flavourzyme and FE-DBD plasma treatment decreased by 0.26-1.71 and 0.19-1.03 log CFU/cm2, respectively. The most effective synergistic combination against E. coli biofilms was observed at 3/4 MIC flavourzyme + 60 min FE-DBD plasma exposure, resulting in a reduction of 1.55 log CFU/cm2. Furthermore, the combined treatment exhibited higher efficacy in E. coli biofilm inactivation in squid compared to individual treatments. The pH values of the synergistic combinations were not significantly different from those of the untreated samples. The outcomes indicate that the combined treatment with flavourzyme and FE-DBD plasma can effectively provide effective control of E. coli biofilms without causing pH changes in squid. Therefore, our study suggests a new microbial control method for microbial safety in the seafood industry.
Collapse
Affiliation(s)
| | - Pantu Kumar Roy
- Department of Seafood Science and Technology, Institute of Marine Industry, Gyeongsang National University, Tongyeong 53064, Republic of Korea;
| | - Shin Young Park
- Department of Seafood Science and Technology, Institute of Marine Industry, Gyeongsang National University, Tongyeong 53064, Republic of Korea;
| |
Collapse
|
3
|
Yang X, Wang B, Jiang K, Xu K, Zhong C, Liu M, Wang L. The combined analysis of transcriptomics and metabolomics reveals the mechanisms by which dietary quercetin regulates growth and immunity in Penaeus vannamei. FISH & SHELLFISH IMMUNOLOGY 2024; 149:109579. [PMID: 38648996 DOI: 10.1016/j.fsi.2024.109579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 04/09/2024] [Accepted: 04/19/2024] [Indexed: 04/25/2024]
Abstract
As a potent antioxidant, the flavonoid compound quercetin (QUE) has been widely used in the farming of aquatic animals. However, there are fewer reports of the beneficial effects, especially in improving immunity of Penaeus vannamei by QUE. The aim of this study was to investigate the effects of dietary QUE on growth, apoptosis, antioxidant and immunity of P. vannamei. It also explored the potential mechanisms of QUE in improving the growth and immunity of P. vannamei. P. vannamei were fed diets with QUE for 60 days. The results revealed that QUE (0.5 or 1.0 g/kg) ameliorated the growth, and the expressions of genes related to apoptosis, antioxidant, and immunity. The differentially expressed genes (DEGs) and differential metabolites (DMs) obtained through transcriptomics and metabolomics, respectively, enriched in pathways related to nutritional metabolism such as lipid metabolism, amino acid metabolism, and carbohydrate metabolism. After QUE addition, especially at 0.5 g/kg, DEGs were enriched into the functions of response to stimulus and antioxidant activity, and the pathways of HIF-1 signaling pathway, C-type lectin receptor signaling pathway, Toll-like receptor signaling pathway, and FoxO signaling pathway. In conclusion, dietary QUE can ameliorate growth, apoptosis, antioxidant and immunity of P. vannamei, the appropriate addition amount was 0.5 g/kg rather than 1.0 g/kg. Regulations of QUE on nutrient metabolism and immune-related pathways, and bioactive metabolites, were important factors for improving the aforementioned abilities in P. vannamei.
Collapse
Affiliation(s)
- Xuanyi Yang
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Key Laboratory of Breeding Biotechnology and Sustainable Aquaculture, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China; University of Chinese Academy of Sciences, Beijing, China
| | - Baojie Wang
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Key Laboratory of Breeding Biotechnology and Sustainable Aquaculture, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
| | - Keyong Jiang
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Key Laboratory of Breeding Biotechnology and Sustainable Aquaculture, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
| | - Kefeng Xu
- Qingdao Aquatic Organisms Quality Evaluation and Utilization Engineering Research Center, Marine Science Research Institute of Shandong Province, Qingdao, China
| | - Chen Zhong
- Qingdao Aquatic Organisms Quality Evaluation and Utilization Engineering Research Center, Marine Science Research Institute of Shandong Province, Qingdao, China
| | - Mei Liu
- Qingdao Aquatic Organisms Quality Evaluation and Utilization Engineering Research Center, Marine Science Research Institute of Shandong Province, Qingdao, China.
| | - Lei Wang
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Key Laboratory of Breeding Biotechnology and Sustainable Aquaculture, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China; University of Chinese Academy of Sciences, Beijing, China.
| |
Collapse
|
4
|
Bandick R, Busmann LV, Mousavi S, Shayya NW, Piwowarski JP, Granica S, Melzig MF, Bereswill S, Heimesaat MM. Therapeutic Effects of Oral Application of Menthol and Extracts from Tormentil ( Potentilla erecta), Raspberry Leaves ( Rubus idaeus), and Loosestrife ( Lythrum salicaria) during Acute Murine Campylobacteriosis. Pharmaceutics 2023; 15:2410. [PMID: 37896170 PMCID: PMC10610364 DOI: 10.3390/pharmaceutics15102410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 09/21/2023] [Accepted: 09/29/2023] [Indexed: 10/29/2023] Open
Abstract
Human food-borne infections with the enteropathogen Campylobacter jejuni are becoming increasingly prevalent worldwide. Since antibiotics are usually not indicated in campylobacteriosis, alternative treatment regimens are important. We here investigated potential disease-alleviating effects of menthol and of extracts from tormentil, raspberry leaves, and loosestrife in acute murine campylobacteriosis. Therefore, C. jejuni-infected microbiota-depleted IL-10-/- mice were orally treated with the compounds alone or all in combination from day 2 until day 6 post-infection. Whereas neither treatment regimen affected gastrointestinal pathogen loads, the combination of compounds alleviated C. jejuni-induced diarrheal symptoms in diseased mice on day 6 post-infection. Furthermore, the therapeutic application of tormentil and menthol alone and the combination of the four compounds resulted in lower colonic T cell numbers in infected mice when compared to placebo counterparts. Notably, pro-inflammatory cytokines measured in mesenteric lymph nodes taken from C. jejuni-infected mice following tormentil, menthol, and combination treatment did not differ from basal concentrations. However, neither treatment regimen could dampen extra-intestinal immune responses, including systemic pro-inflammatory cytokine secretion on day 6 post-infection. In conclusion, the combination of menthol and of extracts from tormentil, raspberry leaves, and loosestrife constitutes an antibiotic-independent approach to alleviate campylobacteriosis symptoms.
Collapse
Affiliation(s)
- Rasmus Bandick
- Gastrointestinal Microbiology Research Group, Institute of Microbiology, Infectious Diseases and Immunology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, D-12203 Berlin, Germany
| | - Lia V Busmann
- Gastrointestinal Microbiology Research Group, Institute of Microbiology, Infectious Diseases and Immunology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, D-12203 Berlin, Germany
| | - Soraya Mousavi
- Gastrointestinal Microbiology Research Group, Institute of Microbiology, Infectious Diseases and Immunology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, D-12203 Berlin, Germany
| | - Nizar W Shayya
- Gastrointestinal Microbiology Research Group, Institute of Microbiology, Infectious Diseases and Immunology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, D-12203 Berlin, Germany
| | - Jakub P Piwowarski
- Microbiota Lab, Department of Pharmaceutical Biology, Medical University of Warsaw, 02-097 Warsaw, Poland
| | - Sebastian Granica
- Microbiota Lab, Department of Pharmaceutical Biology, Medical University of Warsaw, 02-097 Warsaw, Poland
| | - Matthias F Melzig
- Institute of Pharmacy, Freie Universität Berlin, D-14195 Berlin, Germany
| | - Stefan Bereswill
- Gastrointestinal Microbiology Research Group, Institute of Microbiology, Infectious Diseases and Immunology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, D-12203 Berlin, Germany
| | - Markus M Heimesaat
- Gastrointestinal Microbiology Research Group, Institute of Microbiology, Infectious Diseases and Immunology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, D-12203 Berlin, Germany
| |
Collapse
|
5
|
Ravera S, Tancreda G, Vezzulli L, Schito AM, Panfoli I. Cirsiliol and Quercetin Inhibit ATP Synthesis and Decrease the Energy Balance in Methicillin-Resistant Staphylococcus aureus (MRSA) and Methicillin-Resistant Staphylococcus epidermidis (MRSE) Strains Isolated from Patients. Molecules 2023; 28:6183. [PMID: 37687012 PMCID: PMC10488605 DOI: 10.3390/molecules28176183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 08/19/2023] [Accepted: 08/19/2023] [Indexed: 09/10/2023] Open
Abstract
Polyphenols have attracted attention in the fight against antibiotic-resistant bacteria, as they show antibacterial action. Considering that polyphenols inhibit F1Fo-ATP synthase (ATP synthase) and that bacteria need a constant energy production to maintain their homeostasis, we evaluated the effect of two flavones, cirsiliol (tri-hy-droxy-6,7-dimethoxyflavone) and quercetin (3,3,4,5,7-pentahydroxyflavone), on energy production and intracellular ATP content in a methicillin-resistant Staphylococcus aureus (MRSA) strain and a methicillin-resistant Staphylococcus epidermidis (MRSE) strain isolated from patients, comparing the results to those obtained by treating the bacteria with oligomycin, a specific ATP synthase Fo moiety inhibitor. Real-time quantitative ATP synthesis and total ATP content of permeabilized Gram-positive bacteria were assayed by luminometry. The results showed that cirsiliol and quercetin inhibited ATP synthase and decreased the intracellular ATP levels in both strains, although the effect was higher in MRSE. In addition, while cirsiliol and quercetin acted immediately after the treatment, oligomycin inhibited ATP synthesis only after 30 min of incubation, suggesting that the different responses may depend on the different permeability of the bacterial wall to the three molecules. Thus, cirsiliol and quercetin could be considered potential additions to antibiotics due to their ability to target ATP synthase, against which bacteria cannot develop resistance.
Collapse
Affiliation(s)
- Silvia Ravera
- Department of Experimental Medicine, University of Genoa, 16132 Genoa, Italy; (S.R.)
| | - Gabriele Tancreda
- Department of Experimental Medicine, University of Genoa, 16132 Genoa, Italy; (S.R.)
| | - Luigi Vezzulli
- Department of Earth, Environmental and Life Sciences (DISTAV), University of Genoa, Corso Europa 26, 16132 Genoa, Italy
| | - Anna Maria Schito
- Department of Surgical Sciences and Integrated Diagnostics (DISC), University of Genoa, 16132 Genoa, Italy
| | - Isabella Panfoli
- Department of Pharmacy (DIFAR), University of Genoa, 16132 Genoa, Italy
| |
Collapse
|
6
|
Roy PK, Kim SH, Jeon EB, Park EH, Park SY. Inhibition of Listeria monocytogenes Cocktail Culture Biofilms on Crab and Shrimp Coupons and the Expression of Biofilm-Related Genes. Antibiotics (Basel) 2023; 12:1008. [PMID: 37370327 DOI: 10.3390/antibiotics12061008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 05/26/2023] [Accepted: 06/02/2023] [Indexed: 06/29/2023] Open
Abstract
Listeria monocytogenes, a bacterium that is transmitted by tainted food, causes the infection listeriosis. In this study, quercetin was tested for its antibacterial properties and effectiveness as a food additive in preventing the growth of L. monocytogenes cocktail (ATCC19117, ATCC19113, and ATCC15313) biofilms on crabs and shrimps. Quercetin showed the least bactericidal activity and no discernible microbial growth at a minimum inhibitory concentration (MIC) of 250 µg/mL. The biofilm inhibition was performed at sub-MICs (1/2, 1/4, and 1/8 MIC). There was no quercetin added to the control group. Additionally, the present work examines the expression of various genes related to biofilm formation and quorum sensing (flaA, fbp, agrA, hlyA, and prfA). The levels of target genes were all significantly down-regulated. Quercetin (0-125 µg/mL) on the surfaces of the crab and shrimp was studied; its inhibitory effects were measured as log reductions at 0.39-2.31 log CFU/cm2 and 0.42-2.36 log CFU/cm2, respectively (p < 0.05). Quercetin reduced the formation of biofilms by disrupting cell-to-cell connections and causing cell lysis, which led to the deformation of the cells, evidenced by FE-SEM (field-emission scanning electron microscopy). These findings emphasize the significance of using natural food agents to target bacteria throughout the entire food production process.
Collapse
Affiliation(s)
- Pantu Kumar Roy
- Institute of Marine Industry, Department of Seafood Science and Technology, Gyeongsang National University, Tongyeong 53064, Republic of Korea
| | - So Hee Kim
- Institute of Marine Industry, Department of Seafood Science and Technology, Gyeongsang National University, Tongyeong 53064, Republic of Korea
| | - Eun Bi Jeon
- Institute of Marine Industry, Department of Seafood Science and Technology, Gyeongsang National University, Tongyeong 53064, Republic of Korea
| | - Eun Hee Park
- Institute of Marine Industry, Department of Seafood Science and Technology, Gyeongsang National University, Tongyeong 53064, Republic of Korea
| | - Shin Young Park
- Institute of Marine Industry, Department of Seafood Science and Technology, Gyeongsang National University, Tongyeong 53064, Republic of Korea
| |
Collapse
|
7
|
Song MG, Roy PK, Jeon EB, Kim SH, Heu MS, Lee JS, Choi JS, Kim JS, Park SY. Effect of Dielectric Barrier Discharge Plasma against Listeria monocytogenes Mixed-Culture Biofilms on Food-Contact Surfaces. Antibiotics (Basel) 2023; 12:antibiotics12030609. [PMID: 36978476 PMCID: PMC10045436 DOI: 10.3390/antibiotics12030609] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 03/17/2023] [Accepted: 03/17/2023] [Indexed: 03/30/2023] Open
Abstract
Listeria monocytogenes is a major foodborne pathogen. Various methods can be used to control biofilms formed by foodborne pathogens. Recently, the food industry has become interested in plasma, which can be used as a non-thermal technology with minimum changes to product quality. In this study, the effects of dielectric barrier discharge (DBD) plasma on L. monocytogenes mixed-culture biofilms formed on stainless steel (SS), latex hand glove (HG), and silicone rubber (SR) were investigated. DBD plasma effectuated reductions of 0.11-1.14, 0.28-1.27 and 0.37-1.55 log CFU/cm2, respectively. Field emission scanning electron microscopy (FE-SEM) demonstrated that DBD plasma cuts off intercellular contact and induces cell decomposition to prevent the development of biological membranes. It was confirmed that the formed biofilms collapsed and separated into individual bacteria. Our findings suggest that DBD plasma can be used as an alternative non-heating sterilization technology in the food industry to reduce biofilm formation on bacterial targets.
Collapse
Affiliation(s)
- Min Gyu Song
- Institute of Marine Industry, Department of Seafood Science and Technology, Gyeongsang National University, Tongyeong 53064, Republic of Korea
| | - Pantu Kumar Roy
- Institute of Marine Industry, Department of Seafood Science and Technology, Gyeongsang National University, Tongyeong 53064, Republic of Korea
| | - Eun Bi Jeon
- Institute of Marine Industry, Department of Seafood Science and Technology, Gyeongsang National University, Tongyeong 53064, Republic of Korea
| | - So Hee Kim
- Institute of Marine Industry, Department of Seafood Science and Technology, Gyeongsang National University, Tongyeong 53064, Republic of Korea
| | - Min Soo Heu
- Research Center for Industrial Development of Seafood, Gyeongsang National University, Tongyeong 53064, Republic of Korea
- Department of Food and Nutrition, Gyeongsang National University, Jinju 52828, Republic of Korea
| | - Jung-Suck Lee
- Institute of Marine Industry, Department of Seafood Science and Technology, Gyeongsang National University, Tongyeong 53064, Republic of Korea
- Research Center for Industrial Development of Seafood, Gyeongsang National University, Tongyeong 53064, Republic of Korea
| | - Jae-Suk Choi
- Institute of Marine Industry, Department of Seafood Science and Technology, Gyeongsang National University, Tongyeong 53064, Republic of Korea
| | - Jin-Soo Kim
- Institute of Marine Industry, Department of Seafood Science and Technology, Gyeongsang National University, Tongyeong 53064, Republic of Korea
- Research Center for Industrial Development of Seafood, Gyeongsang National University, Tongyeong 53064, Republic of Korea
| | - Shin Young Park
- Institute of Marine Industry, Department of Seafood Science and Technology, Gyeongsang National University, Tongyeong 53064, Republic of Korea
| |
Collapse
|
8
|
Ali NB, El-Shiekh RA, Ashour RM, El-Gayed SH, Abdel-Sattar E, Hassan M. In Vitro and In Vivo Antibiofilm Activity of Red Onion Scales: An Agro-Food Waste. Molecules 2023; 28:molecules28010355. [PMID: 36615550 PMCID: PMC9822268 DOI: 10.3390/molecules28010355] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 12/21/2022] [Accepted: 12/23/2022] [Indexed: 01/04/2023] Open
Abstract
Red onion wastes (ROW) are valuable sources of bioactive metabolites with promising antimicrobial effects. Methicillin-resistant Staphylococcus aureus (MRSA) infections are a growing risk in hospitals and communities. This study aims to investigate the in vitro and in vivo antibiofilm activities of the acidified ethanolic extract of red onion scales (RO-T) and its fractions against an MRSA vaginal colonization model. The RO-T extract, as well as its anthocyanin-rich fraction (RO-P) and flavonoid-rich fraction (RO-S), recorded a promising antibacterial activity against highly virulent strains of bacteria (MRSA, Acinetobacter baumannii, Escherichia coli and Pseudomonas aeruginosa). RO-S showed the highest antibacterial activity (MBC of 0.33 ± 0.11 mg/mL) against MRSA USA300 and significantly eradicated its biofilm formation with an IC50 of 0.003. Using a rat model, in vivo assessment on all samples, which were formulated as a hydrogel, revealed a significant reduction of MRSA bacterial load recovered from an infected vagina compared to that of the negative control group (NCG). RO-T extract and vancomycin groups recorded the highest antibacterial activity with a bacterial load 2.998 and 3.358 logs lower than the NCG, respectively. The histopathological investigation confirmed our findings. RO-T and RO-S were standardized for their quercetin content. Finally, ROW offers a new potent antibiofilm agent mostly due to its high quercetin content.
Collapse
Affiliation(s)
- Nermeen B. Ali
- Department of Pharmacognosy, Faculty of Pharmacy, Cairo University, Cairo 11562, Egypt
| | - Riham A. El-Shiekh
- Department of Pharmacognosy, Faculty of Pharmacy, Cairo University, Cairo 11562, Egypt
| | - Rehab M. Ashour
- Department of Pharmacognosy, Faculty of Pharmacy, Cairo University, Cairo 11562, Egypt
| | - Sabah H. El-Gayed
- Department of Pharmacognosy, Faculty of Pharmacy, Cairo University, Cairo 11562, Egypt
- Department of Pharmacognosy, Faculty of Pharmacy, 6th October University, Cairo 12585, Egypt
| | - Essam Abdel-Sattar
- Department of Pharmacognosy, Faculty of Pharmacy, Cairo University, Cairo 11562, Egypt
- Correspondence:
| | - Mariam Hassan
- Department of Microbiology and Immunology, Faculty of Pharmacy, Cairo University, Cairo 11562, Egypt
- Department of Microbiology and Immunology, Faculty of Pharmacy, Galala University, New Galala City, Suez 43511, Egypt
| |
Collapse
|
9
|
Antibiofilm Efficacy of Quercetin against Vibrio parahaemolyticus Biofilm on Food-Contact Surfaces in the Food Industry. Microorganisms 2022; 10:microorganisms10101902. [PMID: 36296179 PMCID: PMC9610505 DOI: 10.3390/microorganisms10101902] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 09/22/2022] [Accepted: 09/23/2022] [Indexed: 11/21/2022] Open
Abstract
Vibrio parahaemolyticus, one of the most common foodborne pathogenic bacteria that forms biofilms, is a persistent source of concern for the food industry. The food production chain employs a variety of methods to control biofilms, although none are completely successful. This study aims to evaluate the effectiveness of quercetin as a food additive in reducing V. parahaemolyticus biofilm formation on stainless-steel coupons (SS) and hand gloves (HG) as well as testing its antimicrobial activities. With a minimum inhibitory concentration (MIC) of 220 µg/mL, the tested quercetin exhibited the lowest bactericidal action without visible growth. In contrast, during various experiments in this work, the inhibitory efficacy of quercetin at sub-MICs levels (1/2, 1/4, and 1/8 MIC) against V. parahaemolyticus was examined. Control group was not added with quercetin. With increasing quercetin concentration, swarming and swimming motility, biofilm formation, and expression levels of target genes linked to flagellar motility (flaA, flgL), biofilm formation (vp0952, vp0962), virulence (VopQ, vp0450), and quorum-sensing (aphA, luxS) were all dramatically suppressed. Quercetin (0−110 μg/mL) was investigated on SS and HG surfaces, the inhibitory effect were 0.10−2.17 and 0.26−2.31 log CFU/cm2, respectively (p < 0.05). Field emission scanning electron microscopy (FE-SEM) corroborated the findings because quercetin prevented the development of biofilms by severing cell-to-cell contacts and inducing cell lysis, which resulted in the loss of normal cell shape. Additionally, there was a significant difference between the treated and control groups in terms of motility (swimming and swarming). According to our research, quercetin produced from plants should be employed as an antibiofilm agent in the food sector to prevent the growth of V. parahaemolyticus biofilms. These results indicate that throughout the entire food production chain, bacterial targets are of interest for biofilm reduction with alternative natural food agents in the seafood industry.
Collapse
|