1
|
Liu C, Li N, An X, Li X, Liu Z. Pectin/zinc alginate films containing anthocyanins from dragon fruit peel as intelligent pH indicators for shrimp freshness monitor. Int J Biol Macromol 2024; 285:138317. [PMID: 39638182 DOI: 10.1016/j.ijbiomac.2024.138317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Revised: 11/10/2024] [Accepted: 12/01/2024] [Indexed: 12/07/2024]
Abstract
The novel incorporation of dragon fruit peel extract (DE), rich in anthocyanins, Zn2+ (from Zinc Alginate) and pectin was applied to create active and intelligent food packaging composite films. These films were characterized for their microstructure and properties. Various levels of anthocyanin extracts (1 %, 3 %, and 5 %) were evaluated for their impact on the films' physical and functional properties, incorporating microstructure, mechanical strength, barrier properties, pH sensitivity, and bacteriostatic effectiveness. The films exhibited a significant antibacterial rate of up to 99.99 % against common foodborne pathogens, enhanced flame retardancy with an enhancement of 32.7 %, and a broad pH sensitivity range, indicating their adaptability to various conditions. The results demonstrated that the prepared indicator film achieved a 50 % reduction in water vapor permeability. Additionally, the mechanical properties were enhanced, with only a slight decrease of 12.2 % in tensile strength and 14.0 % in elongation at break. In tests monitoring shrimp freshness, pectin/ZA/DE films showed notable color changes correlating with shrimp quality. These specific values highlight the pectin/ZA/DE films' potential for real-world applications, suggesting that they have potential applications as smart packaging materials in the food industry.
Collapse
Affiliation(s)
- Chang Liu
- College of Material Science and Engineering, Northeast Forestry University, Harbin 150040, PR China
| | - Ning Li
- College of Material Science and Engineering, Northeast Forestry University, Harbin 150040, PR China
| | - Xinyu An
- College of Material Science and Engineering, Northeast Forestry University, Harbin 150040, PR China
| | - Xu Li
- College of Material Science and Engineering, Northeast Forestry University, Harbin 150040, PR China
| | - Zhiming Liu
- College of Material Science and Engineering, Northeast Forestry University, Harbin 150040, PR China.
| |
Collapse
|
2
|
Matheus JRV, Maragoni-Santos C, de Freitas TF, Hackbart EFC, Ribeiro-Santos R, Perrone D, de Sousa AMF, Luchese CL, de Andrade CJ, Fai AEC. Starch-pectin smart tag containing purple carrot peel anthocyanins as a potential indicator of analogous meat freshness. Int J Biol Macromol 2024; 283:137161. [PMID: 39500436 DOI: 10.1016/j.ijbiomac.2024.137161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Revised: 10/05/2024] [Accepted: 10/30/2024] [Indexed: 11/19/2024]
Abstract
Smart films of starch/pectin and purple carrot peel (PCP) containing anthocyanins were developed, characterized, and used as pH-responsive tags to monitor plant-based chicken analogous. This study innovates by incorporating PCP in the film solution both as an extract and as a powder, and the resulting tags were applied to a plant-based food. PCP powder <100-mesh was directly incorporated into the film-forming suspension. For powder >100-mesh, two extracts were tested: an aqueous solution and a 1 % NADES solution added to the film-forming suspension. Quantification of PCP anthocyanins by HPLC showed a higher extraction under acidic conditions (1664 mg C3G equivalents 100 g-1). Films with PCP presented greater light protection. Films with 15 % and 25 % PCP and those with added extract showed better tensile strength (3.0-3.6 MPa), elongation at break (16-20 %) and a water contact angle of 52°. All films responded to pH variations (1 to 14) and ammonia vapor and showed ΔE* values >5. After 3 days, films used as smart tags monitoring chicken analogous presented noticeable color differences for PCPNADES (55 ± 8) and 15%PCP (40 ± 1). PCP showed strong potential as a pigmenting agent in films, especially as an aqueous extract with NADES for use as pH-responsive tags in chicken analogous.
Collapse
Affiliation(s)
- Julia Rabelo Vaz Matheus
- Food and Nutrition Graduate Program, Federal University of Rio de Janeiro State (UNIRIO), Rio de Janeiro, RJ, Brazil
| | - Carollyne Maragoni-Santos
- Food and Nutrition Graduate Program, Federal University of Rio de Janeiro State (UNIRIO), Rio de Janeiro, RJ, Brazil
| | - Thalita Ferreira de Freitas
- Laboratory of Multidisciplinary Practices for Sustainability (LAMPS), Institute of Nutrition, Rio de Janeiro State University (UERJ), Rio de Janeiro, RJ, Brazil
| | - Emily Farias Costa Hackbart
- Laboratory of Multidisciplinary Practices for Sustainability (LAMPS), Institute of Nutrition, Rio de Janeiro State University (UERJ), Rio de Janeiro, RJ, Brazil
| | - Regiane Ribeiro-Santos
- Laboratório de Bioquímica Nutricional e de Alimentos, Biochemistry Department, Chemistry Institute, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, RJ, Brazil
| | - Daniel Perrone
- Laboratório de Bioquímica Nutricional e de Alimentos, Biochemistry Department, Chemistry Institute, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, RJ, Brazil
| | | | - Cláudia Leites Luchese
- Latin American Institute of Technology, Infrastructure and Territory (ILATIT), Federal University of Latin American Integration (UNILA), Foz do Iguaçu, PR, Brazil
| | - Cristiano José de Andrade
- Department of Chemical Engineering and Food Engineering, Technological Center, Federal University of Santa Catarina (USFC), Florianópolis, SC, Brazil
| | - Ana Elizabeth Cavalcante Fai
- Food and Nutrition Graduate Program, Federal University of Rio de Janeiro State (UNIRIO), Rio de Janeiro, RJ, Brazil; Laboratory of Multidisciplinary Practices for Sustainability (LAMPS), Institute of Nutrition, Rio de Janeiro State University (UERJ), Rio de Janeiro, RJ, Brazil.
| |
Collapse
|
3
|
Prithiviraj M, Sasidharan A, Krishna BM, Sabu S, Sunooj KV, Anoop K, George J. Characterization and qualitative evaluation of cassava starch-chitosan edible food wrap enriched with culinary leaf powders for eco-friendly food packaging applications. FOOD SCI TECHNOL INT 2024; 30:751-763. [PMID: 37264607 DOI: 10.1177/10820132231179492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Cassava starch-based edible food wraps were prepared by incorporating leaf powder from Indian curry leaf and Malabar bay leaf, reinforced with different (0.2, 0.4, 0.6, 0.8) wt.% of chitosan. Eleven combinations of films were prepared and their sensory acceptability, physical properties, Fourier-transform infrared spectroscopic (FTIR) spectrum, and scanning electron microscopy (SEM) image, were evaluated. The thickness of the films ranged from 0.198 ± 0.12 to 0.372 ± 0.27 mm. Tensile strength was reported to be the highest (40.71 ± 1.21 MPa) in the curry leaf powder incorporated sample. Maximum elongation at break was reported by bay leaf powder incorporated (5.8 ± 1.59%) sample. The Young's modulus values were observed to be increasing along with the concentration of chitosan. Maximum seal strength values were reported by curry leaf powder incorporated film with 0.8% chitosan (2.93 ± 0.22 N/mm). The leaf powder incorporated samples reported a higher flavonoid content compared to the control. The color analysis (L*, a*, b*) of the films was identical to the natural leaf color. The SEM images indicated a rough texture for the leaf powder incorporated films. The FTIR evaluation confirmed the presence of the respective functional groups. The statistical evaluation done by statistical package for social sciences software showed that all the data were significantly different (P ≤ 0.05.). The study demonstrated the potential of incorporation of leaf powder and chitosan to enhance the properties of starch-based edible packaging.
Collapse
Affiliation(s)
- Mohandas Prithiviraj
- Department of Fish Processing Technology, Kerala University of Fisheries and Ocean Studies, Kerala, India
| | - Abhilash Sasidharan
- Department of Fish Processing Technology, Kerala University of Fisheries and Ocean Studies, Kerala, India
| | - Bindu Murali Krishna
- Sophisticated Test and Instrumentation Centre, Cochin University of Science and Technology, Kerala, India
| | - Sarsan Sabu
- School of Industrial Fisheries, Cochin University of Science and Technology, Kerala, India
| | | | - Kiliyanamkandy Anoop
- Department of Physics, Cochin University of Science and Technology, Kerala, India
| | - Johnsy George
- Food Engineering & Packaging, Defence Food Research Laboratory, Mysuru, India
| |
Collapse
|
4
|
Sandaruwan HHPB, Manatunga DC, N Liyanage R, Costha NP, Dassanayake RS, Wijesinghe RE, Zhou Y, Liu Y. Next-generation methods for precise pH detection in ocular chemical burns: a review of recent analytical advancements. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2024. [PMID: 39564777 DOI: 10.1039/d4ay01178c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2024]
Abstract
Ocular burns due to accidental chemical spillage pose an immediate threat, representing over 20% of emergency ocular traumas. Early detection of the ocular pH is imperative in managing ocular chemical burns. Alkaline chemical burns are more detrimental than acidic chemical burns. Current practices utilize litmus, nitrazine strips, bromothymol blue, fluorescent dyes, and micro-combination glass probes to detect ocular pH. However, these methods have inherent drawbacks, leading to inaccurate pH measurements, less sensitivity, photodegradation, limited pH range, and longer response time. Hence, there is a tremendous necessity for developing relatively simple, accurate, precise ocular pH detection methods. The current review aims to provide comprehensive coverage of the conventional practices of ocular pH measurement during accidental chemical burns, highlighting their strengths and weaknesses. Besides, it delves into cutting-edge technologies, including pH-sensing contact lenses, microfluidic contact lenses, fluorescent scleral contact lenses, fiber optic pH technology, and pH-sensitive thin films. The study meticulously examines the reported work since 2000. The collected data have also helped propose future directions, and the research gap needs to be filled to provide a more rapid, sensitive, and accurate measurement of ocular pH in eye clinics. For the first time, this review consolidates current techniques and recent advancements in ocular pH detection, offering a strategic overview to propel ophthalmic-related research forward and enhance ocular burn management during a chemical spillage.
Collapse
Affiliation(s)
- H H P Benuwan Sandaruwan
- Department of Biosystems Technology, Faculty of Technology, University of Sri Jayewardenepura, Pitipana North, Homagama 10206, Sri Lanka.
| | - Danushika C Manatunga
- Department of Biosystems Technology, Faculty of Technology, University of Sri Jayewardenepura, Pitipana North, Homagama 10206, Sri Lanka.
- UCL School of Pharmacy, University College London, 29-39 Brunswick Square, London WC1N 1AX, UK
| | - Renuka N Liyanage
- Department of Materials and Mechanical Technology, Faculty of Technology, University of Sri Jayewardenepura, Pitipana North, Homagama 10200, Sri Lanka
| | | | - Rohan S Dassanayake
- Department of Biosystems Technology, Faculty of Technology, University of Sri Jayewardenepura, Pitipana North, Homagama 10206, Sri Lanka.
| | - Ruchire Eranga Wijesinghe
- Center for Excellence in Informatics, Electronics & Transmission (CIET), Sri Lanka Institute of Information Technology, Malabe, 10115, Sri Lanka
- Department of Electrical and Electronic Engineering, Faculty of Engineering, Sri Lanka Institute of Information Technology, Malabe, 10115, Sri Lanka
| | - Yang Zhou
- Key Laboratory of Advanced Materials of Tropical Island Resources of Ministry of Education and School of Chemical Engineering and Technology, Hainan University, Haikou, Hainan 570228, China
| | - Yuanyuan Liu
- Key Laboratory of Advanced Materials of Tropical Island Resources of Ministry of Education and School of Chemical Engineering and Technology, Hainan University, Haikou, Hainan 570228, China
| |
Collapse
|
5
|
Chen X, Xiao N, Xiang H, Li S, Zhu Z, Cong X, Chen X, Cheng S. Fabrication and characterization of double-layer active intelligent film based on chitosan, polyvinyl alcohol, grape skin anthocyanin and selenium nanoparticle. Int J Biol Macromol 2024; 282:137211. [PMID: 39505176 DOI: 10.1016/j.ijbiomac.2024.137211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 10/26/2024] [Accepted: 11/01/2024] [Indexed: 11/08/2024]
Abstract
This study involved the fabrication of double-layer intelligent films using chitosan (CS), polyvinyl alcohol (PVA), grape skin anthocyanin (GSA), gellan gum (GG) and selenium nanoparticles (SeNPs). The CS/PVA/GSA layer functioned as the internal indicator layer, and the GG/SeNPs layer acted as the external layer for antioxidant and antimicrobial purposes. SEM, FTIR, XRD, and TGA results confirmed the successful fabrication of double-layer films as well as the presence of hydrogen bonding interaction between the two layers. The tensile strength of double-layer films (8.06 MPa-9.61 MPa) fallen between that of single-layer CS/PVA/GSA film (12.51 MPa) and GG/SeNPs film (1.50 MPa-7.67 MPa). The double-layer films demonstrated good UV-blocking abilities, as well as outstanding antioxidant (ABTS scavenging rate can be up to ∼80 %) and antimicrobial properties. Compared with single-layer CS/PVA/GSA film, the double-layer film incorporated with 6.6 wt% SeNPs (CPG/GS2 film) possessed a more rapid and stronger response towards NH3/acetic acid as well as enhanced storage stability. Furthermore, the CPG/GS2 film can increase the shelf life of strawberries at 25 °C by 4 days, and its visible color change showed strong correlation with the weight loss rate (R2 = 0.99) and hardness (R2 = 0.98) of strawberries.
Collapse
Affiliation(s)
- Xu Chen
- School of Modern Industry for Selenium Science and Engineering, Wuhan Polytechnic University, Wuhan 430023, PR China; National R&D center for Se-rich Agricultural Products Processing, Wuhan Polytechnic University, Wuhan, 430023, China.
| | - Naiyu Xiao
- School of Modern Industry for Selenium Science and Engineering, Wuhan Polytechnic University, Wuhan 430023, PR China; National R&D center for Se-rich Agricultural Products Processing, Wuhan Polytechnic University, Wuhan, 430023, China
| | - Hongxia Xiang
- School of Modern Industry for Selenium Science and Engineering, Wuhan Polytechnic University, Wuhan 430023, PR China; National R&D center for Se-rich Agricultural Products Processing, Wuhan Polytechnic University, Wuhan, 430023, China
| | - Shuyi Li
- School of Modern Industry for Selenium Science and Engineering, Wuhan Polytechnic University, Wuhan 430023, PR China; National R&D center for Se-rich Agricultural Products Processing, Wuhan Polytechnic University, Wuhan, 430023, China.
| | - Zhenzhou Zhu
- School of Modern Industry for Selenium Science and Engineering, Wuhan Polytechnic University, Wuhan 430023, PR China; National R&D center for Se-rich Agricultural Products Processing, Wuhan Polytechnic University, Wuhan, 430023, China
| | - Xin Cong
- National R&D center for Se-rich Agricultural Products Processing, Wuhan Polytechnic University, Wuhan, 430023, China
| | - Xiang Chen
- School of Modern Industry for Selenium Science and Engineering, Wuhan Polytechnic University, Wuhan 430023, PR China; National R&D center for Se-rich Agricultural Products Processing, Wuhan Polytechnic University, Wuhan, 430023, China
| | - Shuiyuan Cheng
- School of Modern Industry for Selenium Science and Engineering, Wuhan Polytechnic University, Wuhan 430023, PR China; National R&D center for Se-rich Agricultural Products Processing, Wuhan Polytechnic University, Wuhan, 430023, China
| |
Collapse
|
6
|
Yekta R, Dabbagh Moghaddam A, Hosseini H, Sharifan A, Hadi S, Hosseini‐Shokouh S. Effect of using biodegradable film constituting red grape anthocyanins as a novel packaging on the qualitative attributes of emergency food bars during storage. Food Sci Nutr 2024; 12:2702-2723. [PMID: 38628210 PMCID: PMC11016447 DOI: 10.1002/fsn3.3951] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2023] [Revised: 12/26/2023] [Accepted: 12/29/2023] [Indexed: 04/19/2024] Open
Abstract
This study presents a novel packaging film based on whey protein isolate/κ-carrageenan (WC) with red grape pomace anthocyanins (RGA) to investigate its impact on some qualitative attributes of emergency food bars (EFBs) for 6 months at 38°C. Increasing the RGA dose in WC films from 5% (WCA5) to 10% (WCA10) reduced hydrogen bonding between polymers and polymer homogeneity in the matrix according to FTIR and SEM. Tensile strength slightly declined in WCA5 from 7.47 ± 0.26 to 6.97 ± 0.12, while elongation increased from 27.74 ± 1.36 to 32.36 ± 1.25% compared to WC film. The maximum weight loss temperature (TM) increased by incorporating 5 wt% RGA from 182.95°C to 244.36°C, whereas TM declined to 187.19°C in WCA10 film. WVP and OTR slightly changed in WCA5 (from 7.83 ± 0.07 and 2.57 ± 0.18 to 8.41 ± 0.03 g H2O.m/m2.Pa.s × 10-9 and 1.79 ± 0.32 cm3 O2/m2.d.bar, respectively), but significantly impaired in WCA10 compared to WC film. WCA5 and WCA10 films had high AA%, 68.77%, and 79.21%, respectively. WCA10 film presented great antimetrical properties against Staphylococcus aureus with an inhibition zone of 6.00 mm. The light transmission of RGA-contained films in the UV spectrum was below 10%. The WCA5 film effectively restrained moisture loss and hardness increment until the end of the storage period, which were 14.33% and 28.76%, respectively, compared to day 0. Antioxidant films provided acceptable resistance against oxidation to EBF treatment. Sensory panels scored WCA5 and WCA10 higher in overall acceptance with 5.64 and 5.40 values, respectively, while complaining about the hardness of OPP treatment. The results of this investigation demonstrated that incorporating RGA, preferably 5 wt%, into WC-based film effectively improved the qualitative properties of EFB during the 6-month shelf life. This film might be a promising alternative for packaging light and oxygen-sensitive food products.
Collapse
Affiliation(s)
- Reza Yekta
- Infectious Diseases Research CenterAja University of Medical SciencesTehranIran
| | - Arasb Dabbagh Moghaddam
- Infectious Diseases Research CenterAja University of Medical SciencesTehranIran
- Department of Public Health and Nutrition, Faculty of MedicineAja University of Medical SciencesTehranIran
| | - Hedayat Hosseini
- Department of Food Science and Technology, National Nutrition and Food Technology Research Institute, Faculty of Nutrition Science and Food TechnologyShahid Beheshti University of Medical SciencesTehranIran
| | - Anousheh Sharifan
- Department of Food Science and Technology, Science and Research BranchIslamic Azad UniversityTehranIran
| | - Saeed Hadi
- Department of Public Health and Nutrition, Faculty of MedicineAja University of Medical SciencesTehranIran
| | | |
Collapse
|
7
|
Dirpan A, Langkong J, Laga A, Djalal M, Khosuma M, Nurhisna NI, Azkiyah M. Fabrication of freshness indicators based on methylcellulose-containing color indicator solutions for monitoring the quality of coconut water. Heliyon 2024; 10:e28317. [PMID: 38560682 PMCID: PMC10979229 DOI: 10.1016/j.heliyon.2024.e28317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 03/14/2024] [Accepted: 03/15/2024] [Indexed: 04/04/2024] Open
Abstract
This is the first study to apply intelligent packaging to coconut water. The purpose of this study was to determine the best color indicator solution for making freshness indicator labels based on methylcellulose along with the color change profile of coconut water during storage at room temperature. Three color indicator solutions were used, namely phenol red, bromothymol blue, and methyl red, which were then continued with the fabrication of freshness indicator labels based on methylcellulose from each of these color indicator solutions and applied to coconut water at 25 °C room temperature storage for 24 h with observations every 4 h in the form of pH, total dissolved solids, total acid, turbidity, total microbes, CO2 gas, O2 gas, and freshness indicator label color changes. The values of pH, total soluble solids, and O2 gas decreased with storage time, whereas the values of total acid, turbidity, total microbes, and CO2 gas continued to increase. The methylcellulose-based phenol red freshness indicator label provides the best color change profile that matches the freshness condition of coconut water, namely purplish red (fresh), orange (immediately consumed), and yellow (damaged) so that it can be used as intelligent packaging to monitor the quality of coconut water.
Collapse
Affiliation(s)
- Andi Dirpan
- Department of Agricultural Technology, Faculty of Agriculture, Hasanuddin University, Makassar, 90245, Indonesia
- Research Group for Post-Harvest Technology and Biotechnology, Makassar, 90245, Indonesia
| | - Jumriah Langkong
- Department of Agricultural Technology, Faculty of Agriculture, Hasanuddin University, Makassar, 90245, Indonesia
| | - Amran Laga
- Department of Agricultural Technology, Faculty of Agriculture, Hasanuddin University, Makassar, 90245, Indonesia
| | - Muspirah Djalal
- Department of Agricultural Technology, Faculty of Agriculture, Hasanuddin University, Makassar, 90245, Indonesia
| | - Matthew Khosuma
- Research Group for Post-Harvest Technology and Biotechnology, Makassar, 90245, Indonesia
| | | | - Meysi Azkiyah
- Department of Agrotechnology and Food Science, Wageningen University & Research, 6708, PB, Wageningen, the Netherlands
| |
Collapse
|
8
|
Anugrah DSB, Darmalim LV, Sinanu JD, Pramitasari R, Subali D, Prasetyanto EA, Cao XT. Development of alginate-based film incorporated with anthocyanins of red cabbage and zinc oxide nanoparticles as freshness indicator for prawns. Int J Biol Macromol 2023; 251:126203. [PMID: 37579908 DOI: 10.1016/j.ijbiomac.2023.126203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 06/18/2023] [Accepted: 08/05/2023] [Indexed: 08/16/2023]
Abstract
The objective of this study was to develop pH-sensitive film indicators for intelligent food packaging by incorporating red cabbage anthocyanins (RCA) and zinc oxide nanoparticles (ZnO NPs) into an alginate (Alg) film, aiming to mitigate the risk of foodborne illnesses. The films were fabricated using a solvent-casting method and crosslinked with a calcium chloride (CaCl2) solution. Thorough evaluations of the films' physical, mechanical, and structural properties demonstrated significant improvements in elastic modulus and UV/vis light barrier characteristics, reduced water vapor permeability (WVP), and moisture content attributed to integrating RCA and ZnO NPs. The resulting film displayed discernible color changes when exposed to various pH buffer solutions and ammonia vapor, indicating heightened sensitivity to pH fluctuations due to the presence of ZnO NPs. Visual assessment using prawns as test specimens revealed a color shift from violet (indicating satisfactory condition) to blue-greenish (indicating spoilage), corroborated by colorimetric analysis. Moreover, the Alg/ZnO/RCA film exhibited antioxidant and antibacterial properties, demonstrated biodegradation activity, and showed no toxic effects on RSC96 cells, further underscoring its potential as an effective freshness indicator for food products.
Collapse
Affiliation(s)
- Daru Seto Bagus Anugrah
- Biotechnology Study Program, Faculty of Biotechnology, Atma Jaya Catholic University of Indonesia, BSD Campus, Tangerang 15345, Indonesia.
| | - Laura Virdy Darmalim
- Biotechnology Study Program, Faculty of Biotechnology, Atma Jaya Catholic University of Indonesia, BSD Campus, Tangerang 15345, Indonesia
| | - Juan David Sinanu
- Biotechnology Study Program, Faculty of Biotechnology, Atma Jaya Catholic University of Indonesia, BSD Campus, Tangerang 15345, Indonesia
| | - Rianita Pramitasari
- Food Technology Study Program, Faculty of Biotechnology, Atma Jaya Catholic University of Indonesia, BSD Campus, Tangerang 15345, Indonesia
| | - Dionysius Subali
- Biotechnology Study Program, Faculty of Biotechnology, Atma Jaya Catholic University of Indonesia, BSD Campus, Tangerang 15345, Indonesia
| | - Eko Adi Prasetyanto
- Pharmacy Study Program, Faculty of Medicine and Health Science, Atma Jaya Catholic University of Indonesia, Pluit Campus, Tangerang 15345, Indonesia
| | - Xuan Thang Cao
- Faculty of Chemical Engineering, Industrial University of Ho Chi Minh City, Ho Chi Minh City 700000, Viet Nam
| |
Collapse
|
9
|
Santoso VR, Pramitasari R, Anugrah DSB. Development of Indicator Film Based on Cassava Starch-Chitosan Incorporated with Red Dragon Fruit Peel Anthocyanins-Gambier Catechins to Detect Banana Ripeness. Polymers (Basel) 2023; 15:3609. [PMID: 37688235 PMCID: PMC10489926 DOI: 10.3390/polym15173609] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2023] [Revised: 08/27/2023] [Accepted: 08/29/2023] [Indexed: 09/10/2023] Open
Abstract
Banana ripeness is generally determined based on physical attributes, such as skin color; however, it is considered subjective because it depends on individual factors and lighting conditions. In addition, improper handling can cause mechanical damage to the fruit. Intelligent packaging in the form of indicator film incorporated with anthocyanins from red dragon fruit peel has been applied for shrimp freshness detection; however, this film has low color stability during storage, necessitating the addition of gambier catechins as a co-pigment to increase anthocyanin stability. Nevertheless, the characteristics of films that contain gambier catechins and their applications to bananas have not been studied yet; therefore, this study aims to develop and characterize indicator films that were incorporated with red dragon fruit peel anthocyanins and gambier catechins to detect banana ripeness. In this study, the indicator films were made via solvent casting. The films were characterized for their structural, mechanical, and physicochemical properties, and then applied to banana packaging. The results show that the film incorporated with anthocyanins and catechins in a ratio of 1:40 (w/w) resulted in better color stability, mechanical properties, light and water vapor barrier ability, and antioxidant activity. The application of the indicator films to banana packaging resulted in a change in color on the third day of storage. It can be concluded that these films could potentially be used as an indicator to monitor banana ripeness.
Collapse
Affiliation(s)
- Valentia Rossely Santoso
- Food Technology Study Program, Faculty of Biotechnology, Atma Jaya Catholic University of Indonesia, BSD Campus, Tangerang 15345, Indonesia;
| | - Rianita Pramitasari
- Food Technology Study Program, Faculty of Biotechnology, Atma Jaya Catholic University of Indonesia, BSD Campus, Tangerang 15345, Indonesia;
| | - Daru Seto Bagus Anugrah
- Biotechnology Study Program, Faculty of Biotechnology, Atma Jaya Catholic University of Indonesia, BSD Campus, Tangerang 15345, Indonesia;
| |
Collapse
|
10
|
Homthawornchoo W, Hakimi NFSM, Romruen O, Rawdkuen S. Dragon Fruit Peel Extract Enriched-Biocomposite Wrapping Film: Characterization and Application on Coconut Milk Candy. Polymers (Basel) 2023; 15:polym15020404. [PMID: 36679292 PMCID: PMC9863164 DOI: 10.3390/polym15020404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 01/04/2023] [Accepted: 01/09/2023] [Indexed: 01/13/2023] Open
Abstract
Bio-based film is an eco-friendly alternative to petroleum-based packaging film. The effects of biocomposite wrapping film enhanced with dragon fruit peel extract (0, 2% w/v, respectively) and currently used commercial packaging film (polypropylene; PP) on coconut milk caramels during storage (30 °C, 75% RH, nine days) were studied. Both 0% and 2% DPE-enriched biocomposite films were thicker and had higher water vapor permeability and solubility than the PP film but poorer mechanical characteristics. In addition, the 2% film possessed antioxidants and antioxidant ability. A FESEM micrograph revealed the rough surface and porous path of the biocomposite films. Over the storage time, the moisture content, water activity, and springiness of the coconut milk caramel candy wrapped in the PP and all DPE-enriched biocomposite films were not significantly altered. However, the lipid oxidation as the thiobarbituric acid reactive substance (TBARS) and hardness of all coconut caramels were significantly (p < 0.05) increased during storage. Furthermore, the hardness of coconut candy covered in the control (0% DPE) biocomposite film was more pronounced on day nine of storage. However, the changes in quality characteristics of the coconut candy wrapped in each film type need to be better established. The investigating factors influencing the quality deterioration of coconut milk candy should be further identified to mitigate their effects and extend the shelf-life of the coconut candy.
Collapse
Affiliation(s)
- Wantida Homthawornchoo
- Innovative Food Packaging and Biomaterials Unit, School of Agro-Industry, Mae Fah Luang University, Chiang Rai 57100, Thailand
- Food Science and Technology Program, School of Agro-Industry, Mae Fah Luang University, Chiang Rai 57100, Thailand
- Correspondence: (W.H.); (S.R.); Tel.: +66-5391-6751 (W.H.); +66-5391-6739 (S.R.)
| | - Nur Fairuza Syahira Mohamad Hakimi
- Food Science and Technology Program, School of Agro-Industry, Mae Fah Luang University, Chiang Rai 57100, Thailand
- Food Sciences and Technology Program, School of Applied Science, Universiti Teknologi MARA, Shah Alam 45100, Malaysia
| | - Orapan Romruen
- Food Science and Technology Program, School of Agro-Industry, Mae Fah Luang University, Chiang Rai 57100, Thailand
| | - Saroat Rawdkuen
- Innovative Food Packaging and Biomaterials Unit, School of Agro-Industry, Mae Fah Luang University, Chiang Rai 57100, Thailand
- Food Science and Technology Program, School of Agro-Industry, Mae Fah Luang University, Chiang Rai 57100, Thailand
- Correspondence: (W.H.); (S.R.); Tel.: +66-5391-6751 (W.H.); +66-5391-6739 (S.R.)
| |
Collapse
|