1
|
Chen Z, Gao J, Li L. New challenges in scar therapy: the novel scar therapy strategies based on nanotechnology. Nanomedicine (Lond) 2024; 19:2413-2432. [PMID: 39325688 PMCID: PMC11492664 DOI: 10.1080/17435889.2024.2401768] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Accepted: 09/04/2024] [Indexed: 09/28/2024] Open
Abstract
The pathological mechanism of pathological scar is highly complex, encompassing the abnormalities of diverse cytokines, signaling pathways and regulatory factors. To discover more preferable scar treatment options, a variety of distinct approaches have been utilized clinically. Nevertheless, these treatments possess certain side effects and are inclined to relapse. Presently, pathological scar treatment remains a clinical conundrum, and there is an urgent demand for treatment methods that are safe, less traumatic and have lower recurrence rates. New drug delivery systems, novel therapeutic drugs and therapy strategies can enable drugs to permeate the skin effectively, decrease side effects, enhance drug efficacy and even achieve pain-free self-administration. Currently, novel nanotechnologies such as nanomicroneedles, photodynamics mediated by novel photosensitizers, bioelectrical stimulation and 3D printed dressings have been developed for the effective treatment of pathological scars. Additionally, innovative nanoscale fillers, including nano-fat and engineered exosomes, can serve as novel therapeutic agents for the efficient treatment of pathological scars. The intervention of nanomaterials can enhance drug absorption, stabilize and safeguard the active ingredients of drugs, delay or control drug release and enhance bioavailability. This article reviews these new treatment strategies for scar to explore novel approaches for efficient and safe for keloid treatment.
Collapse
Affiliation(s)
- Zhuoyang Chen
- The second clinical college, China Medical University, Shenyang, PR China
| | - Jia Gao
- Department of Dermatology, People's Hospital of Guangxi Zhuang Autonomous Region, Nanning, PR China
| | - Lili Li
- Department of Dermatology, People's Hospital of Guangxi Zhuang Autonomous Region, Nanning, PR China
| |
Collapse
|
2
|
Ji M, Zhan F, Qiu X, Liu H, Liu X, Bu P, Zhou B, Serda M, Feng Q. Research Progress of Hydrogel Microneedles in Wound Management. ACS Biomater Sci Eng 2024; 10:4771-4790. [PMID: 38982708 PMCID: PMC11322915 DOI: 10.1021/acsbiomaterials.4c00972] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2024] [Revised: 06/27/2024] [Accepted: 07/01/2024] [Indexed: 07/11/2024]
Abstract
Microneedles are a novel drug delivery system that offers advantages such as safety, painlessness, minimally invasive administration, simplicity of use, and controllable drug delivery. As a type of polymer microneedle with a three-dimensional network structure, hydrogel microneedles (HMNs) possess excellent biocompatibility and biodegradability and encapsulate various therapeutic drugs while maintaining drug activity, thus attracting significant attention. Recently, they have been widely employed to promote wound healing and have demonstrated favorable therapeutic effects. Although there are reviews about HMNs, few of them focus on wound management. Herein, we present a comprehensive overview of the design and preparation methods of HMNs, with a particular emphasis on their application status in wound healing, including acute wound healing, infected wound healing, diabetic wound healing, and scarless wound healing. Finally, we examine the advantages and limitations of HMNs in wound management and provide suggestions for future research directions.
Collapse
Affiliation(s)
- Ming Ji
- Department
of Orthopedics, Chongqing University Three Gorges Hospital, School
of Medicine, Chongqing University, Chongqing 404000, China
| | - Fangbiao Zhan
- Department
of Orthopedics, Chongqing University Three Gorges Hospital, School
of Medicine, Chongqing University, Chongqing 404000, China
| | - Xingan Qiu
- Department
of Orthopedics, Chongqing University Three Gorges Hospital, School
of Medicine, Chongqing University, Chongqing 404000, China
- Key
Laboratory of Biorheological Science and Technology, Ministry of Educations,
Collage of Bioengineering, Chongqing University, Chongqing 400044, China
| | - Hong Liu
- Department
of Orthopedics, Chongqing University Three Gorges Hospital, School
of Medicine, Chongqing University, Chongqing 404000, China
| | - Xuezhe Liu
- Key
Laboratory of Biorheological Science and Technology, Ministry of Educations,
Collage of Bioengineering, Chongqing University, Chongqing 400044, China
| | - Pengzhen Bu
- Key
Laboratory of Biorheological Science and Technology, Ministry of Educations,
Collage of Bioengineering, Chongqing University, Chongqing 400044, China
| | - Bikun Zhou
- Key
Laboratory of Biorheological Science and Technology, Ministry of Educations,
Collage of Bioengineering, Chongqing University, Chongqing 400044, China
| | - Maciej Serda
- Institute
of Chemistry, University of Silesia in Katowice, Katowice 40-006, Poland
| | - Qian Feng
- Key
Laboratory of Biorheological Science and Technology, Ministry of Educations,
Collage of Bioengineering, Chongqing University, Chongqing 400044, China
| |
Collapse
|
3
|
Zhang X, Huang J, Zhao J, Li L, Miao F, Zhang T, Chen Z, Zhou X, Tai Z, Zhu Q. Exosome-mimetic vesicles derived from fibroblasts carrying matrine for wound healing. BURNS & TRAUMA 2024; 12:tkae015. [PMID: 38752203 PMCID: PMC11095412 DOI: 10.1093/burnst/tkae015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 12/11/2023] [Accepted: 03/17/2024] [Indexed: 05/18/2024]
Abstract
Background Chronic skin wounds are a leading cause of hospital admissions and reduced life expectancy among older people and individuals with diabetes. Delayed wound healing is often attributed to a series of cellular abnormalities. Matrine, a well-studied component found in Sophora flavescens, is recognized for its anti-inflammatory effects. However, its impact on wound healing still remains uncertain. This study aims to explore the potential of matrine in promoting wound healing. Methods In this study, we utilized gradient extrusion to produce fibroblast-derived exosome-mimetic vesicles as carriers for matrine (MHEM). MHEM were characterized using transmission electron microscopy and dynamic light scattering analysis. The therapeutic effect of MHEM in wound healing was explored in vitro and in vivo. Results Both matrine and MHEM enhanced the cellular activity as well as the migration of fibroblasts and keratinocytes. The potent anti-inflammatory effect of matrine diluted the inflammatory response in the vicinity of wounds. Furthermore, MHEM worked together to promote angiogenesis and the expression of transforming growth factor β and collagen I. MHEM contained growth factors of fibroblasts that regulated the functions of fibroblasts, keratinocytes and monocytes, which synergistically promoted wound healing with the anti-inflammatory effect of matrine. Conclusions MHEM showed enhanced therapeutic efficacy in the inflammatory microenvironment, for new tissue formation and angiogenesis of wound healing.
Collapse
Affiliation(s)
- Xinyue Zhang
- Shanghai Skin Disease Hospital, School of Medicine, Tongji University, 1278 Baode Road, Shanghai 200443, China
- Shanghai Engineering Research Center for Topical Chinese Medicine, 1278 Baode Road, Shanghai 200443, China
| | - Jiahua Huang
- Department of Neurology, Shanghai Public Health Clinical Center, Fudan University, 2901 Caolang Road, Shanghai 201500, China
| | - Jing Zhao
- The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, 26 Shengli Street, Wuhan 430014, Hubei, China
| | - Lisha Li
- Shanghai Skin Disease Hospital, School of Medicine, Tongji University, 1278 Baode Road, Shanghai 200443, China
- Shanghai Engineering Research Center for Topical Chinese Medicine, 1278 Baode Road, Shanghai 200443, China
| | - Fengze Miao
- Shanghai Skin Disease Hospital, School of Medicine, Tongji University, 1278 Baode Road, Shanghai 200443, China
- Shanghai Engineering Research Center for Topical Chinese Medicine, 1278 Baode Road, Shanghai 200443, China
| | - Tingrui Zhang
- Shanghai Skin Disease Hospital, School of Medicine, Tongji University, 1278 Baode Road, Shanghai 200443, China
- Shanghai Engineering Research Center for Topical Chinese Medicine, 1278 Baode Road, Shanghai 200443, China
| | - Zhongjian Chen
- Shanghai Skin Disease Hospital, School of Medicine, Tongji University, 1278 Baode Road, Shanghai 200443, China
- Shanghai Engineering Research Center for Topical Chinese Medicine, 1278 Baode Road, Shanghai 200443, China
| | - Xing Zhou
- Yunnan Key Laboratory of Stem Cell and Regenerative Medicine, Science and Technology Achievement Incubation Center, Kunming Medical University, 1168 Chunrong West Road, Kunming 650500, Yunnan, China
| | - Zongguang Tai
- Shanghai Skin Disease Hospital, School of Medicine, Tongji University, 1278 Baode Road, Shanghai 200443, China
- Shanghai Engineering Research Center for Topical Chinese Medicine, 1278 Baode Road, Shanghai 200443, China
| | - Quangang Zhu
- Shanghai Skin Disease Hospital, School of Medicine, Tongji University, 1278 Baode Road, Shanghai 200443, China
- Shanghai Engineering Research Center for Topical Chinese Medicine, 1278 Baode Road, Shanghai 200443, China
| |
Collapse
|
4
|
Zhuang ZM, Wang Y, Feng ZX, Lin XY, Wang ZC, Zhong XC, Guo K, Zhong YF, Fang QQ, Wu XJ, Chen J, Tan WQ. Targeting Diverse Wounds and Scars: Recent Innovative Bio-design of Microneedle Patch for Comprehensive Management. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2306565. [PMID: 38037685 DOI: 10.1002/smll.202306565] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 09/16/2023] [Indexed: 12/02/2023]
Abstract
Wounds and the subsequent formation of scars constitute a unified and complex phased process. Effective treatment is crucial; however, the diverse therapeutic approaches for different wounds and scars, as well as varying treatment needs at different stages, present significant challenges in selecting appropriate interventions. Microneedle patch (MNP), as a novel minimally invasive transdermal drug delivery system, has the potential for integrated and programmed treatment of various diseases and has shown promising applications in different types of wounds and scars. In this comprehensive review, the latest applications and biotechnological innovations of MNPs in these fields are thoroughly explored, summarizing their powerful abilities to accelerate healing, inhibit scar formation, and manage related symptoms. Moreover, potential applications in various scenarios are discussed. Additionally, the side effects, manufacturing processes, and material selection to explore the clinical translational potential are investigated. This groundwork can provide a theoretical basis and serve as a catalyst for future innovations in the pursuit of favorable therapeutic options for skin tissue regeneration.
Collapse
Affiliation(s)
- Ze-Ming Zhuang
- Department of Plastic Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, 3 East Qingchun Road, Hangzhou, 310016, P. R. China
| | - Yong Wang
- Department of Plastic Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, 3 East Qingchun Road, Hangzhou, 310016, P. R. China
| | - Zi-Xuan Feng
- Department of Plastic Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, 3 East Qingchun Road, Hangzhou, 310016, P. R. China
| | - Xiao-Ying Lin
- Department of Plastic Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, 3 East Qingchun Road, Hangzhou, 310016, P. R. China
| | - Zheng-Cai Wang
- Department of Plastic Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, 3 East Qingchun Road, Hangzhou, 310016, P. R. China
| | - Xin-Cao Zhong
- Department of Plastic Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, 3 East Qingchun Road, Hangzhou, 310016, P. R. China
| | - Kai Guo
- Department of Plastic Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, 3 East Qingchun Road, Hangzhou, 310016, P. R. China
| | - Yu-Fan Zhong
- Department of Plastic Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, 3 East Qingchun Road, Hangzhou, 310016, P. R. China
| | - Qing-Qing Fang
- Department of Plastic Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, 3 East Qingchun Road, Hangzhou, 310016, P. R. China
| | - Xiao-Jin Wu
- Department of Ultrasound in Medicine, The Fourth Affiliated Hospital, Zhejiang University School of Medicine, Yiwu, 322000, P. R. China
| | - Jian Chen
- Department of Ultrasound in Medicine, The Fourth Affiliated Hospital, Zhejiang University School of Medicine, Yiwu, 322000, P. R. China
| | - Wei-Qiang Tan
- Department of Plastic Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, 3 East Qingchun Road, Hangzhou, 310016, P. R. China
| |
Collapse
|
5
|
Yeo E, Shim J, Oh SJ, Choi Y, Noh H, Kim H, Park JH, Lee KT, Kim SH, Lee D, Lee JH. Revisiting roles of mast cells and neural cells in keloid: exploring their connection to disease activity. Front Immunol 2024; 15:1339336. [PMID: 38524141 PMCID: PMC10957560 DOI: 10.3389/fimmu.2024.1339336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Accepted: 02/19/2024] [Indexed: 03/26/2024] Open
Abstract
Background Mast cells (MCs) and neural cells (NCs) are important in a keloid microenvironment. They might contribute to fibrosis and pain sensation within the keloid. However, their involvement in pathological excessive scarring has not been adequately explored. Objectives To elucidate roles of MCs and NCs in keloid pathogenesis and their correlation with disease activity. Methods Keloid samples from chest and back regions were analyzed. Single-cell RNA sequencing (scRNA-seq) was conducted for six active keloids (AK) samples, four inactive keloids (IK) samples, and three mature scar (MS) samples from patients with keloids. Results The scRNA-seq analysis demonstrated notable enrichment of MCs, lymphocytes, and macrophages in AKs, which exhibited continuous growth at the excision site when compared to IK and MS samples (P = 0.042). Expression levels of marker genes associated with activated and degranulated MCs, including FCER1G, BTK, and GATA2, were specifically elevated in keloid lesions. Notably, MCs within AK lesions exhibited elevated expression of genes such as NTRK1, S1PR1, and S1PR2 associated with neuropeptide receptors. Neural progenitor cell and non-myelinating Schwann cell (nmSC) genes were highly expressed in keloids, whereas myelinating Schwann cell (mSC) genes were specific to MS samples. Conclusions scRNA-seq analyses of AK, IK, and MS samples unveiled substantial microenvironmental heterogeneity. Such heterogeneity might be linked to disease activity. These findings suggest the potential contribution of MCs and NCs to keloid pathogenesis. Histopathological and molecular features observed in AK and IK samples provide valuable insights into the mechanisms underlying pain and pruritus in keloid lesions.
Collapse
Affiliation(s)
- Eunhye Yeo
- Department of Dermatology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
- Department of Medical Device Management and Research, Samsung Advanced Institute for Health Sciences and Technology, Sungkyunkwan University, Seoul, Republic of Korea
| | - Joonho Shim
- Department of Dermatology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| | - Se Jin Oh
- Department of Dermatology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| | - YoungHwan Choi
- Department of Dermatology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
- Department of Medical Device Management and Research, Samsung Advanced Institute for Health Sciences and Technology, Sungkyunkwan University, Seoul, Republic of Korea
| | - Hyungrye Noh
- Department of Dermatology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| | - Heeyeon Kim
- Department of Dermatology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| | - Ji-Hye Park
- Department of Dermatology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| | - Kyeong-Tae Lee
- Department of Plastic Surgery, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| | - Seok-Hyung Kim
- Department of Pathology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| | - Dongyoun Lee
- Department of Dermatology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| | - Jong Hee Lee
- Department of Dermatology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
- Department of Medical Device Management and Research, Samsung Advanced Institute for Health Sciences and Technology, Sungkyunkwan University, Seoul, Republic of Korea
| |
Collapse
|
6
|
Zhong Y, Zhang Y, Lu B, Deng Z, Zhang Z, Wang Q, Zhang J. Hydrogel Loaded with Components for Therapeutic Applications in Hypertrophic Scars and Keloids. Int J Nanomedicine 2024; 19:883-899. [PMID: 38293605 PMCID: PMC10824614 DOI: 10.2147/ijn.s448667] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Accepted: 01/12/2024] [Indexed: 02/01/2024] Open
Abstract
Hypertrophic scars and keloids are common fibroproliferative diseases following injury. Patients with pathologic scars suffer from impaired quality of life and psychological health due to appearance disfiguration, itch, pain, and movement disorders. Recently, the advancement of hydrogels in biomedical fields has brought a variety of novel materials, methods and therapeutic targets for treating hypertrophic scars and keloids, which exhibit broad prospects. This review has summarized current research on hydrogels and loaded components used in preventing and treating hypertrophic scars and keloids. These hydrogels attenuate keloid and hypertrophic scar formation and progression by loading organic chemicals, drugs, or bioactive molecules (such as growth factors, genes, proteins/peptides, and stem cells/exosomes). Among them, smart hydrogels (a very promising method for loading many types of bioactive components) are currently favoured by researchers. In addition, combining hydrogels and current therapy (such as laser or radiation therapy, etc.) could improve the treatment of hypertrophic scars and keloids. Then, the difficulties and limitations of the current research and possible suggestions for improvement are listed. Moreover, we also propose novel strategies for facilitating the construction of target multifunctional hydrogels in the future.
Collapse
Affiliation(s)
- Yixiu Zhong
- Department of Dermatology, Shenzhen People’s Hospital (The Second Clinical Medical College, Jinan University; The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, Guangdong, People’s Republic of China
| | - Youfan Zhang
- Department of Dermatology, Nanfang Hospital, Southern Medical University, Guangzhou, People’s Republic of China
| | - Beibei Lu
- Department of Dermatology, Shenzhen People’s Hospital (The Second Clinical Medical College, Jinan University; The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, Guangdong, People’s Republic of China
| | - Zhenjun Deng
- Department of Dermatology, Shenzhen People’s Hospital (The Second Clinical Medical College, Jinan University; The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, Guangdong, People’s Republic of China
| | - Zhiwen Zhang
- Department of Dermatology, Nanfang Hospital, Southern Medical University, Guangzhou, People’s Republic of China
| | - Qi Wang
- Department of Dermatology, Nanfang Hospital, Southern Medical University, Guangzhou, People’s Republic of China
| | - Jianglin Zhang
- Department of Dermatology, Shenzhen People’s Hospital (The Second Clinical Medical College, Jinan University; The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, Guangdong, People’s Republic of China
| |
Collapse
|
7
|
Tang X, Li L, You G, Li X, Kang J. Metallic elements combine with herbal compounds upload in microneedles to promote wound healing: a review. Front Bioeng Biotechnol 2023; 11:1283771. [PMID: 38026844 PMCID: PMC10655017 DOI: 10.3389/fbioe.2023.1283771] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2023] [Accepted: 10/23/2023] [Indexed: 12/01/2023] Open
Abstract
Wound healing is a dynamic and complex restorative process, and traditional dressings reduce their therapeutic effectiveness due to the accumulation of drugs in the cuticle. As a novel drug delivery system, microneedles (MNs) can overcome the defect and deliver drugs to the deeper layers of the skin. As the core of the microneedle system, loaded drugs exert a significant influence on the therapeutic efficacy of MNs. Metallic elements and herbal compounds have been widely used in wound treatment for their ability to accelerate the healing process. Metallic elements primarily serve as antimicrobial agents and facilitate the enhancement of cell proliferation. Whereas various herbal compounds act on different targets in the inflammatory, proliferative, and remodeling phases of wound healing. The interaction between the two drugs forms nanoparticles (NPs) and metal-organic frameworks (MOFs), reducing the toxicity of the metallic elements and increasing the therapeutic effect. This article summarizes recent trends in the development of MNs made of metallic elements and herbal compounds for wound healing, describes their advantages in wound treatment, and provides a reference for the development of future MNs.
Collapse
Affiliation(s)
- Xiao Tang
- Department of Proctology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
- School of Clinical Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Li Li
- Department of Proctology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
- School of Clinical Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Gehang You
- School of Clinical Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Xinyi Li
- Department of Proctology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
- School of Clinical Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Jian Kang
- Department of Proctology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
- School of Clinical Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| |
Collapse
|
8
|
McKay TB, Emmitte KA, German C, Karamichos D. Quercetin and Related Analogs as Therapeutics to Promote Tissue Repair. Bioengineering (Basel) 2023; 10:1127. [PMID: 37892857 PMCID: PMC10604618 DOI: 10.3390/bioengineering10101127] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 09/11/2023] [Accepted: 09/21/2023] [Indexed: 10/29/2023] Open
Abstract
Quercetin is a polyphenol of the flavonoid class of secondary metabolites that is widely distributed in the plant kingdom. Quercetin has been found to exhibit potent bioactivity in the areas of wound healing, neuroprotection, and anti-aging research. Naturally found in highly glycosylated forms, aglycone quercetin has low solubility in aqueous environments, which has heavily limited its clinical applications. To improve the stability and bioavailability of quercetin, efforts have been made to chemically modify quercetin and related flavonoids so as to improve aqueous solubility while retaining bioactivity. In this review, we provide an updated overview of the biological properties of quercetin and proposed mechanisms of actions in the context of wound healing and aging. We also provide a description of recent developments in synthetic approaches to improve the solubility and stability of quercetin and related analogs for therapeutic applications. Further research in these areas is expected to enable translational applications to improve ocular wound healing and tissue repair.
Collapse
Affiliation(s)
- Tina B. McKay
- Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Boston, MA 02114, USA;
| | - Kyle A. Emmitte
- Department of Pharmaceutical Sciences, UNT System College of Pharmacy, University of North Texas Health Science Center, Fort Worth, TX 76107, USA;
| | - Carrie German
- CFD Research Corporation, Computational Biology Division, Huntsville, AL 35806, USA;
| | - Dimitrios Karamichos
- Department of Pharmaceutical Sciences, UNT System College of Pharmacy, University of North Texas Health Science Center, Fort Worth, TX 76107, USA;
- North Texas Eye Research Institute, University of North Texas Health Science Center, Fort Worth, TX 76107, USA
- Department of Pharmacology and Neuroscience, School of Biomedical Sciences, University of North Texas Health Science Center, Fort Worth, TX 76107, USA
| |
Collapse
|
9
|
Ilić-Stojanović S, Nikolić L, Cakić S. A Review of Patents and Innovative Biopolymer-Based Hydrogels. Gels 2023; 9:556. [PMID: 37504436 PMCID: PMC10378757 DOI: 10.3390/gels9070556] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 06/27/2023] [Accepted: 06/27/2023] [Indexed: 07/29/2023] Open
Abstract
Biopolymers represent a great resource for the development and utilization of new functional materials due to their particular advantages such as biocompatibility, biodegradability and non-toxicity. "Intelligent gels" sensitive to different stimuli (temperature, pH, ionic strength) have different applications in many industries (e.g., pharmacy, biomedicine, food). This review summarizes the research efforts presented in the patent and non-patent literature. A discussion was conducted regarding biopolymer-based hydrogels such as natural proteins (i.e., fibrin, silk fibroin, collagen, keratin, gelatin) and polysaccharides (i.e., chitosan, hyaluronic acid, cellulose, carrageenan, alginate). In this analysis, the latest advances in the modification and characterization of advanced biopolymeric formulations and their state-of-the-art administration in drug delivery, wound healing, tissue engineering and regenerative medicine were addressed.
Collapse
Affiliation(s)
| | - Ljubiša Nikolić
- Faculty of Technology, University of Niš, Bulevar Oslobodjenja 124, 16000 Leskovac, Serbia
| | - Suzana Cakić
- Faculty of Technology, University of Niš, Bulevar Oslobodjenja 124, 16000 Leskovac, Serbia
| |
Collapse
|
10
|
Wang B, Zhang S, Cheng A, Yan J, Gao Y. Soluble Polymer Microneedles Loaded with Interferon Alpha 1b for Treatment of Hyperplastic Scar. Polymers (Basel) 2023; 15:2621. [PMID: 37376266 DOI: 10.3390/polym15122621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 05/29/2023] [Accepted: 06/06/2023] [Indexed: 06/29/2023] Open
Abstract
To achieve the painless administration of interferon alpha 1b (rhIFNα-1b), a double-layered soluble polymer microneedle (MN) patch loaded with rhIFNα-1b was used to deliver rhIFNα-1b transdermally. The solution containing rhIFNα-1b was concentrated in the MN tips under negative pressure. The MNs punctured the skin and delivered rhIFNα-1b to the epidermis and dermis. The MN tips implanted in the skin dissolved within 30 min and gradually released rhIFNα-1b. The rhIFNα-1b had a significant inhibitory effect on the abnormal proliferation of fibroblasts and excessive deposition of collagen fibers in the scar tissue. The color and thickness of the scar tissue treated using the MN patches loaded with rhIFNα-1b were effectively reduced. The relative expressions of type I collagen (Collagen I), type III collagen (Collagen III), transforming growth factor beta 1 (TGF-β1), and α-smooth muscle actin (α-SMA) were significantly downregulated in scar tissues. In summary, the MN patch loaded with rhIFNα-1b provided an effective method for the transdermal delivery of rhIFNα-1b.
Collapse
Affiliation(s)
- Baorui Wang
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry of Chinese Academy of Sciences, Beijing 100190, China
- School of Future Technology, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Suohui Zhang
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry of Chinese Academy of Sciences, Beijing 100190, China
- Beijing CAS Microneedle Technology Ltd., Beijing 102609, China
| | - Aguo Cheng
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry of Chinese Academy of Sciences, Beijing 100190, China
- Beijing CAS Microneedle Technology Ltd., Beijing 102609, China
| | - Juan Yan
- Beijing CAS Microneedle Technology Ltd., Beijing 102609, China
- College of Life Sciences, Changchun Normal University, Changchun 130032, China
| | - Yunhua Gao
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry of Chinese Academy of Sciences, Beijing 100190, China
- School of Future Technology, University of Chinese Academy of Sciences, Beijing 100049, China
- Beijing CAS Microneedle Technology Ltd., Beijing 102609, China
| |
Collapse
|
11
|
Yilmaz EG, Ece E, Erdem Ö, Eş I, Inci F. A Sustainable Solution to Skin Diseases: Ecofriendly Transdermal Patches. Pharmaceutics 2023; 15:579. [PMID: 36839902 PMCID: PMC9960884 DOI: 10.3390/pharmaceutics15020579] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Revised: 01/31/2023] [Accepted: 02/02/2023] [Indexed: 02/11/2023] Open
Abstract
Skin is the largest epithelial surface of the human body, with a surface area of 2 m2 for the average adult human. Being an external organ, it is susceptible to more than 3000 potential skin diseases, including injury, inflammation, microbial and viral infections, and skin cancer. Due to its nature, it offers a large accessible site for administrating several medications against these diseases. The dermal and transdermal delivery of such medications are often ensured by utilizing dermal/transdermal patches or microneedles made of biocompatible and biodegradable materials. These tools provide controlled delivery of drugs to the site of action in a rapid and therapeutically effective manner with enhanced diffusivity and minimal side effects. Regrettably, they are usually fabricated using synthetic materials with possible harmful environmental effects. Manufacturing such tools using green synthesis routes and raw materials is hence essential for both ecological and economic sustainability. In this review, natural materials including chitosan/chitin, alginate, keratin, gelatin, cellulose, hyaluronic acid, pectin, and collagen utilized in designing ecofriendly patches will be explored. Their implementation in wound healing, skin cancer, inflammations, and infections will be discussed, and the significance of these studies will be evaluated with future perspectives.
Collapse
Affiliation(s)
- Eylul Gulsen Yilmaz
- UNAM—National Nanotechnology Research Center, Bilkent University, Ankara 06800, Turkey
- Institute of Materials Science and Nanotechnology, Bilkent University, Ankara 06800, Turkey
| | - Emre Ece
- UNAM—National Nanotechnology Research Center, Bilkent University, Ankara 06800, Turkey
- Institute of Materials Science and Nanotechnology, Bilkent University, Ankara 06800, Turkey
| | - Özgecan Erdem
- UNAM—National Nanotechnology Research Center, Bilkent University, Ankara 06800, Turkey
| | - Ismail Eş
- UNAM—National Nanotechnology Research Center, Bilkent University, Ankara 06800, Turkey
| | - Fatih Inci
- UNAM—National Nanotechnology Research Center, Bilkent University, Ankara 06800, Turkey
- Institute of Materials Science and Nanotechnology, Bilkent University, Ankara 06800, Turkey
| |
Collapse
|
12
|
Nordin AH, Ahmad Z, Husna SMN, Ilyas RA, Azemi AK, Ismail N, Nordin ML, Ngadi N, Siti NH, Nabgan W, Norfarhana AS, Azami MSM. The State of the Art of Natural Polymer Functionalized Fe 3O 4 Magnetic Nanoparticle Composites for Drug Delivery Applications: A Review. Gels 2023; 9:121. [PMID: 36826291 PMCID: PMC9957034 DOI: 10.3390/gels9020121] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 01/25/2023] [Accepted: 01/26/2023] [Indexed: 02/04/2023] Open
Abstract
Natural polymers have received a great deal of interest for their potential use in the encapsulation and transportation of pharmaceuticals and other bioactive compounds for disease treatment. In this perspective, the drug delivery systems (DDS) constructed by representative natural polymers from animals (gelatin and hyaluronic acid), plants (pectin and starch), and microbes (Xanthan gum and Dextran) are provided. In order to enhance the efficiency of polymers in DDS by delivering the medicine to the right location, reducing the medication's adverse effects on neighboring organs or tissues, and controlling the medication's release to stop the cycle of over- and under-dosing, the incorporation of Fe3O4 magnetic nanoparticles with the polymers has engaged the most consideration due to their rare characteristics, such as easy separation, superparamagnetism, and high surface area. This review is designed to report the recent progress of natural polymeric Fe3O4 magnetic nanoparticles in drug delivery applications, based on different polymers' origins.
Collapse
Affiliation(s)
- Abu Hassan Nordin
- Faculty of Chemical and Energy Engineering, Universiti Teknologi Malaysia, Skudai 81310, Johor, Malaysia; (A.H.N.); (N.N.); (A.S.N.)
- Faculty of Applied Sciences, Universiti Teknologi MARA (UiTM), Arau 02600, Perlis, Malaysia; (Z.A.); (S.M.N.H.); (M.S.M.A.)
| | - Zuliahani Ahmad
- Faculty of Applied Sciences, Universiti Teknologi MARA (UiTM), Arau 02600, Perlis, Malaysia; (Z.A.); (S.M.N.H.); (M.S.M.A.)
| | - Siti Muhamad Nur Husna
- Faculty of Applied Sciences, Universiti Teknologi MARA (UiTM), Arau 02600, Perlis, Malaysia; (Z.A.); (S.M.N.H.); (M.S.M.A.)
| | - Rushdan Ahmad Ilyas
- Faculty of Chemical and Energy Engineering, Universiti Teknologi Malaysia, Skudai 81310, Johor, Malaysia; (A.H.N.); (N.N.); (A.S.N.)
- Centre for Advanced Composite Materials (CACM), Universiti Teknologi Malaysia (UTM), Skudai 81310, Johor, Malaysia
| | - Ahmad Khusairi Azemi
- Institute of Marine Biotechnology, Universiti Malaysia Terengganu, Kuala Terengganu 21030, Terengganu, Malaysia;
| | - Noraznawati Ismail
- Institute of Marine Biotechnology, Universiti Malaysia Terengganu, Kuala Terengganu 21030, Terengganu, Malaysia;
| | - Muhammad Luqman Nordin
- Department of Clinical Studies, Faculty of Veterinary Medicine, Universiti Malaysia Kelantan, Pengkalan Chepa, Kota Bharu 16100, Kelantan, Malaysia;
- Centre for Nanotechnology in Veterinary Medicine (NanoVet), Faculty of Veterinary Medicine, Universiti Malaysia Kelantan, Pengkalan Chepa, Kota Bharu 16100, Kelantan, Malaysia
| | - Norzita Ngadi
- Faculty of Chemical and Energy Engineering, Universiti Teknologi Malaysia, Skudai 81310, Johor, Malaysia; (A.H.N.); (N.N.); (A.S.N.)
| | - Nordin Hawa Siti
- Pharmacology Unit, School of Basic Medical Sciences, Faculty of Medicine, Universiti Sultan Zainal Abidin, Kuala Terengganu 20400, Terengganu, Malaysia;
| | - Walid Nabgan
- Departament d’Enginyeria Química, Universitat Rovira I Virgili, Av. Països Catalans 26, 43007 Tarragona, Spain;
| | - Abd Samad Norfarhana
- Faculty of Chemical and Energy Engineering, Universiti Teknologi Malaysia, Skudai 81310, Johor, Malaysia; (A.H.N.); (N.N.); (A.S.N.)
- Department of Petrochemical Engineering, Politeknik Tun Syed Nasir Syed Ismail, Pagoh Education Hub, Pagoh Muar 84600, Johor, Malaysia
| | - Mohammad Saifulddin Mohd Azami
- Faculty of Applied Sciences, Universiti Teknologi MARA (UiTM), Arau 02600, Perlis, Malaysia; (Z.A.); (S.M.N.H.); (M.S.M.A.)
| |
Collapse
|
13
|
Chen D, Zhang Y, Long W, Chai L, Myint TP, Zhou W, Zhou L, Wang M, Guo L. Visible light-driven photodynamic therapy for hypertrophic scars with MOF armored microneedles patch. Front Chem 2023; 11:1128255. [PMID: 36874068 PMCID: PMC9978826 DOI: 10.3389/fchem.2023.1128255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Accepted: 01/24/2023] [Indexed: 02/18/2023] Open
Abstract
Photodynamic therapy (PDT) is widely used for the treatment of hypertrophic scars in clinical practice. However, the low transdermal delivery of photosensitizers in scar tissue and protective autophagy induced by Photodynamic therapy greatly reduces the therapeutic efficiency. Therefore, it is necessary to deal with these difficulties for overcoming obstacles in Photodynamic therapy treatment. In this study, a photosensitizer with photocatalytic performance was designed and synthesized using innovative MOFs (metal-organic frameworks). Additionally, the MOFs, together with an autophagy inhibitor chloroquine (CQ), was loaded in a high mechanical strength microneedle patch (MNP) for transdermal delivery. With these functionalized MNP, photosensitizers and chloroquine were delivered deep inside hypertrophic scars. Inhibition of autophagy increases the levels of reactive oxygen species (ROS) under high-intensity visible-light irradiation. Multiprong approaches have been used to remove obstacles in Photodynamic therapy and successfully enhance its anti-scarring effect. In vitro experiments indicated that the combined treatment increased the toxicity of hypertrophic scar fibroblasts (HSFs), downregulated the level of collagen type I expression as well as transforming growth factor-β1 (TGF-β1)expression, decreased the autophagy marker protein LC3II/I ratio, increased the expression of P62. In vivo experiments showed that the MNP had good puncture performance, and significant therapeutic effects were observed in the rabbit ear scar model. These results indicate that functionalized MNP has high potential clinical value.
Collapse
Affiliation(s)
- Danyang Chen
- Department of Plastic Surgery, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Yixuan Zhang
- Department of Plastic Surgery, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Wei Long
- Department of Plastic Surgery, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Langjie Chai
- Department of Plastic Surgery, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Thazin Phoone Myint
- Department of Plastic Surgery, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Wei Zhou
- Department of Plastic Surgery, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Ling Zhou
- Department of Plastic Surgery, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Min Wang
- Department of Plastic Surgery, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Liang Guo
- Department of Plastic Surgery, Zhongnan Hospital of Wuhan University, Wuhan, China
| |
Collapse
|