1
|
Priya AK, Alghamdi HM, Kavinkumar V, Elwakeel KZ, Elgarahy AM. Bioaerogels from biomass waste: An alternative sustainable approach for wastewater treatment. Int J Biol Macromol 2024; 282:136994. [PMID: 39491712 DOI: 10.1016/j.ijbiomac.2024.136994] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 10/11/2024] [Accepted: 10/26/2024] [Indexed: 11/05/2024]
Abstract
The generation of municipal solid waste is projected to increase from 2.1 billion tonnes in 2023 to 3.8 billion tonnes by 2050. In 2020, the direct global cost of managing this waste was approximately USD 252 billion. When considering additional hidden costs-such as those arising from pollution, adverse health effects, and climate change due to inadequate waste disposal-the total cost escalates to USD 361 billion. Without significant improvements in waste management practices, this figure could nearly double by 2050, reaching an estimated USD 640.3 billion annually. Among municipal solid waste, biowaste accounts for roughly 44 % of the global municipal solid waste, translating to about 840 million tonnes annually. They are widely accessible and economical, offering a cost-effective alternative to traditional treatment materials. Transforming biomass waste into carbon-based materials (e.g., bioaerogels) is a sustainable practice that reduces waste and repurposes it for environmental remediation. This approach not only decreases the volume of waste directed to landfills and mitigates harmful greenhouse gas emissions from decomposition but also aligns with the principles of a circular economy. Furthermore, it supports sustainable development goals by addressing issues such as water scarcity and pollution while promoting waste valorization and resource efficiency. The unique properties of bioaerogels-including their porosity, multi-layered structure, and chemical adaptability-make them highly effective for the remediation of different water pollutants from aquatic bodies. This review article comprehensively delves into multifaceted wastewater remediation strategies -based bioaerogels such as coagulation and flocculation, advanced oxidation processes, membrane filtration, catalytic processes, water disinfection, Oil-water separation, biodegradation, and adsorption. Additionally, it examines different mechanisms of interaction such as surface adsorption, electrostatic interaction, van der Waals forces, ion exchange, surface precipitation, complexation, pore-filling, hydrophobic interactions, and π-π stacking. Moreover, it conducts an integrated techno-economic evaluation to assess their feasibility in wastewater treatment. By valorizing biomass waste, a closed-loop system can be established, where waste is transformed into valuable bioaerogels. This approach not only addresses challenges related to effluent pollution but also generates economic, environmental, and social benefits. Ultimately, the review underscores the transformative potential of bioaerogels in wastewater treatment, emphasizing their crucial role in supporting long-term environmental goals and advancing the principles of resource circularity.
Collapse
Affiliation(s)
- A K Priya
- Department of Chemical Engineering, KPR Institute of Engineering and Technology, Tamilnadu, India.
| | - Huda M Alghamdi
- University of Jeddah, College of Science, Department of Chemistry, Jeddah, Saudi Arabia.
| | - V Kavinkumar
- Department of Civil Engineering, KPR Institute of Engineering and Technology, India.
| | - Khalid Z Elwakeel
- University of Jeddah, College of Science, Department of Chemistry, Jeddah, Saudi Arabia.
| | - Ahmed M Elgarahy
- Environmental Chemistry Division, Environmental Science Department, Faculty of Science, Port Said University, Port Said, Egypt; Egyptian Propylene and Polypropylene Company (EPPC), Port Said, Egypt.
| |
Collapse
|
2
|
Panahi-Sarmad M, Alikarami N, Guo T, Haji M, Jiang F, Rojas OJ. Aerogels based on Bacterial Nanocellulose and their Applications. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2403583. [PMID: 39073312 DOI: 10.1002/smll.202403583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Revised: 07/01/2024] [Indexed: 07/30/2024]
Abstract
Microbial cellulose stands out for its exceptional characteristics in the form of biofilms formed by highly interlocked fibrils, namely, bacterial nanocellulose (BNC). Concurrently, bio-based aerogels are finding uses in innovative materials owing to their lightweight, high surface area, physical, mechanical, and thermal properties. In particular, bio-based aerogels based on BNC offer significant opportunities as alternatives to synthetic or mineral counterparts. BNC aerogels are proposed for diverse applications, ranging from sensors to medical devices, as well as thermal and electroactive systems. Due to the fibrous nanostructure of BNC and the micro-porosity of BNC aerogels, these materials enable the creation of tailored and specialized designs. Herein, a comprehensive review of BNC-based aerogels, their attributes, hierarchical, and multiscale features are provided. Their potential across various disciplines is highlighted, emphasizing their biocompatibility and suitability for physical and chemical modification. BNC aerogels are shown as feasible options to advance material science and foster sustainable solutions through biotechnology.
Collapse
Affiliation(s)
- Mahyar Panahi-Sarmad
- Department of Wood Science, The University of British Columbia, 2900-2424 Main Mall, Vancouver, BC, V6T 1Z4, Canada
- Bioproducts Institute, University of British Columbia, 2385 Agronomy Rd and East Mall, Vancouver, BC, V6T 1Z4, Canada
| | - Niloofar Alikarami
- Bioproducts Institute, University of British Columbia, 2385 Agronomy Rd and East Mall, Vancouver, BC, V6T 1Z4, Canada
| | - Tianyu Guo
- Bioproducts Institute, University of British Columbia, 2385 Agronomy Rd and East Mall, Vancouver, BC, V6T 1Z4, Canada
- Department of Chemical and Biological Engineering, University of British Columbia, 2360 East Mall, Vancouver, BC, V6T 1Z3, Canada
| | - Mehri Haji
- Bioproducts Institute, University of British Columbia, 2385 Agronomy Rd and East Mall, Vancouver, BC, V6T 1Z4, Canada
| | - Feng Jiang
- Department of Wood Science, The University of British Columbia, 2900-2424 Main Mall, Vancouver, BC, V6T 1Z4, Canada
- Bioproducts Institute, University of British Columbia, 2385 Agronomy Rd and East Mall, Vancouver, BC, V6T 1Z4, Canada
| | - Orlando J Rojas
- Department of Wood Science, The University of British Columbia, 2900-2424 Main Mall, Vancouver, BC, V6T 1Z4, Canada
- Bioproducts Institute, University of British Columbia, 2385 Agronomy Rd and East Mall, Vancouver, BC, V6T 1Z4, Canada
- Department of Chemical and Biological Engineering, University of British Columbia, 2360 East Mall, Vancouver, BC, V6T 1Z3, Canada
- Department of Chemistry, The University of British Columbia, 2036 Main Mall, Vancouver, BC, V6T 1Z1, Canada
| |
Collapse
|
3
|
Yang J, Lou T, Wang X. One-step fabrication of millimeter-scale hollow vesicles with chitosan /DADMAC/ sodium alginate graft copolymer for enhanced anionic dye adsorption. Int J Biol Macromol 2024; 269:132153. [PMID: 38729494 DOI: 10.1016/j.ijbiomac.2024.132153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 04/04/2024] [Accepted: 05/05/2024] [Indexed: 05/12/2024]
Abstract
Hollow vesicles are promising in water treatment due to their unique structure of the membrane and inner cavity. However, the adsorption capacity needs to be improved for targeted pollutants. Herein, millimeter-scale hollow vesicles were prepared with a one-step process of sequential stirring and grafting using chitosan, diallyldimethylammonium chloride, and sodium alginate as raw materials with the purpose of efficient removal of anionic dyes from wastewater. The composite vesicles were characterized using scanning electron microscopy, Fourier transform infrared spectroscopy, X-ray photoelectron spectroscopy, and X-ray diffraction. The hollow vesicles showed the structure of the cationic membrane and the inner cavity, facilitating the dye adsorption. The adsorption capacity for the anionic dye Reactive Black 5 reached 698.1 mg/g, more than twice that of the binary composite vesicles without graft. The adsorption kinetics and isotherm data coincided with the pseudo-second-order and Langmuir models, respectively, and the adsorption mechanism was monolayer chemisorption. Moreover, the vesicles worked well in wide ranges of environment pH, temperature, and co-existing pollutants. They also possessed excellent cyclic regeneration performance, in which 93 % of the initial adsorption capacity was maintained after four cycles. These results indicate that the millimeter-scale hollow vesicles exhibit broad application prospects for wastewater purification.
Collapse
Affiliation(s)
- Jinshan Yang
- College of Chemistry & Chemical Engineering, Qingdao University, Qingdao 266071, China
| | - Tao Lou
- College of Chemistry & Chemical Engineering, Qingdao University, Qingdao 266071, China.
| | - Xuejun Wang
- College of Chemistry & Chemical Engineering, Qingdao University, Qingdao 266071, China.
| |
Collapse
|
4
|
Ursaki V, Braniste T, Zalamai V, Rusu E, Ciobanu V, Morari V, Podgornii D, Ricci PC, Adelung R, Tiginyanu I. Aero-ZnS prepared by physical vapor transport on three-dimensional networks of sacrificial ZnO microtetrapods. BEILSTEIN JOURNAL OF NANOTECHNOLOGY 2024; 15:490-499. [PMID: 38711580 PMCID: PMC11070954 DOI: 10.3762/bjnano.15.44] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/09/2023] [Accepted: 04/15/2024] [Indexed: 05/08/2024]
Abstract
Aeromaterials represent a class of increasingly attractive materials for various applications. Among them, aero-ZnS has been produced by hydride vapor phase epitaxy on sacrificial ZnO templates consisting of networks of microtetrapods and has been proposed for microfluidic applications. In this paper, a cost-effective technological approach is proposed for the fabrication of aero-ZnS by using physical vapor transport with Sn2S3 crystals and networks of ZnO microtetrapods as precursors. The morphology of the produced material is investigated by scanning electron microscopy (SEM), while its crystalline and optical qualities are assessed by X-ray diffraction (XRD) analysis and photoluminescence (PL) spectroscopy, respectively. We demonstrate possibilities for controlling the composition and the crystallographic phase content of the prepared aerogels by the duration of the technological procedure. A scheme of deep energy levels and electronic transitions in the ZnS skeleton of the aeromaterial was deduced from the PL analysis, suggesting that the produced aerogel is a potential candidate for photocatalytic and sensor applications.
Collapse
Affiliation(s)
- Veaceslav Ursaki
- National Center for Materials Study and Testing, Technical University of Moldova, Chisinau, Republic of Moldova
- Academy of Sciences of Moldova, Chisinau, Republic of Moldova
| | - Tudor Braniste
- National Center for Materials Study and Testing, Technical University of Moldova, Chisinau, Republic of Moldova
| | - Victor Zalamai
- National Center for Materials Study and Testing, Technical University of Moldova, Chisinau, Republic of Moldova
| | - Emil Rusu
- Institute of Electronic Engineering and Nanotechnology „D. Ghitu”, Technical University of Moldova, Chisinau, Republic of Moldova
| | - Vladimir Ciobanu
- National Center for Materials Study and Testing, Technical University of Moldova, Chisinau, Republic of Moldova
| | - Vadim Morari
- Institute of Electronic Engineering and Nanotechnology „D. Ghitu”, Technical University of Moldova, Chisinau, Republic of Moldova
| | - Daniel Podgornii
- Institute of Applied Physics, State University of Moldova, Chisinau, Republic of Moldova
| | | | - Rainer Adelung
- Department of Material Science, Kiel University, Kiel, Germany
| | - Ion Tiginyanu
- National Center for Materials Study and Testing, Technical University of Moldova, Chisinau, Republic of Moldova
- Academy of Sciences of Moldova, Chisinau, Republic of Moldova
| |
Collapse
|
5
|
Niu H, Xiao Z, Zhang P, Guo W, Hu Y, Wang X. Flame retardant, heat insulating and hydrophobic chitosan-derived aerogels for the clean-up of hazardous chemicals. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 908:168261. [PMID: 37918752 DOI: 10.1016/j.scitotenv.2023.168261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 10/18/2023] [Accepted: 10/30/2023] [Indexed: 11/04/2023]
Abstract
Leakage of hazardous chemicals often causes significant casualties, enormous economic losses, and negative social benefits. Presently, fire rescue personnel lack efficient and eco-friendly disposal materials for hazardous chemical leakage accidents. In this study, chitosan (CS) aerogels with excellent flame-retardant performance were prepared via cross-linking by two phosphorus-containing vanillin-based compounds (DV and TV). The as-prepared chitosan aerogels were lightweight and porous. The introduction of DV and TV greatly enhanced the residual char yields of CS at 700 °C and the flame-retardant performance of chitosan aerogels. TCS-5.0 possessed the best flame-retardant performance, indicating that TV was more effective than DV in enhancing the flame-retardant performance of chitosan aerogels. The greatly improved flame-retardant properties could be attributed to TV effectively promoting the residual char formation of chitosan aerogels and reducing the formation of combustible gas phase products. To improve the hydrophobicity of chitosan aerogels, TCS-5.0 was treated with solution immersion to load siloxane molecules on its surface. The water contact angle of HTCS-5.0 was 136.1°. HTCS-5.0 had a high oil absorption multiplicity, absorbing up to 31 times its own weight of chloroform. HTCS-5.0 could continuously absorb organic solvents on the water surface with the assistance of a vacuum pump, indicating that HTCS-5.0 could be used for the clean-up of hazardous chemical leakage accidents.
Collapse
Affiliation(s)
- Haoxin Niu
- State Key Laboratory of Fire Science, University of Science and Technology of China, 96 Jinzhai Road, Hefei, Anhui 230026, PR China
| | - Zetao Xiao
- State Key Laboratory of Fire Science, University of Science and Technology of China, 96 Jinzhai Road, Hefei, Anhui 230026, PR China
| | - Ping Zhang
- State Key Laboratory Cultivation Base for Nonmetal Composites and Functional Materials, Southwest University of Science and Technology, Mianyang 621010, PR China
| | - Wenwen Guo
- State Key Laboratory of Fire Science, University of Science and Technology of China, 96 Jinzhai Road, Hefei, Anhui 230026, PR China
| | - Yuan Hu
- State Key Laboratory of Fire Science, University of Science and Technology of China, 96 Jinzhai Road, Hefei, Anhui 230026, PR China
| | - Xin Wang
- State Key Laboratory of Fire Science, University of Science and Technology of China, 96 Jinzhai Road, Hefei, Anhui 230026, PR China.
| |
Collapse
|
6
|
Fijalkowski M, Ali A, Qamer S, Coufal R, Adach K, Petrik S. Hybrid and Single-Component Flexible Aerogels for Biomedical Applications: A Review. Gels 2023; 10:4. [PMID: 38275842 PMCID: PMC10815221 DOI: 10.3390/gels10010004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 12/05/2023] [Accepted: 12/08/2023] [Indexed: 01/27/2024] Open
Abstract
The inherent disadvantages of traditional non-flexible aerogels, such as high fragility and moisture sensitivity, severely restrict their applications. To address these issues and make the aerogels efficient, especially for advanced medical applications, different techniques have been used to incorporate flexibility in aerogel materials. In recent years, a great boom in flexible aerogels has been observed, which has enabled them to be used in high-tech biomedical applications. The current study comprises a comprehensive review of the preparation techniques of pure polymeric-based hybrid and single-component aerogels and their use in biomedical applications. The biomedical applications of these hybrid aerogels will also be reviewed and discussed, where the flexible polymeric components in the aerogels provide the main contribution. The combination of highly controlled porosity, large internal surfaces, flexibility, and the ability to conform into 3D interconnected structures support versatile properties, which are required for numerous potential medical applications such as tissue engineering; drug delivery reservoir systems; biomedical implants like heart stents, pacemakers, and artificial heart valves; disease diagnosis; and the development of antibacterial materials. The present review also explores the different mechanical, chemical, and physical properties in numerical values, which are most wanted for the fabrication of different materials used in the biomedical fields.
Collapse
Affiliation(s)
- Mateusz Fijalkowski
- Department of Advanced Materials, Institute for Nanomaterials, Advanced Technologies and Innovation (CXI), Technical University of Liberec, 461 17 Liberec, Czech Republic
| | - Azam Ali
- Department of Material Science, Technical University of Liberec, 461 17 Liberec, Czech Republic
| | - Shafqat Qamer
- Department of Basic Medical Sciences, College of Medicine, Prince Sattam Bin Abdulaziz University, Alkharj 11942, Saudi Arabia
| | - Radek Coufal
- Department of Science and Research, Faulty of Health Studies, Technical University of Liberec, 461 17 Liberec, Czech Republic
| | - Kinga Adach
- Department of Advanced Materials, Institute for Nanomaterials, Advanced Technologies and Innovation (CXI), Technical University of Liberec, 461 17 Liberec, Czech Republic
| | - Stanislav Petrik
- Department of Advanced Materials, Institute for Nanomaterials, Advanced Technologies and Innovation (CXI), Technical University of Liberec, 461 17 Liberec, Czech Republic
| |
Collapse
|
7
|
Kolya H, Kang CW. Next-Generation Water Treatment: Exploring the Potential of Biopolymer-Based Nanocomposites in Adsorption and Membrane Filtration. Polymers (Basel) 2023; 15:3421. [PMID: 37631480 PMCID: PMC10458676 DOI: 10.3390/polym15163421] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 08/03/2023] [Accepted: 08/14/2023] [Indexed: 08/27/2023] Open
Abstract
This review article focuses on the potential of biopolymer-based nanocomposites incorporating nanoparticles, graphene oxide (GO), carbon nanotubes (CNTs), and nanoclays in adsorption and membrane filtration processes for water treatment. The aim is to explore the effectiveness of these innovative materials in addressing water scarcity and contamination issues. The review highlights the exceptional adsorption capacities and improved membrane performance offered by chitosan, GO, and CNTs, which make them effective in removing heavy metals, organic pollutants, and emerging contaminants from water. It also emphasizes the high surface area and ion exchange capacity of nanoclays, enabling the removal of heavy metals, organic contaminants, and dyes. Integrating magnetic (Fe2O4) adsorbents and membrane filtration technologies is highlighted to enhance adsorption and separation efficiency. The limitations and challenges associated are also discussed. The review concludes by emphasizing the importance of collaboration with industry stakeholders in advancing biopolymer-based nanocomposites for sustainable and comprehensive water treatment solutions.
Collapse
Affiliation(s)
- Haradhan Kolya
- Department of Housing Environmental Design, Research Institute of Human Ecology, College of Human Ecology, Jeonbuk National University, Jeonju 54896, Republic of Korea
| | - Chun-Won Kang
- Department of Housing Environmental Design, Research Institute of Human Ecology, College of Human Ecology, Jeonbuk National University, Jeonju 54896, Republic of Korea
| |
Collapse
|
8
|
Zhang L, Huo X, Zhu J, Liu C, Wang L. Residual Chlorella-Based Cellulose Nanofibers and Their Quaternization Modification and Efficient Anionic Dye Adsorption. MATERIALS (BASEL, SWITZERLAND) 2023; 16:ma16103642. [PMID: 37241269 DOI: 10.3390/ma16103642] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2023] [Revised: 05/04/2023] [Accepted: 05/04/2023] [Indexed: 05/28/2023]
Abstract
Dye is an anionic common pollutant in industrial wastewater and poses a great threat to the environment and human health. Owing to its advantageous adsorption capacity, nanocellulose is widely used for wastewater treatment. The cell walls of Chlorella mainly comprise cellulose instead of lignin. In this study, residual Chlorella-based cellulose nanofiber (CNF) and cationic cellulose nanofiber (CCNF) with surface quaternization were prepared through homogenization. Moreover, Congo red (CR) was used as a model dye to measure the adsorption capacity of CNF and CCNF. The adsorption capacity was almost saturated when CNF and CCNF contacted CR for 100 min, and the adsorption kinetics coincided with the pseudo-secondary kinetics model. The initial concentration of CR considerably affected its adsorption on CNF and CCNF. Below the initial concentration of 40 mg/g, the adsorption on CNF and CCNF considerably increased with the increase in the initial concentration of CR. Based on the sorption isotherms analysis of CNF and CCNF, the Langmuir model fitted best with the experimental data. Thus, CNF and CCNF surfaces were uniform, and monolayer adsorption occurred. The adsorption of CR on CNF and CCNF was greatly affected by the pH value, and the acidic medium favored the adsorption of CR (especially for CCNF). CCNF showed a more advantageous adsorption capacity, with a maximum value of 1657.89 mg/g, compared to that of CNF (190.0 mg/g). According to the findings of this study, residual Chlorella-based CCNF could be a very promising adsorbent candidate for removing anionic dyes from wastewater.
Collapse
Affiliation(s)
- Lina Zhang
- School of Materials Science and Engineering, Dalian Jiaotong University, Dalian 116028, China
- Dalian Product Quality Inspection and Testing Institute Co., Ltd., Dalian 116021, China
| | - Xiaomin Huo
- Dalian Product Quality Inspection and Testing Institute Co., Ltd., Dalian 116021, China
| | - Jin Zhu
- School of Biological Engineering, Dalian Polytechnic University, Dalian 116034, China
| | - Changbin Liu
- School of Biological Engineering, Dalian Polytechnic University, Dalian 116034, China
| | - Lianfeng Wang
- School of Materials Science and Engineering, Dalian Jiaotong University, Dalian 116028, China
| |
Collapse
|
9
|
Magnetic Bacterial Cellulose Biopolymers: Production and Potential Applications in the Electronics Sector. Polymers (Basel) 2023; 15:polym15040853. [PMID: 36850137 PMCID: PMC9961894 DOI: 10.3390/polym15040853] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Revised: 01/29/2023] [Accepted: 02/06/2023] [Indexed: 02/11/2023] Open
Abstract
Bacterial cellulose (BC) is a biopolymer that has been widely investigated due to its useful characteristics, such as nanometric structure, simple production and biocompatibility, enabling the creation of novel materials made from additive BC in situ and/or ex situ. The literature also describes the magnetization of BC biopolymers by the addition of particles such as magnetite and ferrites. The processing of BC with these materials can be performed in different ways to adapt to the availability of materials and the objectives of a given application. There is considerable interest in the electronics field for novel materials and devices as well as non-polluting, sustainable solutions. This sector influences the development of others, including the production and optimization of new equipment, medical devices, sensors, transformers and motors. Thus, magnetic BC has considerable potential in applied research, such as the production of materials for biotechnological electronic devices. Magnetic BC also enables a reduction in the use of polluting materials commonly found in electronic devices. This review article highlights the production of this biomaterial and its applications in the field of electronics.
Collapse
|