1
|
Roque-Borda CA, Carnero Canales CS, Primo LMDG, Colturato VMM, Polinário G, Di Filippo LD, Duarte JL, Chorilli M, da Silva Barud H, Pavan FR. Cellulose from bacteria as a delivery system for improved treatment of infectious diseases: A review of updates and prospects. Int J Biol Macromol 2024; 277:133831. [PMID: 39084978 DOI: 10.1016/j.ijbiomac.2024.133831] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 07/06/2024] [Accepted: 07/10/2024] [Indexed: 08/02/2024]
Abstract
Cellulose from bacteria is a high-purity biomaterial naturally produced by bacteria as part of their metabolic process. Although it inherently lacks antimicrobial activity, its modification with bioactive substances can significantly enhance its efficacy beyond that of the original compounds. This biomaterial features a unique ability to retain substantial quantities of liquids within its three-dimensional network, making it a prime candidate for biomedical applications. Versatile in its properties, it can be utilized across various industries. Previous research has highlighted its capacity to exhibit antimicrobial properties and to encapsulate nanostructured materials, thereby augmenting its antibacterial effectiveness. This review focuses on the use of cellulose from bacteria as a carrier for active compounds, specifically targeting antibacterial activity against drug-resistant strains. We explore its role in innovative bacterial cellulose-based systems, which present a promising solution for tackling bacterial resistance. This review aims to showcase the potential of bacterial cellulose in developing new devices and treatment strategies that address critical concerns in global health.
Collapse
Affiliation(s)
- Cesar Augusto Roque-Borda
- Universidad Católica de Santa María, Facultad de Ciencias Farmacéuticas, Bioquímicas y Biotecnológicas, Arequipa, Peru.
| | | | | | | | - Giulia Polinário
- São Paulo State University (UNESP), School of Pharmaceutical Sciences, Araraquara, Brazil
| | | | - Jonatas L Duarte
- São Paulo State University (UNESP), School of Pharmaceutical Sciences, Araraquara, Brazil
| | - Marlus Chorilli
- São Paulo State University (UNESP), School of Pharmaceutical Sciences, Araraquara, Brazil
| | - Hernane da Silva Barud
- University of Araraquara (UNIARA), Biopolymers and Biomaterials Laboratory (BIOPOLMAT), Araraquara, São Paulo, Brazil
| | - Fernando R Pavan
- São Paulo State University (UNESP), School of Pharmaceutical Sciences, Araraquara, Brazil.
| |
Collapse
|
2
|
Onishi BD, Carvalho RS, Bortoletto-Santos R, Santagneli SH, Barreto ARJ, Santos AM, Cremona M, Pandoli OG, Junior MNB, Faraco TA, Barud HS, de Farias RL, Ribeiro SJL, Legnani C. Laponite-Modified Biopolymers as a Conformable Substrate for Optoelectronic Devices. ACS OMEGA 2024; 9:31855-31863. [PMID: 39072077 PMCID: PMC11270560 DOI: 10.1021/acsomega.4c03463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 06/16/2024] [Accepted: 06/24/2024] [Indexed: 07/30/2024]
Abstract
Biopolymers such as carboxymethyl cellulose and hyaluronic acid are alternative substrates for conformable organic light-emitting diodes (OLEDs). However, drawbacks such as mechanical stress susceptibility can hinder the device's performance under stretched conditions. To overcome these limitations, herein, we developed a nanocomposite based on CMC/HA (carboxymethyl cellulose/hyaluronic acid) and synthetic Laponite, intending to improve the mechanical strength without compromising the film flexibility and transparency (transmittance >80%; 380-700 nm) as substrates for conformable OLEDs. From XRD, FTIR, CP-MAS NMR, and TGA/DTG characterization techniques, it was possible to conclude the presence of Laponite randomly dispersed between the polymer chains. CMC/HA with 5% (w/w) Laponite, CMC/HA 5, presented a higher tensile strength (370.6 MPa) and comparable Young's modulus (51.0 ± 1.2 MPa) in comparison to the nanocomposites and pristine films, indicating a better candidate for the device's substrates. To produce the OLED, the multilayer structure ITO/MoO3/NPB/TCTA:Ir(ppy)3/TPBi:Ir(ppy)3/BPhen/LiF was deposited onto the CMC/HA 5 substrate. The OLEDs fabricated using CMC/HA 5 substrates showed higher luminance (12 kcd/m2) and irradiance (0.9 mW/cm2) values when compared with those based on commercial bacterial cellulose. However, the same device presented a lower efficiency (3.2 cd/A) due to a higher current density. Moreover, the OLED fabricated onto the Laponite-modified biopolymer presented reproducible behavior when submitted to continuous bending stress. Thus, CMC/HA 5 demonstrates potential as a transparent conductor substrate for biopolymer-based OLEDs with comparable performance to commercial bacterial cellulose features.
Collapse
Affiliation(s)
- Bruno
S. D. Onishi
- Institute
of Chemistry, São Paulo State University
(UNESP), Araraquara, SP 14800-060, Brazil
| | - Rafael S. Carvalho
- Departamento
de Física, Pontifícia Univ.
Católica do Rio de Janeiro (PUC-Rio), Rio de Janeiro 22451-900, Brazil
| | - Ricardo Bortoletto-Santos
- Postgraduate
Program in Environmental Technology, University
of Ribeirão Preto (UNAERP), Ribeirão Preto 14096-900, Brazil
| | - Silvia H. Santagneli
- Institute
of Chemistry, São Paulo State University
(UNESP), Araraquara, SP 14800-060, Brazil
| | - Arthur R. J. Barreto
- Departamento
de Física, Pontifícia Univ.
Católica do Rio de Janeiro (PUC-Rio), Rio de Janeiro 22451-900, Brazil
| | - Aline M. Santos
- Departamento
de Física, Pontifícia Univ.
Católica do Rio de Janeiro (PUC-Rio), Rio de Janeiro 22451-900, Brazil
| | - Marco Cremona
- Departamento
de Física, Pontifícia Univ.
Católica do Rio de Janeiro (PUC-Rio), Rio de Janeiro 22451-900, Brazil
| | - Omar G. Pandoli
- Departamento
de Química, Pontifícia Univ.
Católica do Rio de Janeiro (PUC-Rio), Rio de Janeiro 22451-900, Brazil
- Departamento
de Engenharia Química e de Materiais, Pontifícia Univ. Católica do Rio de Janeiro (PUC-Rio), Rio de Janeiro 22451-900, Brazil
| | - Mario N. B. Junior
- Departamento
de Engenharia Química e de Materiais, Pontifícia Univ. Católica do Rio de Janeiro (PUC-Rio), Rio de Janeiro 22451-900, Brazil
| | - Thales A. Faraco
- Departamento
de Física, Laboratório de Eletrônica Orgânica
(LEO), Univ. Federal de Juiz de Fora (UFJF), Juiz de Fora 36036-330, Brazil
| | - Hernane S. Barud
- Laboratório
de biopolímeros e Biomateriais (BIOPOLMAt), Univ. de Araraquara (UNIARA), Araraquara 14801-340, Brazil
| | - Renan L. de Farias
- Departamento
de Química, Pontifícia Univ.
Católica do Rio de Janeiro (PUC-Rio), Rio de Janeiro 22451-900, Brazil
| | - Sidney J. L. Ribeiro
- Institute
of Chemistry, São Paulo State University
(UNESP), Araraquara, SP 14800-060, Brazil
| | - Cristiano Legnani
- Departamento
de Física, Laboratório de Eletrônica Orgânica
(LEO), Univ. Federal de Juiz de Fora (UFJF), Juiz de Fora 36036-330, Brazil
| |
Collapse
|
3
|
Nguyen H, Lima RLS, Neto NMB, Araujo PT. What is the significance of the chloroform stabilizer C 5H 10 and its association with MeOH in concentration-dependent polymeric solutions? SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2024; 310:123886. [PMID: 38245968 DOI: 10.1016/j.saa.2024.123886] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 12/10/2023] [Accepted: 01/10/2024] [Indexed: 01/23/2024]
Abstract
The understanding of excitonic transitions associated with polymeric aggregates is fundamental, as such transitions have implications on coherence lengths, coherence numbers and inter- and intra-chain binding parameters. In this context, the investigation of efficient solvents and other ways to control polymer aggregate formation is key for their consolidation as materials for new technologies. In this manuscript, we use Poly(3-hexothiophene) (P3HT) as a probe to investigate the significance of amylene (C5H10) and its association with methanol (MeOH) in both pure and C5H10-stabilized chloroform (CHCl3)-based polymeric solutions. Using the intensity ratio between the first and second vibronic transitions of the P3HT H-aggregates formed, values for their exciton bandwidths and interchain interactions are obtained and correlated with the presence of C5H10 and MeOH as agents determining the CHCl3 quality.
Collapse
Affiliation(s)
- Huan Nguyen
- Department of Physics and Astronomy, University of Alabama, Tuscaloosa, AL, USA
| | - Ruan L S Lima
- Institute of Natural Sciences, Federal University of Para, Belem, PA, Brazil
| | | | - Paulo T Araujo
- Department of Physics and Astronomy, University of Alabama, Tuscaloosa, AL, USA.
| |
Collapse
|
4
|
Revin VV, Liyaskina EV, Parchaykina MV, Kurgaeva IV, Efremova KV, Novokuptsev NV. Production of Bacterial Exopolysaccharides: Xanthan and Bacterial Cellulose. Int J Mol Sci 2023; 24:14608. [PMID: 37834056 PMCID: PMC10572569 DOI: 10.3390/ijms241914608] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2023] [Revised: 09/15/2023] [Accepted: 09/21/2023] [Indexed: 10/15/2023] Open
Abstract
Recently, degradable biopolymers have become increasingly important as potential environmentally friendly biomaterials, providing a wide range of applications in various fields. Bacterial exopolysaccharides (EPSs) are biomacromolecules, which due to their unique properties have found applications in biomedicine, foodstuff, textiles, cosmetics, petroleum, pharmaceuticals, nanoelectronics, and environmental remediation. One of the important commercial polysaccharides produced on an industrial scale is xanthan. In recent years, the range of its application has expanded significantly. Bacterial cellulose (BC) is another unique EPS with a rapidly increasing range of applications. Due to the great prospects for their practical application, the development of their highly efficient production remains an important task. The present review summarizes the strategies for the cost-effective production of such important biomacromolecules as xanthan and BC and demonstrates for the first time common approaches to their efficient production and to obtaining new functional materials for a wide range of applications, including wound healing, drug delivery, tissue engineering, environmental remediation, nanoelectronics, and 3D bioprinting. In the end, we discuss present limitations of xanthan and BC production and the line of future research.
Collapse
Affiliation(s)
- Viktor V. Revin
- Department of Biotechnology, Biochemistry and Bioengineering, National Research Ogarev Mordovia State University, 430005 Saransk, Russia; (E.V.L.); (M.V.P.); (I.V.K.); (K.V.E.); (N.V.N.)
| | | | | | | | | | | |
Collapse
|
5
|
Sofiah AGN, Pasupuleti J, Samykano M, Kadirgama K, Koh SP, Tiong SK, Pandey AK, Yaw CT, Natarajan SK. Harnessing Nature's Ingenuity: A Comprehensive Exploration of Nanocellulose from Production to Cutting-Edge Applications in Engineering and Sciences. Polymers (Basel) 2023; 15:3044. [PMID: 37514434 PMCID: PMC10385464 DOI: 10.3390/polym15143044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 06/07/2023] [Accepted: 06/16/2023] [Indexed: 07/30/2023] Open
Abstract
Primary material supply is the heart of engineering and sciences. The depletion of natural resources and an increase in the human population by a billion in 13 to 15 years pose a critical concern regarding the sustainability of these materials; therefore, functionalizing renewable materials, such as nanocellulose, by possibly exploiting their properties for various practical applications, has been undertaken worldwide. Nanocellulose has emerged as a dominant green natural material with attractive and tailorable physicochemical properties, is renewable and sustainable, and shows biocompatibility and tunable surface properties. Nanocellulose is derived from cellulose, the most abundant polymer in nature with the remarkable properties of nanomaterials. This article provides a comprehensive overview of the methods used for nanocellulose preparation, structure-property and structure-property correlations, and the application of nanocellulose and its nanocomposite materials. This article differentiates the classification of nanocellulose, provides a brief account of the production methods that have been developed for isolating nanocellulose, highlights a range of unique properties of nanocellulose that have been extracted from different kinds of experiments and studies, and elaborates on nanocellulose potential applications in various areas. The present review is anticipated to provide the readers with the progress and knowledge related to nanocellulose. Pushing the boundaries of nanocellulose further into cutting-edge applications will be of particular interest in the future, especially as cost-effective commercial sources of nanocellulose continue to emerge.
Collapse
Affiliation(s)
| | - Jagadeesh Pasupuleti
- Institute of Sustainable Energy, Universiti Tenaga Nasional, Kajang 43000, Selangor, Malaysia
| | - Mahendran Samykano
- Centre for Research in Advanced Fluid and Processes, Universiti Malaysia Pahang, Gambang 26300, Pahang, Malaysia
| | - Kumaran Kadirgama
- Centre for Research in Advanced Fluid and Processes, Universiti Malaysia Pahang, Gambang 26300, Pahang, Malaysia
| | - Siaw Paw Koh
- Institute of Sustainable Energy, Universiti Tenaga Nasional, Kajang 43000, Selangor, Malaysia
| | - Sieh Kieh Tiong
- Institute of Sustainable Energy, Universiti Tenaga Nasional, Kajang 43000, Selangor, Malaysia
| | - Adarsh Kumar Pandey
- Research Centre for Nano-Materials and Energy Technology (RCNMET), School of Science and Technology, Sunway University, No. 5, Bandar Sunway, Petaling Jaya 47500, Selangor, Malaysia
- Center for Transdiciplinary Research (CFTR), Saveetha University, Chennai 602105, India
| | - Chong Tak Yaw
- Institute of Sustainable Energy, Universiti Tenaga Nasional, Kajang 43000, Selangor, Malaysia
| | - Sendhil Kumar Natarajan
- Solar Energy Laboratory, Department of Mechanical Engineering, National Institute of Technology Puducherry, University of Puducherry, Karaikal 609609, India
| |
Collapse
|
6
|
Netrusov AI, Liyaskina EV, Kurgaeva IV, Liyaskina AU, Yang G, Revin VV. Exopolysaccharides Producing Bacteria: A Review. Microorganisms 2023; 11:1541. [PMID: 37375041 DOI: 10.3390/microorganisms11061541] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 05/31/2023] [Accepted: 06/05/2023] [Indexed: 06/29/2023] Open
Abstract
Bacterial exopolysaccharides (EPS) are essential natural biopolymers used in different areas including biomedicine, food, cosmetic, petroleum, and pharmaceuticals and also in environmental remediation. The interest in them is primarily due to their unique structure and properties such as biocompatibility, biodegradability, higher purity, hydrophilic nature, anti-inflammatory, antioxidant, anti-cancer, antibacterial, and immune-modulating and prebiotic activities. The present review summarizes the current research progress on bacterial EPSs including their properties, biological functions, and promising applications in the various fields of science, industry, medicine, and technology, as well as characteristics and the isolation sources of EPSs-producing bacterial strains. This review provides an overview of the latest advances in the study of such important industrial exopolysaccharides as xanthan, bacterial cellulose, and levan. Finally, current study limitations and future directions are discussed.
Collapse
Affiliation(s)
- Alexander I Netrusov
- Department of Microbiology, Faculty of Biology, M.V. Lomonosov Moscow State University, 119234 Moscow, Russia
- Faculty of Biology and Biotechnology, High School of Economics, 119991 Moscow, Russia
| | - Elena V Liyaskina
- Department of Biotechnology, Biochemistry and Bioengineering, National Research Ogarev Mordovia State University, 430005 Saransk, Russia
| | - Irina V Kurgaeva
- Department of Biotechnology, Biochemistry and Bioengineering, National Research Ogarev Mordovia State University, 430005 Saransk, Russia
| | - Alexandra U Liyaskina
- Institute of the World Ocean, Far Eastern Federal University, 690922 Vladivostok, Russia
| | - Guang Yang
- Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Viktor V Revin
- Department of Biotechnology, Biochemistry and Bioengineering, National Research Ogarev Mordovia State University, 430005 Saransk, Russia
| |
Collapse
|
7
|
Scandurra G, Arena A, Ciofi C. A Brief Review on Flexible Electronics for IoT: Solutions for Sustainability and New Perspectives for Designers. SENSORS (BASEL, SWITZERLAND) 2023; 23:s23115264. [PMID: 37299990 DOI: 10.3390/s23115264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Revised: 05/26/2023] [Accepted: 05/31/2023] [Indexed: 06/12/2023]
Abstract
The Internet of Things (IoT) is gaining more and more popularity and it is establishing itself in all areas, from industry to everyday life. Given its pervasiveness and considering the problems that afflict today's world, that must be carefully monitored and addressed to guarantee a future for the new generations, the sustainability of technological solutions must be a focal point in the activities of researchers in the field. Many of these solutions are based on flexible, printed or wearable electronics. The choice of materials therefore becomes fundamental, just as it is crucial to provide the necessary power supply in a green way. In this paper we want to analyze the state of the art of flexible electronics for the IoT, paying particular attention to the issue of sustainability. Furthermore, considerations will be made on how the skills required for the designers of such flexible circuits, the features required to the new design tools and the characterization of electronic circuits are changing.
Collapse
Affiliation(s)
| | - Antonella Arena
- Department of Engineering, University of Messina, 98166 Messina, Italy
| | - Carmine Ciofi
- Department of Engineering, University of Messina, 98166 Messina, Italy
| |
Collapse
|
8
|
Fernandes A, Cruz-Lopes L, Esteves B, Evtuguin D. Nanotechnology Applied to Cellulosic Materials. MATERIALS (BASEL, SWITZERLAND) 2023; 16:3104. [PMID: 37109939 PMCID: PMC10143861 DOI: 10.3390/ma16083104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 03/28/2023] [Accepted: 04/03/2023] [Indexed: 06/19/2023]
Abstract
In recent years, nanocellulosic materials have attracted special attention because of their performance in different advanced applications, biodegradability, availability, and biocompatibility. Nanocellulosic materials can assume three distinct morphologies, including cellulose nanocrystals (CNC), cellulose nanofibers (CNF), and bacterial cellulose (BC). This review consists of two main parts related to obtaining and applying nanocelluloses in advanced materials. In the first part, the mechanical, chemical, and enzymatic treatments necessary for the production of nanocelluloses are discussed. Among chemical pretreatments, the most common approaches are described, such as acid- and alkali-catalyzed organosolvation, 2,2,6,6-tetramethylpiperidine-1-oxyl (TEMPO)-mediated oxidation, ammonium persulfate (APS) and sodium persulfate (SPS) oxidative treatments, ozone, extraction with ionic liquids, and acid hydrolysis. As for mechanical/physical treatments, methods reviewed include refining, high-pressure homogenization, microfluidization, grinding, cryogenic crushing, steam blasting, ultrasound, extrusion, aqueous counter collision, and electrospinning. The application of nanocellulose focused, in particular, on triboelectric nanogenerators (TENGs) with CNC, CNF, and BC. With the development of TENGs, an unparalleled revolution is expected; there will be self-powered sensors, wearable and implantable electronic components, and a series of other innovative applications. In the future new era of TENGs, nanocellulose will certainly be a promising material in their constitution.
Collapse
Affiliation(s)
- Ana Fernandes
- Campus Universitário de Santiago, University of Aveiro, 3810-193 Aveiro, Portugal;
| | - Luísa Cruz-Lopes
- Department of Environmental Engineering, Polytechnic Institute of Viseu, Av. Cor. José Maria Vale de Andrade, 3504-510 Viseu, Portugal;
- Centre for Natural Resources, Environment and Society-CERNAS-IPV Research Centre, Av. Cor. José Maria Vale de Andrade, 3504-510 Viseu, Portugal
| | - Bruno Esteves
- Centre for Natural Resources, Environment and Society-CERNAS-IPV Research Centre, Av. Cor. José Maria Vale de Andrade, 3504-510 Viseu, Portugal
- Department of Wood Engineering, Polytechnic Institute of Viseu, Av. Cor. José Maria Vale de Andrade, 3504-510 Viseu, Portugal
| | - Dmitry Evtuguin
- CICECO—Aveiro Institute of Materials and Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal;
| |
Collapse
|