1
|
Kumar S, Dubey N, Kumar V, Choi I, Jeon J, Kim M. Combating micro/nano plastic pollution with bioplastic: Sustainable food packaging, challenges, and future perspectives. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 363:125077. [PMID: 39369869 DOI: 10.1016/j.envpol.2024.125077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 10/03/2024] [Accepted: 10/04/2024] [Indexed: 10/08/2024]
Abstract
The widespread use of plastic in food packaging provides significant challenges due to its non-biodegradability and the risk of hazardous chemicals seeping into food and the environment. This highlights the pressing need to come up with alternatives to traditional plastic that prioritize environmental sustainability, food quality, and safety. The current study presents an up-to-date examination of micro/nano plastic (MP/NP) consumption and their associated toxicity to human health, while also considering bioplastic as safer and eco-friendly alternative materials for packaging. The study contributes to a deeper comprehension of the primary materials utilized for bioplastic manufacturing and their potential for large-scale use. The key findings underscore the distinctive features of bioplastics, such as starch, polyhydroxyalkanoates, polylactic acid, and polybutylene succinate, as well as their blends with active agents, rendering them suitable for innovative food packaging applications. Moreover, the study includes a discussion of insights from various scientific literature, agency reports (governmental and non-governmental), and industry trends in bioplastic production and their potential to combat MP/NP pollution. In essence, the review highlights future research directions for the safe integration of bioplastics in food packaging, addresses outstanding questions, and proposes potential solutions to challenges linked with plastic usage.
Collapse
Affiliation(s)
- Subhash Kumar
- Department of Food Science and Technology, Yeungnam University, Gyeongsan, Gyeongsangbuk-do, 38541, Republic of Korea; Institute of Cell Culture, Yeungnam University, Gyeongsan, Gyeongsangbuk-do, 38541, Republic of Korea
| | - Namo Dubey
- Department of Biotechnology, Yeungnam University, Gyeongsan, Gyeongsangbuk-do, 38541, Republic of Korea
| | - Vishal Kumar
- Department of Food Science and Technology, Yeungnam University, Gyeongsan, Gyeongsangbuk-do, 38541, Republic of Korea
| | - Inho Choi
- Institute of Cell Culture, Yeungnam University, Gyeongsan, Gyeongsangbuk-do, 38541, Republic of Korea; Department of Medical Biotechnology, Yeungnam University, Gyeongsan, Gyeongsangbuk-do, 38541, Republic of Korea
| | - Junhyun Jeon
- Department of Biotechnology, Yeungnam University, Gyeongsan, Gyeongsangbuk-do, 38541, Republic of Korea.
| | - Myunghee Kim
- Department of Food Science and Technology, Yeungnam University, Gyeongsan, Gyeongsangbuk-do, 38541, Republic of Korea; Institute of Cell Culture, Yeungnam University, Gyeongsan, Gyeongsangbuk-do, 38541, Republic of Korea.
| |
Collapse
|
2
|
Kouchakinejad R, Lotfi Z, Golzary A. Exploring Azolla as a sustainable feedstock for eco-friendly bioplastics: A review. Heliyon 2024; 10:e39252. [PMID: 39640731 PMCID: PMC11620271 DOI: 10.1016/j.heliyon.2024.e39252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Revised: 10/09/2024] [Accepted: 10/10/2024] [Indexed: 12/07/2024] Open
Abstract
In today's world, environmental concerns about plastic pollution of aquatic and terrestrial ecosystems are at the forefront of many conversations. However, a solution that is gaining momentum is bioplastics. Bioplastics come from sustainable biological sources such as plants, bio-waste, or microorganisms, rather than non-renewable fossil fuels like petroleum or natural gas. The properties of Azolla, including its growth in aquatic environments, high nutrient content, and ability to symbiotically fix nitrogen, make it an intriguing candidate for sustainable bioplastics feedstock. By analyzing the current state of research on bioplastics, this review aims to demonstrate the feasibility, challenges and environmental sustainability of this new environmentally friendly alternative to plastics. Thus, we contribute to the ongoing discourse on addressing plastic pollution and environmental degradation through innovative, sustainable materials. The research results show that the unique properties of Azolla such as rapid growth and nutritional content make it a strong contender for sustainable bioplastics raw materials. Azolla-based bioplastics can be helpful as an environmentally friendly alternative to conventional plastics. However, it is crucial to address challenges related to cultivation, processing, and economic feasibility for practical implementation. Azolla-based bioplastics are an opportunity to reduce the environmental impact of plastic waste and contribute to a more sustainable future.
Collapse
Affiliation(s)
| | - Zahra Lotfi
- Department of Environment, Semnan Bureau, Semnan, Iran
| | - Abooali Golzary
- School of Environment, College of Engineering, Faculty of Environment, University of Tehran, P.O. Box 14155-6135, Tehran, Iran
| |
Collapse
|
3
|
Negrete-Bolagay D, Guerrero VH. Opportunities and Challenges in the Application of Bioplastics: Perspectives from Formulation, Processing, and Performance. Polymers (Basel) 2024; 16:2561. [PMID: 39339026 PMCID: PMC11434805 DOI: 10.3390/polym16182561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2024] [Revised: 08/09/2024] [Accepted: 08/17/2024] [Indexed: 09/30/2024] Open
Abstract
Tremendously negative effects have been generated in recent decades by the continuously increasing production of conventional plastics and the inadequate management of their waste products. This demands the production of materials within a circular economy, easy to recycle and to biodegrade, minimizing the environmental impact and increasing cost competitiveness. Bioplastics represent a sustainable alternative in this scenario. However, the replacement of plastics must be addressed considering several aspects along their lifecycle, from bioplastic processing to the final application of the product. In this review, the effects of using different additives, biomass sources, and processing techniques on the mechanical and thermal behavior, as well as on the biodegradability, of bioplastics is discussed. The importance of using bioplasticizers is highlighted, besides studying the role of surfactants, compatibilizers, cross-linkers, coupling agents, and chain extenders. Cellulose, lignin, starch, chitosan, and composites are analyzed as part of the non-synthetic bioplastics considered. Throughout the study, the emphasis is on the use of well-established manufacturing processes, such as extrusion, injection, compression, or blow molding, since these are the ones that satisfy the quality, productivity, and cost requirements for large-scale industrial production. Particular attention is also given to fused deposition modeling, since this additive manufacturing technique is nowadays not only used for making prototypes, but it is being integrated into the development of parts for a wide variety of biomedical and industrial applications. Finally, recyclability and the commercial requirements for bioplastics are discussed, and some future perspectives and challenges for the development of bio-based plastics are discussed, with the conclusion that technological innovations, economic incentives, and policy changes could be coupled with individually driven solutions to mitigate the negative environmental impacts associated with conventional plastics.
Collapse
Affiliation(s)
| | - Víctor H. Guerrero
- Department of Materials, Escuela Politécnica Nacional, Quito 170525, Ecuador;
| |
Collapse
|
4
|
Adetunji AI, Erasmus M. Green Synthesis of Bioplastics from Microalgae: A State-of-the-Art Review. Polymers (Basel) 2024; 16:1322. [PMID: 38794516 PMCID: PMC11124873 DOI: 10.3390/polym16101322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 04/30/2024] [Accepted: 05/04/2024] [Indexed: 05/26/2024] Open
Abstract
The synthesis of conventional plastics has increased tremendously in the last decades due to rapid industrialization, population growth, and advancement in the use of modern technologies. However, overuse of these fossil fuel-based plastics has resulted in serious environmental and health hazards by causing pollution, global warming, etc. Therefore, the use of microalgae as a feedstock is a promising, green, and sustainable approach for the production of biobased plastics. Various biopolymers, such as polyhydroxybutyrate, polyurethane, polylactic acid, cellulose-based polymers, starch-based polymers, and protein-based polymers, can be produced from different strains of microalgae under varying culture conditions. Different techniques, including genetic engineering, metabolic engineering, the use of photobioreactors, response surface methodology, and artificial intelligence, are used to alter and improve microalgae stocks for the commercial synthesis of bioplastics at lower costs. In comparison to conventional plastics, these biobased plastics are biodegradable, biocompatible, recyclable, non-toxic, eco-friendly, and sustainable, with robust mechanical and thermoplastic properties. In addition, the bioplastics are suitable for a plethora of applications in the agriculture, construction, healthcare, electrical and electronics, and packaging industries. Thus, this review focuses on techniques for the production of biopolymers and bioplastics from microalgae. In addition, it discusses innovative and efficient strategies for large-scale bioplastic production while also providing insights into the life cycle assessment, end-of-life, and applications of bioplastics. Furthermore, some challenges affecting industrial scale bioplastics production and recommendations for future research are provided.
Collapse
Affiliation(s)
- Adegoke Isiaka Adetunji
- Centre for Mineral Biogeochemistry, University of the Free State, Bloemfontein 9301, South Africa
| | | |
Collapse
|
5
|
Venkatesan R, Alagumalai K, Vetcher AA, Al-Asbahi BA, Kim SC. Eco-Friendly Poly (Butylene Adipate- co-Terephthalate) Coated Bi-Layered Films: An Approach to Enhance Mechanical and Barrier Properties. Polymers (Basel) 2024; 16:1283. [PMID: 38732752 PMCID: PMC11085390 DOI: 10.3390/polym16091283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 04/29/2024] [Accepted: 05/01/2024] [Indexed: 05/13/2024] Open
Abstract
In this research work, a coated paper was prepared with poly (butylene adipate-co-terephthalate) (PBAT) film to explore its use in eco-friendly food packaging. The paper was coated with PBAT film for packaging using hot pressing, a production method currently employed in the packaging industry. The coated papers were evaluated for their structural, mechanical, thermal, and barrier properties. The structural morphology and chemical analysis of the coated paper confirmed the consistent formation of PBAT bi-layered on paper surfaces. Surface coating with PBAT film increased the water resistance of the paper samples, as demonstrated by tests of barrier characteristics, including the water vapor transmission rate (WVTR), oxygen transmission rate (OTR), and water contact angle (WCA) of water drops. The transmission rate of the clean paper was 2010.40 cc m-2 per 24 h for OTR and 110.24 g m-2 per 24 h for WVTR. If the PBAT-film was coated, the value decreased to 91.79 g m-2 per 24 h and 992.86 cc m-2 per 24 h. The hydrophobic nature of PBAT, confirmed by WCA measurements, contributed to the enhanced water resistance of PBAT-coated paper. This result presents an improved PBAT-coated paper material, eliminating the need for adhesives and allowing for the fabrication of bi-layered packaging.
Collapse
Affiliation(s)
- Raja Venkatesan
- School of Chemical Engineering, Yeungnam University, 280 Daehak-Ro, Gyeongsan 38541, Republic of Korea;
| | - Krishnapandi Alagumalai
- School of Chemical Engineering, Yeungnam University, 280 Daehak-Ro, Gyeongsan 38541, Republic of Korea;
| | - Alexandre A. Vetcher
- Institute of Biochemical Technology and Nanotechnology, Peoples’ Friendship University of Russia n.a. P. Lumumba (RUDN), 6 Miklukho-Maklaya St., 117198 Moscow, Russia;
| | - Bandar Ali Al-Asbahi
- Department of Physics and Astronomy, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia;
| | - Seong-Cheol Kim
- School of Chemical Engineering, Yeungnam University, 280 Daehak-Ro, Gyeongsan 38541, Republic of Korea;
| |
Collapse
|
6
|
Siddiqui SA, Yang X, Deshmukh RK, Gaikwad KK, Bahmid NA, Castro-Muñoz R. Recent advances in reinforced bioplastics for food packaging - A critical review. Int J Biol Macromol 2024; 263:130399. [PMID: 38403219 DOI: 10.1016/j.ijbiomac.2024.130399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 02/07/2024] [Accepted: 02/21/2024] [Indexed: 02/27/2024]
Abstract
Recently, diversifying the material, method, and application in food packaging has been massively developed to find more environment-friendly materials. However, the mechanical and barrier properties of the bioplastics are major hurdles to expansion in commercial realization. The compositional variation with the inclusion of different fillers could resolve the lacking performance of the bioplastic. This review summarizes the various reinforcement fillers and their effect on bioplastic development. In this review, we first discussed the status of bioplastics and their definition, advantages, and limitations regarding their performance in the food packaging application. Further, the overview of different fillers and development methods has been discussed thoroughly. The application of reinforced bioplastic for food packaging and its effect on food quality and shelf life are highlighted. The environmental issues, health concerns, and future perspectives of the reinforced bioplastic are also discussed at the end of the manuscript. Adding different fillers into the bioplastic improves physical, mechanical, barrier, and active properties, which render the required protective functions to replace conventional plastic for food packaging applications. Various fillers, such as natural and chemically synthesized, could be incorporated into the bioplastic, and their overall properties improve significantly for the food packaging application.
Collapse
Affiliation(s)
- Shahida Anusha Siddiqui
- Technical University of Munich, Campus Straubing for Biotechnology and Sustainability, Essigberg 3, 94315 Straubing, Germany; German Institute of Food Technologies (DIL e.V.), Prof.-von-Klitzing Str. 7, 49610, Quakenbrück, Germany.
| | - Xi Yang
- Department of Food Science and Technology, Tokyo University of Marine Science and Technology, Japan.
| | - Ram Kumar Deshmukh
- Department of Paper Technology, Indian Institute of Technology Roorkee, Uttarakhand 247667, India.
| | - Kirtiraj K Gaikwad
- Department of Paper Technology, Indian Institute of Technology Roorkee, Uttarakhand 247667, India.
| | - Nur Alim Bahmid
- Research Center for Food Technology and Processing, National Research and Innovation Agency (BRIN), Gading, Playen, Gunungkidul, 55861 Yogyakarta, Indonesia; Gdansk University of Technology, Faculty of Civil and Environmental Engineering, Department of Sanitary Engineering, 80 - 233 Gdansk, G. Narutowicza St. 11/12, Poland.
| | - Roberto Castro-Muñoz
- Gdansk University of Technology, Faculty of Civil and Environmental Engineering, Department of Sanitary Engineering, 80 - 233 Gdansk, G. Narutowicza St. 11/12, Poland.
| |
Collapse
|
7
|
Alshehhi JRMH, Wanasingha N, Balu R, Mata J, Shah K, Dutta NK, Choudhury NR. 3D-Printable Sustainable Bioplastics from Gluten and Keratin. Gels 2024; 10:136. [PMID: 38391466 PMCID: PMC10887891 DOI: 10.3390/gels10020136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Revised: 01/26/2024] [Accepted: 01/30/2024] [Indexed: 02/24/2024] Open
Abstract
Bioplastic films comprising both plant- and animal-derived proteins have the potential to integrate the optimal characteristics inherent to the specific domain, which offers enormous potential to develop polymer alternatives to petroleum-based plastic. Herein, we present a facile strategy to develop hybrid films comprised of both wheat gluten and wool keratin proteins for the first time, employing a ruthenium-based photocrosslinking strategy. This approach addresses the demand for sustainable materials, reducing the environmental impact by using proteins from renewable and biodegradable sources. Gluten film was fabricated from an alcohol-water mixture soluble fraction, largely comprised of gliadin proteins. Co-crosslinking hydrolyzed low-molecular-weight keratin with gluten enhanced its hydrophilic properties and enabled the tuning of its physicochemical properties. Furthermore, the hierarchical structure of the fabricated films was studied using neutron scattering techniques, which revealed the presence of both hydrophobic and hydrophilic nanodomains, gliadin nanoclusters, and interconnected micropores in the matrix. The films exhibited a largely (>40%) β-sheet secondary structure, with diminishing gliadin aggregate intensity and increasing micropore size (from 1.2 to 2.2 µm) with an increase in keratin content. The hybrid films displayed improved molecular chain mobility, as evidenced by the decrease in the glass-transition temperature from ~179.7 °C to ~173.5 °C. Amongst the fabricated films, the G14K6 hybrid sample showed superior water uptake (6.80% after 30 days) compared to the pristine G20 sample (1.04%). The suitability of the developed system for multilayer 3D printing has also been demonstrated, with the 10-layer 3D-printed film exhibiting >92% accuracy, which has the potential for use in packaging, agricultural, and biomedical applications.
Collapse
Affiliation(s)
| | - Nisal Wanasingha
- Chemical and Environmental Engineering, School of Engineering, STEM College, RMIT University, Melbourne, VIC 3000, Australia
| | - Rajkamal Balu
- Chemical and Environmental Engineering, School of Engineering, STEM College, RMIT University, Melbourne, VIC 3000, Australia
| | - Jitendra Mata
- Australian Centre for Neutron Scattering (ACNS), Australian Nuclear Science and Technology Organisation (ANSTO), Lucas Heights, NSW 2232, Australia
- School of Chemistry, University of New South Wales, Sydney, NSW 2052, Australia
| | - Kalpit Shah
- Chemical and Environmental Engineering, School of Engineering, STEM College, RMIT University, Melbourne, VIC 3000, Australia
| | - Naba K Dutta
- Chemical and Environmental Engineering, School of Engineering, STEM College, RMIT University, Melbourne, VIC 3000, Australia
| | - Namita Roy Choudhury
- Chemical and Environmental Engineering, School of Engineering, STEM College, RMIT University, Melbourne, VIC 3000, Australia
| |
Collapse
|
8
|
El-Sheekh MM, Alwaleed EA, Ibrahim A, Saber H. Preparation and characterization of bioplastic film from the green seaweed Halimeda opuntia. Int J Biol Macromol 2024; 259:129307. [PMID: 38199545 DOI: 10.1016/j.ijbiomac.2024.129307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 11/29/2023] [Accepted: 01/05/2024] [Indexed: 01/12/2024]
Abstract
Protein-rich seaweeds are regarded as having commercial significance due to their numerous industrial applications. The green seaweed Halimeda opuntia was used during this study for the preparation of bioplastic film. A thin bioplastic film with better physical and mechanical properties was produced by optimizing the ratio of polyvinyl alcohol (PVA) to seaweed biomass. The films obtained were characterized by their thickness, tensile strength, elongation at break, Young's modulus, moisture absorption resistance, and solubility. To evaluate the composition and potential for chemical reactions of the films, an FTIR spectroscopy examination was conducted. Whereas TG-DTA and AFM were performed on films with high mechanical properties. The bioplastic film produced when algae percent was tripled in PVA concentration had better physical and mechanical characteristics, and the bioplastic films degraded in the environment within a short time. According to the current study, seaweed might serve as an alternative source for the production of bioplastic, which could help minimize the use of non-biodegradable plastics.
Collapse
Affiliation(s)
- Mostafa M El-Sheekh
- Botany Department, Faculty of Science, Tanta University, 31527 Tanta, Egypt.
| | - Eman A Alwaleed
- Botany and Microbiology Department, Faculty of Science, South Valley University, 83523 Qena, Egypt
| | - Aml Ibrahim
- Botany and Microbiology Department, Faculty of Science, South Valley University, 83523 Qena, Egypt
| | - Hani Saber
- Botany and Microbiology Department, Faculty of Science, South Valley University, 83523 Qena, Egypt
| |
Collapse
|
9
|
Azarnejad N, Celletti S, Ghorbani M, Fedeli R, Loppi S. Dose-Dependent Effects of a Corn Starch-Based Bioplastic on Basil ( Ocimum basilicum L.): Implications for Growth, Biochemical Parameters, and Nutrient Content. TOXICS 2024; 12:80. [PMID: 38251035 PMCID: PMC10818275 DOI: 10.3390/toxics12010080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Revised: 01/12/2024] [Accepted: 01/15/2024] [Indexed: 01/23/2024]
Abstract
Plastic pollution is a pressing global issue, prompting the exploration of sustainable alternatives such as bioplastics (BPs). In agriculture, BPs have gained relevance as mulching films. This study investigated the effect of the presence in the soil of different concentrations (0-3%, w/w) of a corn starch-based bioplastic on basil (Ocimum basilicum L.). The results showed that increasing bioplastic concentration reduced shoot fresh biomass production. Biochemical analyses revealed changes in the shoot in soluble protein content, biomarkers of oxidative and osmotic stress (malondialdehyde and proline, respectively), anti-radical activity, and antioxidant compounds (phenols, flavonoids, and ascorbic acid), which are indicative of plant adaptive mechanisms in response to stress caused by the presence of the different concentrations of bioplastic in the soil. Macro- and micronutrient analysis showed imbalances in nutrient uptake, with a decreased content of potassium, phosphorus, and manganese, and an increased content of magnesium, iron, and copper in the shoot at high BP concentrations.
Collapse
Affiliation(s)
- Nazanin Azarnejad
- Department of Life Sciences (DSV), University of Siena, 53100 Siena, Italy; (N.A.); (M.G.); (R.F.); (S.L.)
| | - Silvia Celletti
- Department of Life Sciences (DSV), University of Siena, 53100 Siena, Italy; (N.A.); (M.G.); (R.F.); (S.L.)
- BioAgry Lab, University of Siena, 53100 Siena, Italy
| | - Majid Ghorbani
- Department of Life Sciences (DSV), University of Siena, 53100 Siena, Italy; (N.A.); (M.G.); (R.F.); (S.L.)
| | - Riccardo Fedeli
- Department of Life Sciences (DSV), University of Siena, 53100 Siena, Italy; (N.A.); (M.G.); (R.F.); (S.L.)
- BioAgry Lab, University of Siena, 53100 Siena, Italy
| | - Stefano Loppi
- Department of Life Sciences (DSV), University of Siena, 53100 Siena, Italy; (N.A.); (M.G.); (R.F.); (S.L.)
- BioAgry Lab, University of Siena, 53100 Siena, Italy
- BAT Center—Interuniversity Center for Studies on Bioinspired Agro-Environmental Technology, University of Naples “Federico II”, 80138 Napoli, Italy
| |
Collapse
|
10
|
Mosquera Rodríguez FS, Quintero Vélez A, Córdoba Urrutia E, Ramírez-Malule H, Mina Hernandez JH. Study of the Degradation of a TPS/PCL/Fique Biocomposite Material in Soil, Compost, and Water. Polymers (Basel) 2023; 15:3952. [PMID: 37836001 PMCID: PMC10575001 DOI: 10.3390/polym15193952] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 09/20/2023] [Accepted: 09/22/2023] [Indexed: 10/15/2023] Open
Abstract
The degradability of the biocomposite produced from a binary mixture of thermoplastic banana starch (TPS) and polycaprolactone (PCL) reinforced with fique fibers (Fs) was evaluated in three different environments (soil, compost, water). An experimental design with two factors (soil and compost) and three levels (5, 10, and 20 cm) was used, with additional tests for a third aqueous environment (water from the lake of the Universidad del Valle) at a depth of 20 cm. The biocomposite was prepared from the implementation of a twin-screw extrusion process of the binary mixture TPS/PCL and fique fibers (54, 36, and 10% composition, respectively), followed by hot compression molding, and after that, generating ASTM D638 type V specimens using a stainless-steel die. The specimens were dried and buried according to the experimental design, for a total experimental time of 90 days, and removing samples every 30 days. After 90 days, all samples showed signs of degradation, where the best results were obtained in the compost at a depth of 20 cm (34 ± 4% mass loss and a decrease in tensile strength of 77.3%, which indicates that the material lost mechanical properties). TPS was the fastest disappearing component and promoted the degradation of the composite material as it disappeared. Finally, the aqueous media presented the lowest degradation results, losing only 20% of its initial mass after 90 days of the experiment, being the least effective environment in which the biocomposite can end up.
Collapse
Affiliation(s)
| | - Alejandro Quintero Vélez
- School of Chemical Engineering, Universidad del Valle, Calle 13 No. 100-00, Cali 760001, Colombia; (F.S.M.R.); (A.Q.V.)
| | - Estivinson Córdoba Urrutia
- Group Investigación en Ciencia Animal y Recursos Agroforestales, Universidad Tecnológica del Chocó, Carrera 22 No. 18B-10, Quibdó 270001, Colombia;
| | - Howard Ramírez-Malule
- School of Chemical Engineering, Universidad del Valle, Calle 13 No. 100-00, Cali 760001, Colombia; (F.S.M.R.); (A.Q.V.)
| | - Jose Herminsul Mina Hernandez
- School of Materials Engineering, Group Materiales Compuestos, Universidad del Valle, Calle 13 No. 100-00, Cali 760001, Colombia
| |
Collapse
|