1
|
Herdiana Y. Nanoparticles of natural product-derived medicines: Beyond the pandemic. Heliyon 2025; 11:e42739. [PMID: 40083991 PMCID: PMC11904502 DOI: 10.1016/j.heliyon.2025.e42739] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Revised: 02/12/2025] [Accepted: 02/14/2025] [Indexed: 03/16/2025] Open
Abstract
This review explores the synergistic potential of natural products and nanotechnology for viral infections, highlighting key antiviral, immunomodulatory, and antioxidant properties to combat pandemics caused by highly infectious viruses. These pandemics often result in severe public health crises, particularly affecting vulnerable populations due to respiratory complications and increased mortality rates. A cytokine storm is initiated when an overload of pro-inflammatory cytokines and chemokines is released, leading to a systemic inflammatory response. Viral mutations and the limited availability of effective drugs, vaccines, and therapies contribute to the continuous transmission of the virus. The coronavirus disease-19 (COVID-19) pandemic has sparked renewed interest in natural product-derived antivirals. The efficacy of traditional medicines against pandemic viral infections is examined. Their antiviral, immunomodulatory, anti-inflammatory, and antioxidant properties are highlighted. This review discusses how nanotechnology enhances the efficacy of herbal medicines in combating viral infections.
Collapse
Affiliation(s)
- Yedi Herdiana
- Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy, Universitas Padjadjaran, Sumedang, 45363, Indonesia
| |
Collapse
|
2
|
Edo GI, Mafe AN, Ali ABM, Akpoghelie PO, Yousif E, Apameio JI, Isoje EF, Igbuku UA, Garba Y, Essaghah AEA, Ahmed DS, Umar H, Ozsahin DU. Chitosan and its derivatives: A novel approach to gut microbiota modulation and immune system enhancement. Int J Biol Macromol 2025; 289:138633. [PMID: 39675606 DOI: 10.1016/j.ijbiomac.2024.138633] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Revised: 12/06/2024] [Accepted: 12/09/2024] [Indexed: 12/17/2024]
Abstract
Chitosan, a biopolymer derived from the deacetylation of chitin found in crustacean shells and certain fungi, has attracted considerable attention for its promising health benefits, particularly in gut microbiota maintenance and immune system modulation. This review critically examines chitosan's multifaceted role in supporting gut health and enhancing immunity, beginning with a comprehensive overview of its sources, chemical structure, and its dual function as a dietary supplement and biomaterial. Chitosan's prebiotic effects are highlighted, with a focus on its ability to selectively stimulate beneficial gut bacteria, such as Bifidobacteria and Lactobacillus, while enhancing gut barrier integrity and inhibiting the growth of pathogenic microorganisms. The review delves deeply into chitosan's immunomodulatory mechanisms, including its impact on antigen-presenting cells, cytokine profiles, and systemic immune responses. A detailed comparative analysis assesses chitosan's efficacy relative to other prebiotics and immunomodulatory agents, examining challenges related to bioavailability and metabolic activity. Beyond its role in gut health, this review explores chitosan's potential as a dual-action agent that not only supports gut microbiota but also fortifies immune resilience. It introduces emerging research on novel chitosan derivatives, such as chitooligosaccharides, and evaluates their enhanced bioactivity for functional food applications. Special attention is given to sustainability, with an exploration of alternative, plant-based sources of chitosan and their implications for both health and environmental stewardship. Also, the review identifies new research avenues, such as the growing interest in chitosan's role in the gut-brain axis and its potential mental health benefits through microbial interactions. By addressing these innovative areas, the review aims to shift the focus from basic health effects to chitosan's broader impact on public health. The findings encourage further exploration, particularly through human trials, and emphasize chitosan's untapped potential in revolutionizing health and disease management.
Collapse
Affiliation(s)
- Great Iruoghene Edo
- Department of Chemistry, Faculty of Science, Delta State University of Science and Technology, Ozoro, Nigeria; Department of Chemistry, College of Sciences, Al-Nahrain University, Baghdad, Iraq.
| | - Alice Njolke Mafe
- Department of Biological Sciences, Faculty of Science, Taraba State University Jalingo, Taraba State, Nigeria
| | - Ali B M Ali
- Department of Air Conditioning Engineering, Faculty of Engineering, Warith Al-Anbiyaa University, Karbala, Iraq
| | - Patrick Othuke Akpoghelie
- Department of Food Science and Technology, Faculty of Science, Delta State University of Science and Technology, Ozoro, Delta State, Nigeria
| | - Emad Yousif
- Department of Chemistry, College of Sciences, Al-Nahrain University, Baghdad, Iraq
| | - Jesse Innocent Apameio
- Department of Biological Sciences, Faculty of Science, Taraba State University Jalingo, Taraba State, Nigeria
| | - Endurance Fegor Isoje
- Department of Science Laboratory Technology (Biochemistry Option), Faculty of Science, Delta State University of Science and Technology, Ozoro, Nigeria
| | - Ufuoma Augustina Igbuku
- Department of Chemistry, Faculty of Science, Delta State University of Science and Technology, Ozoro, Nigeria
| | - Yasal Garba
- Department of Information Engineering, College of Information Engineering, Al-Nahrain University, Baghdad, Iraq
| | - Arthur Efeoghene Athan Essaghah
- Department of Urban and Regional Planning, Faculty of Environmental Sciences, Delta State University of Science and Technology, Ozoro, Nigeria
| | - Dina S Ahmed
- Department of Chemical Industries, Institute of Technology-Baghdad, Middle Technical University, Baghdad, Iraq
| | - Huzaifa Umar
- Operational Research Centre in Healthcare, Near East University, Nicosia, Cyprus
| | - Dilber Uzun Ozsahin
- Operational Research Centre in Healthcare, Near East University, Nicosia, Cyprus; Department of Medical Diagnostic Imaging, College of Health Sciences, University of Sharjah, P.O. Box 27272, United Arab Emirates; Research Institute for Medical and Health Sciences, University of Sharjah, P.O. Box 27272, United Arab Emirates
| |
Collapse
|
3
|
Bhirud D, Bhattacharya S, Raval H, Sangave PC, Gupta GL, Paraskar G, Jha M, Sharma S, Belemkar S, Kumar D, Maheshwari R, Sharma M. Chitosan nanoparticles of imatinib mesylate coated with TPGS for the treatment of colon cancer: In-vivo & in-vitro studies. Carbohydr Polym 2025; 348:122935. [PMID: 39567152 DOI: 10.1016/j.carbpol.2024.122935] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Revised: 10/19/2024] [Accepted: 10/29/2024] [Indexed: 11/22/2024]
Abstract
The study aimed to develop and evaluate chitosan-based nanoparticles coated with TPGS for the targeted delivery of imatinib mesylate to colon cancer cells. Particle size and zeta potential analysis were within the acceptable range for targeting colon cancer. CS-IMT-TPGS-NPs had a significant positive zeta potential of 30.4 mV, suggesting improved cellular intake. FE-SEM and TEM demonstrated that the nanoparticles appeared spherical, smooth, and did not aggregate, with a visible TPGS coating. XRD confirmed that crystalline imatinib transitioned to an amorphous state during nano formulation. In-vitro tests on HCT-116 cells demonstrated that CS-IMT-TPGS-NPs outperformed free IMT regarding cytotoxicity, apoptosis induction, cellular uptake, and cell migration inhibition. Additionally, the nanoparticles were examined in vitro using mitochondrial membrane potential, DNA fragmentation, GAPDH relative gene expression, ROS estimation, and cell cycle analysis. The effect of therapy on expected colon-associated bacterial strains was also investigated. The biocompatibility of nanoparticles was assessed by hemolysis and platelet aggregation experiments. The anti-inflammatory impact was determined using the HET-CAM test. Non-Fickian diffusion at pH 5.5 resulted in sustained in-vitro drug release, with no initial burst. In-vivo investigations using albino Wistar rats suggest pharmacokinetic properties for produced nanoparticles, whereas histopathological examinations assess acute toxicity.
Collapse
Affiliation(s)
- Darshan Bhirud
- School of Pharmacy & Technology Management, SVKM'S NMIMS Deemed-to-be University, Shirpur, Maharashtra 425405, India
| | - Sankha Bhattacharya
- School of Pharmacy & Technology Management, SVKM'S NMIMS Deemed-to-be University, Shirpur, Maharashtra 425405, India.
| | - Harshvardhan Raval
- School of Pharmacy & Technology Management, SVKM'S NMIMS Deemed-to-be University, Shirpur, Maharashtra 425405, India
| | - Preeti Chidambar Sangave
- School of Pharmacy & Technology Management, SVKM'S NMIMS Deemed-to-be University, Shirpur, Maharashtra 425405, India
| | - Girdhari Lal Gupta
- School of Pharmacy & Technology Management, SVKM'S NMIMS Deemed-to-be University, Shirpur, Maharashtra 425405, India.
| | - Gaurav Paraskar
- School of Pharmacy & Technology Management, SVKM'S NMIMS Deemed-to-be University, Shirpur, Maharashtra 425405, India
| | - Megha Jha
- School of Pharmacy & Technology Management, SVKM'S NMIMS Deemed-to-be University, Shirpur, Maharashtra 425405, India
| | - Satyam Sharma
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research, Hajipur, Bihar 844102, India
| | - Sateesh Belemkar
- Department of Pharmacology, Shobhaben Pratapbhai Patel School of Pharmacy & Technology Management, SVKM'S NMIMS Deemed-to-be University, Mumbai, Maharashtra 400056, India
| | - Devendra Kumar
- School of Pharmacy & Technology Management, SVKM'S NMIMS Deemed-to-be University, Shirpur, Maharashtra 425405, India
| | - Rahul Maheshwari
- School of Pharmacy and Technology Management, SVKM's Narsee Monjee Institute of Management Studies (NMIMS) Deemed-to-University, Jadcherla, Hyderabad 509301, India
| | - Mayank Sharma
- School of Pharmacy & Technology Management, SVKM'S NMIMS Deemed-to-be University, Shirpur, Maharashtra 425405, India
| |
Collapse
|
4
|
Golmohammadi M, Zamanian MY, Al‐Ani AM, Jabbar TL, Kareem AK, Aghaei ZH, Tahernia H, Hjazi A, Jissir SA, Hakimizadeh E. Targeting STAT3 signaling pathway by curcumin and its analogues for breast cancer: A narrative review. Animal Model Exp Med 2024; 7:853-867. [PMID: 39219410 PMCID: PMC11680487 DOI: 10.1002/ame2.12491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2024] [Accepted: 08/10/2024] [Indexed: 09/04/2024] Open
Abstract
BACKGROUND Breast cancer (BC) continues to be a significant global health issue, with a rising number of cases requiring ongoing research and innovation in treatment strategies. Curcumin (CUR), a natural compound derived from Curcuma longa, and similar compounds have shown potential in targeting the STAT3 signaling pathway, which plays a crucial role in BC progression. AIMS The aim of this study was to investigate the effects of curcumin and its analogues on BC based on cellular and molecular mechanisms. MATERIALS & METHODS The literature search conducted for this study involved utilizing the Scopus, ScienceDirect, PubMed, and Google Scholar databases in order to identify pertinent articles. RESULTS This narrative review explores the potential of CUR and similar compounds in inhibiting STAT3 activation, thereby suppressing the proliferation of cancer cells, inducing apoptosis, and inhibiting metastasis. The review demonstrates that CUR directly inhibits the phosphorylation of STAT3, preventing its movement into the nucleus and its ability to bind to DNA, thereby hindering the survival and proliferation of cancer cells. CUR also enhances the effectiveness of other therapeutic agents and modulates the tumor microenvironment by affecting tumor-associated macrophages (TAMs). CUR analogues, such as hydrazinocurcumin (HC), FLLL11, FLLL12, and GO-Y030, show improved bioavailability and potency in inhibiting STAT3, resulting in reduced cell proliferation and increased apoptosis. CONCLUSION CUR and its analogues hold promise as effective adjuvant treatments for BC by targeting the STAT3 signaling pathway. These compounds provide new insights into the mechanisms of action of CUR and its potential to enhance the effectiveness of BC therapies.
Collapse
Affiliation(s)
| | - Mohammad Yassin Zamanian
- Department of Physiology, School of MedicineHamadan University of Medical SciencesHamadanIran
- Department of Pharmacology and Toxicology, School of PharmacyHamadan University of Medical SciencesHamadanIran
| | - Ahmed Muzahem Al‐Ani
- Department of Medical Laboratories TechnologyAL‐Nisour University CollegeBaghdadIraq
| | | | - Ali Kamil Kareem
- Biomedical Engineering DepartmentAl‐Mustaqbal University CollegeHillahIraq
| | - Zeinab Hashem Aghaei
- Preventative Gynecology Research CenterShahid Beheshti University of Medical SciencesTehranIran
| | - Hossein Tahernia
- Molecular Medicine Research Center, Research Institute of Basic Medical SciencesRafsanjan University of Medical SciencesRafsanjanIran
| | - Ahmed Hjazi
- Department of Medical Laboratory Sciences, College of Applied Medical SciencesPrince Sattam bin Abdulaziz UniversityAl‐KharjSaudi Arabia
| | | | - Elham Hakimizadeh
- Physiology‐Pharmacology Research Center, Research Institute of Basic Medical SciencesRafsanjan University of Medical SciencesRafsanjanIran
| |
Collapse
|
5
|
Yu YM, Long YZ, Zhu ZQ. Chitosan, a Natural Polymer, is an Excellent Sustained-Release Carrier for Amide Local Anesthetics. J Pain Res 2024; 17:3539-3551. [PMID: 39493932 PMCID: PMC11531737 DOI: 10.2147/jpr.s480926] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2024] [Accepted: 10/18/2024] [Indexed: 11/05/2024] Open
Abstract
Local anesthetics, particularly amide types, play a crucial role in perioperative anesthesia to alleviate pain and manage chronic, long-term pain, with their brief effect period remaining a universal challenge that needs resolution. There is a high anticipation for creating materials that maintain prolonged effectiveness of local anesthetics through a straightforward administration technique. Chitosan is the most typical natural amino polymer, which is highly reactive and easy to modify. It has been widely and deeply used in the field of medicine. At present, it is mainly used in tissue regeneration and repair, hemostasis and wound healing, antibacterial and anti-infection, disease diagnosis and treatment detection, and drug delivery. In the field of anesthesia, chitosan is regarded as a potential perfect carrier for the sustained release of amide local anesthetics. This document aims to analyze the current application of chitosan as a prolonged-release substance in amide-type local anesthetics, encapsulate the associated research advancements, and subsequently investigate the practicality and prospects of its medical uses.
Collapse
Affiliation(s)
- Yun-Mei Yu
- Department of Anesthesiology, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou, People’s Republic of China
| | - Yuan-Zhu Long
- Department of Anesthesiology, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou, People’s Republic of China
| | - Zhao-Qiong Zhu
- Department of Anesthesiology, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou, People’s Republic of China
| |
Collapse
|
6
|
Alsaikhan F, Farhood B. Recent advances on chitosan/hyaluronic acid-based stimuli-responsive hydrogels and composites for cancer treatment: A comprehensive review. Int J Biol Macromol 2024; 280:135893. [PMID: 39317275 DOI: 10.1016/j.ijbiomac.2024.135893] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2024] [Revised: 09/16/2024] [Accepted: 09/19/2024] [Indexed: 09/26/2024]
Abstract
Cancer, as leading cause of death, has a high rate of mortality worldwide. Although there is a wide variety of conventional approaches for the treatment of cancer (such as surgery and chemotherapy), they have considerable drawbacks in terms of practicality, treatment efficiency, and cost-effectiveness. Therefore, there is a fundamental requirement for the development of safe and efficient treatment modalities based on breakthrough technologies to suppress cancer. Chitosan (CS) and hyaluronic acid (HA) polysaccharides, as FDA-approved biomaterials for some biomedical applications, are potential biopolymers for the efficient treatment of cancer. CS and HA have high biocompatibility, bioavailability, biodegradability, and immunomodulatory function which guarantee their safety and non-toxicity. CS-/HA-based hydrogels (HGs)/composites stand out for their potential anticancer function, versatile preparation and modification, ease of administration, controlled/sustained drug release, and active and passive drug internalization into target cells which is crucial for efficient treatment of cancer compared with conventional treatment approaches. These HGs/composites can respond to external (magnetic, ultrasound, light, and thermal) and internal (pH, enzyme, redox, and ROS) stimuli as well which further paves the way to their manipulation, targeted drug delivery, practicality, and efficient treatment. The above-mentioned properties of CS-/HA-based HGs/composites are unique and practical in cancer treatment which can ignore the deficiencies of conventional approaches. The present manuscript comprehensively highlights the advances in the practical application of stimuli-responsive HGs/composites based on CS/HA polysaccharides.
Collapse
Affiliation(s)
- Fahad Alsaikhan
- College of Pharmacy, Prince Sattam Bin Abdulaziz University, Alkharj, Saudi Arabia; School of Pharmacy, Ibn Sina National College for Medical Studies, Jeddah, Saudi Arabia.
| | - Bagher Farhood
- Department of Medical Physics and Radiology, Faculty of Paramedical Sciences, Kashan University of Medical Sciences, Kashan, Iran.
| |
Collapse
|
7
|
Wijesekara T, Xu B. New Insights into Sources, Bioavailability, Health-Promoting Effects, and Applications of Chitin and Chitosan. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:17138-17152. [PMID: 39042786 DOI: 10.1021/acs.jafc.4c02162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/25/2024]
Abstract
Chitin and chitosan are mostly derived from the exoskeletons of crustaceans, insects, and fungi. Chitin is the second most abundant biopolymer after cellulose, and it is a fibrous polysaccharide which resists enzymatic degradation in the stomach but undergoes microbial fermentation in the colon, producing beneficial metabolites. Chitosan, which is more soluble in the alkaline small intestine, is more susceptible to enzymatic action. Both biopolymers show limited absorption into the bloodstream, with smaller particles exhibiting better bioavailability. The health effects include anti-inflammatory properties, potential in immune system modulation, impacts on cholesterol levels, and antimicrobial effects, with a specific focus on implications for gut health. Chitin and chitosan exhibit anti-inflammatory properties by interacting with immune cells, influencing cytokine production, and modulating immune responses, which may benefit conditions characterized by chronic inflammation. These biopolymers can impact cholesterol levels by binding to dietary fats and reducing lipid absorption. Additionally, their antimicrobial properties contribute to gut health by controlling harmful pathogens and promoting beneficial gut microbiota. This review explores the extensive health benefits and applications of chitin and chitosan, providing a detailed examination of their chemical compositions, dietary sources, and applications, and critically assessing their health-promoting effects in the context of human well-being.
Collapse
Affiliation(s)
- Tharuka Wijesekara
- Food Science and Technology Program, Department of Life Sciences, BNU-HKBU United International College, Zhuhai, Guangdong 519087, China
- Department of Food Science and Agricultural Chemistry, Faculty of Agricultural and Environmental Sciences, McGill University, Quebec H9X 3V9, Canada
| | - Baojun Xu
- Food Science and Technology Program, Department of Life Sciences, BNU-HKBU United International College, Zhuhai, Guangdong 519087, China
| |
Collapse
|
8
|
Herdiana Y, Febrina E, Nurhasanah S, Gozali D, Elamin KM, Wathoni N. Drug Loading in Chitosan-Based Nanoparticles. Pharmaceutics 2024; 16:1043. [PMID: 39204388 PMCID: PMC11359066 DOI: 10.3390/pharmaceutics16081043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2024] [Revised: 07/26/2024] [Accepted: 07/29/2024] [Indexed: 09/04/2024] Open
Abstract
Chitosan nanoparticles (CSNPs) are promising vehicles for targeted and controlled drug release. Recognized for their biodegradability, biocompatibility, low toxicity, and ease of production, CSNPs represent an effective approach to drug delivery. Encapsulating drugs within nanoparticles (NPs) provides numerous benefits compared to free drugs, such as increased bioavailability, minimized toxic side effects, improved delivery, and the incorporation of additional features like controlled release, imaging agents, targeted delivery, and combination therapies with multiple drugs. Keys parameters in nanomedicines are drug loading content and drug loading efficiency. Most current NP systems struggle with low drug loading, presenting a significant challenge to the field. This review summarizes recent research on developing CSNPs with high drug loading capacity, focusing on various synthesis strategies. It examines CSNP systems using different materials and drugs, providing details on their synthesis methods, drug loadings, encapsulation efficiencies, release profiles, stability, and applications in drug delivery. Additionally, the review discusses factors affecting drug loading, providing valuable guidelines for future CSNPs' development.
Collapse
Affiliation(s)
- Yedi Herdiana
- Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy, Universitas Padjadjaran, Sumedang 45363, Indonesia
| | - Ellin Febrina
- Department of Pharmacology and Clinical Pharmacy, Faculty of Pharmacy, Universitas Padjadjaran, Sumedang 45363, Indonesia;
| | - Siti Nurhasanah
- Faculty of Agricultural Industrial Technology, Universitas Padjadjaran, Sumedang 45363, Indonesia;
| | - Dolih Gozali
- Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy, Universitas Padjadjaran, Sumedang 45363, Indonesia
| | - Khaled M. Elamin
- Graduate School of Pharmaceutical Sciences, Kumamoto University, Kumamoto 862-0973, Japan;
| | - Nasrul Wathoni
- Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy, Universitas Padjadjaran, Sumedang 45363, Indonesia
| |
Collapse
|
9
|
Makeen HA, Albratty M. Fabrication and characterization of transdermal delivery of ribociclib nanoemulgel in breast cancer treatment. JOURNAL OF BIOMATERIALS SCIENCE. POLYMER EDITION 2024; 35:1656-1683. [PMID: 38767213 DOI: 10.1080/09205063.2024.2346396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Accepted: 04/18/2024] [Indexed: 05/22/2024]
Abstract
The objective of this study is to create a nanoemulgel formulation of Ribociclib (RIBO), a highly selective inhibitor of CDK4/6 through the utilization of spontaneous emulsification method. An experimental investigation was conducted to construct pseudo-ternary phase diagram for the most favourable formulation utilizing rice bran oil, which is known for its diverse anticancer properties. The formulation consisted of varying combination of the surfactant and as the co-surfactant (Tween 80 and Transcutol, respectively) referred to as Smix and the trials were optimized to get the desired outcome. The nanoemulsion (NE) formulations that were developed exhibited a droplet size of 179.39 nm, accompanied with a PDI of 0.211. According to the data released by Opt-RIBO-NE, it can be inferred that the Higuchi model had the most favourable fit among many kinetics models considered. The results indicate that the use of nanogel preparations for the topical delivery of RIBO in breast cancer therapy, specifically RIBO-NE-G, is viable. This is supported by the extended release of the RIBO, and the appropriate level of drug permeation observed in Opt-RIBO-NE-G. Due to RIBO and Rice Bran oil, RIBO-NE-G had greater antioxidant activity, indicating its effectiveness as antioxidants. The stability of the RIBO-NE-G was observed over a period of three months, indicating a favourable shelf life. Therefore, this study proposes the utilization of an optimized formulation of RIBO-NE-G may enhance the efficacy of anticancer treatment and mitigate the occurrence of systemic side effects in breast cancer patients, as compared to the use of suspension preparation of RIBO.
Collapse
Affiliation(s)
- Hafiz A Makeen
- Pharmacy Practice Research Unit, Department of Clinical Pharmacy, College of Pharmacy, Jazan University, Jazan, Saudi Arabia
| | - Mohammed Albratty
- Department of Pharmaceutical Chemistry and Pharmacognosy, College of Pharmacy, Jazan University, Jazan, Saudi Arabia
| |
Collapse
|
10
|
Waqar MA, Mubarak N, Khan AM, Khan R, Shaheen F, Shabbir A. Advanced polymers and recent advancements on gastroretentive drug delivery system; a comprehensive review. J Drug Target 2024; 32:655-671. [PMID: 38652465 DOI: 10.1080/1061186x.2024.2347366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Accepted: 04/18/2024] [Indexed: 04/25/2024]
Abstract
Oral route of drug administration is typically the initial option for drug administration because it is both practical and affordable. However, major drawback of this route includes the release of drug at a specified place thus reduces the bioavailability. This could be overcome by utilising the gastroretentive drug delivery system (GRRDS). Prolonged stomach retention improves bioavailability and increases solubility for medicines that are unable to dissolve in high pH environments. Many recent advancements in the floating, bio adhesive, magnetic, expandable, raft forming and ion exchange systems have been made that had led towards advanced form of drug delivery. From the past few years, floating drug delivery system has been most commonly utilised for the delivery of drug in a delayed manner. Various polymers have been utilised for manufacturing of these systems, including alginates, chitosan, pectin, carrageenan's, xanthan gum, hydroxypropyl cellulose, carbomer, polyethylene oxide and sodium carboxy methyl cellulose. Chitosan, pectin and xanthan gum have been found to be most commonly used polymers in the manufacturing of drug inclusion complex for gastroretentive drug delivery. This study aimed to define various types and advanced polymers as well as also highlights recent advances and future perspectives of gastroretentive drug delivery system.
Collapse
Affiliation(s)
- Muhammad Ahsan Waqar
- Department of Pharmaceutics, Faculty of Pharmaceutical Sciences, Lahore University of Biological & Applied Sciences, Lahore, Pakistan
| | - Naeem Mubarak
- Department of Pharmacy Practice, Faculty of Pharmaceutical Sciences, Lahore University of Biological & Applied Sciences, Lahore, Pakistan
| | - Asad Majeed Khan
- Department of Pharmaceutics, Faculty of Pharmaceutical Sciences, Lahore University of Biological & Applied Sciences, Lahore, Pakistan
| | - Rabeel Khan
- Department of Pharmacy Practice, Faculty of Pharmaceutical Sciences, Lahore University of Biological & Applied Sciences, Lahore, Pakistan
| | - Farwa Shaheen
- Department of Pharmaceutics, Faculty of Pharmaceutical Sciences, Lahore University of Biological & Applied Sciences, Lahore, Pakistan
| | - Afshan Shabbir
- Department of Pharmaceutics, Faculty of Pharmaceutical Sciences, Lahore University of Biological & Applied Sciences, Lahore, Pakistan
| |
Collapse
|
11
|
Stevanović M, Filipović N. A Review of Recent Developments in Biopolymer Nano-Based Drug Delivery Systems with Antioxidative Properties: Insights into the Last Five Years. Pharmaceutics 2024; 16:670. [PMID: 38794332 PMCID: PMC11125366 DOI: 10.3390/pharmaceutics16050670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 05/11/2024] [Accepted: 05/14/2024] [Indexed: 05/26/2024] Open
Abstract
In recent years, biopolymer-based nano-drug delivery systems with antioxidative properties have gained significant attention in the field of pharmaceutical research. These systems offer promising strategies for targeted and controlled drug delivery while also providing antioxidant effects that can mitigate oxidative stress-related diseases. Generally, the healthcare landscape is constantly evolving, necessitating the continual development of innovative therapeutic approaches and drug delivery systems (DDSs). DDSs play a pivotal role in enhancing treatment efficacy, minimizing adverse effects, and optimizing patient compliance. Among these, nanotechnology-driven delivery approaches have garnered significant attention due to their unique properties, such as improved solubility, controlled release, and targeted delivery. Nanomaterials, including nanoparticles, nanocapsules, nanotubes, etc., offer versatile platforms for drug delivery and tissue engineering applications. Additionally, biopolymer-based DDSs hold immense promise, leveraging natural or synthetic biopolymers to encapsulate drugs and enable targeted and controlled release. These systems offer numerous advantages, including biocompatibility, biodegradability, and low immunogenicity. The utilization of polysaccharides, polynucleotides, proteins, and polyesters as biopolymer matrices further enhances the versatility and applicability of DDSs. Moreover, substances with antioxidative properties have emerged as key players in combating oxidative stress-related diseases, offering protection against cellular damage and chronic illnesses. The development of biopolymer-based nanoformulations with antioxidative properties represents a burgeoning research area, with a substantial increase in publications in recent years. This review provides a comprehensive overview of the recent developments within this area over the past five years. It discusses various biopolymer materials, fabrication techniques, stabilizers, factors influencing degradation, and drug release. Additionally, it highlights emerging trends, challenges, and prospects in this rapidly evolving field.
Collapse
Affiliation(s)
- Magdalena Stevanović
- Group for Biomedical Engineering and Nanobiotechnology, Institute of Technical Sciences of SASA, Kneza Mihaila 35/IV, 11000 Belgrade, Serbia;
| | | |
Collapse
|
12
|
Bokhari SS, Ali T, Naeem M, Hussain F, Nasir A. Recent advances in nanoformulation-based delivery for cancer immunotherapy. Nanomedicine (Lond) 2024; 19:1253-1269. [PMID: 38717427 PMCID: PMC11285355 DOI: 10.1080/17435889.2024.2343273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Accepted: 04/11/2024] [Indexed: 07/25/2024] Open
Abstract
Cancer is one of the leading causes of mortality worldwide, and its treatment faces several challenges. Phytoconstituents derived from recently discovered medicinal plants through nanotechnology potentially target cancer cells via PI3K/Akt/mTOR pathways and exert their effects selectively through the generation of reactive oxygen species through β-catenin inhibition, DNA damage, and increasing caspase 3/9 and p53 expression. These nanocarriers act specifically against different cancer cell lines such as HT-29, MOLT-4 human leukemia cancer and MCF-7 cell lines SKOV-3, Caov-3, SW-626, HepG2, A-549, HeLa, and MCF-7. This review comprehensively elaborates on the cellular and molecular mechanisms, and therapeutic prospects of various plant-mediated nanoformulations to attain a revolutionary shift in cancer immunotherapy.
Collapse
Affiliation(s)
- Seyedeh Saimeh Bokhari
- Clinico-Molecular Biochemistry Laboratory, Department of Biochemistry, University of Agriculture, 38000, Faisalabad, Pakistan
| | - Tayyab Ali
- Clinico-Molecular Biochemistry Laboratory, Department of Biochemistry, University of Agriculture, 38000, Faisalabad, Pakistan
| | - Muhammad Naeem
- College of Life Science, Hebei Normal University, Shijiazhuang, 050024, China
| | - Fatma Hussain
- Clinico-Molecular Biochemistry Laboratory, Department of Biochemistry, University of Agriculture, 38000, Faisalabad, Pakistan
| | - Abdul Nasir
- Medical Research Center, Second Affiliated Hospital of Zhengzhou University, Zhengzhou, 450000, Henan, China
| |
Collapse
|
13
|
Wang H, Wang R, Shen K, Huang R, Wang Z. Biological Roles and Clinical Applications of Exosomes in Breast Cancer: A Brief Review. Int J Mol Sci 2024; 25:4620. [PMID: 38731840 PMCID: PMC11083446 DOI: 10.3390/ijms25094620] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 04/20/2024] [Accepted: 04/22/2024] [Indexed: 05/13/2024] Open
Abstract
Breast cancer (BC) is a global health risk for women and has a high prevalence rate. The drug resistance, recurrence, and metastasis of BC affect patient prognosis, thus posing a challenge to scientists. Exosomes are extracellular vesicles (EVs) that originate from various cells; they have a double-layered lipid membrane structure and contain rich biological information. They mediate intercellular communication and have pivotal roles in tumor development, progression, and metastasis and drug resistance. Exosomes are important cell communication mediators in the tumor microenvironment (TME). Exosomes are utilized as diagnostic and prognostic biomarkers for estimating the treatment efficacy of BC and have the potential to function as tools to enable the targeted delivery of antitumor drugs. This review introduces recent progress in research on how exosomes influence tumor development and the TME. We also present the research progress on the application of exosomes as prognostic and diagnostic biomarkers and drug delivery tools.
Collapse
Affiliation(s)
| | | | | | - Renhong Huang
- Department of General Surgery, Comprehensive Breast Health Center, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China; (H.W.); (R.W.); (K.S.)
| | - Zheng Wang
- Department of General Surgery, Comprehensive Breast Health Center, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China; (H.W.); (R.W.); (K.S.)
| |
Collapse
|
14
|
Moghaddam FD, Zare EN, Hassanpour M, Bertani FR, Serajian A, Ziaei SF, Paiva-Santos AC, Neisiany RE, Makvandi P, Iravani S, Xu Y. Chitosan-based nanosystems for cancer diagnosis and therapy: Stimuli-responsive, immune response, and clinical studies. Carbohydr Polym 2024; 330:121839. [PMID: 38368115 DOI: 10.1016/j.carbpol.2024.121839] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 01/14/2024] [Accepted: 01/16/2024] [Indexed: 02/19/2024]
Abstract
Cancer, a global health challenge of utmost severity, necessitates innovative approaches beyond conventional treatments (e.g., surgery, chemotherapy, and radiation therapy). Unfortunately, these approaches frequently fail to achieve comprehensive cancer control, characterized by inefficacy, non-specific drug distribution, and the emergence of adverse side effects. Nanoscale systems based on natural polymers like chitosan have garnered significant attention as promising platforms for cancer diagnosis and therapy owing to chitosan's inherent biocompatibility, biodegradability, nontoxicity, and ease of functionalization. Herein, recent advancements pertaining to the applications of chitosan nanoparticles in cancer imaging and drug/gene delivery are deliberated. The readers are introduced to conventional non-stimuli-responsive and stimuli-responsive chitosan-based nanoplatforms. External triggers like light, heat, and ultrasound and internal stimuli such as pH and redox gradients are highlighted. The utilization of chitosan nanomaterials as contrast agents or scaffolds for multimodal imaging techniques e.g., magnetic resonance, fluorescence, and nuclear imaging is represented. Key applications in targeted chemotherapy, combination therapy, photothermal therapy, and nucleic acid delivery using chitosan nanoformulations are explored for cancer treatment. The immunomodulatory effects of chitosan and its role in impacting the tumor microenvironment are analyzed. Finally, challenges, prospects, and future outlooks regarding the use of chitosan-based nanosystems are discussed.
Collapse
Affiliation(s)
- Farnaz Dabbagh Moghaddam
- Institute for Photonics and Nanotechnologies, National Research Council, Via Fosso del Cavaliere, 100, 00133 Rome, Italy
| | | | - Mahnaz Hassanpour
- Department of Chemistry, Institute for Advanced Studies in Basic Sciences (IASBS), Zanjan 45137-66731, Iran
| | - Francesca Romana Bertani
- Institute for Photonics and Nanotechnologies, National Research Council, Via Fosso del Cavaliere, 100, 00133 Rome, Italy
| | - Azam Serajian
- Department of Chemistry, Institute for Advanced Studies in Basic Sciences (IASBS), Zanjan 45137-66731, Iran
| | - Seyedeh Farnaz Ziaei
- Department of Veterinary Sciences, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Ana Cláudia Paiva-Santos
- Drug Development and Technology Laboratory, Faculty of Pharmacy of the University of Coimbra, University of Coimbra, Coimbra, Portugal; REQUIMTE/LAQV, Group of Pharmaceutical Technology, Faculty of Pharmacy of the University of Coimbra, University of Coimbra, Coimbra, Portugal
| | - Rasoul Esmaeely Neisiany
- Biotechnology Centre, Silesian University of Technology, Krzywoustego 8, 44-100 Gliwice, Poland; Department of Polymer Engineering, Hakim Sabzevari University, Sabzevar 9617976487, Iran.
| | - Pooyan Makvandi
- Institute for Bioengineering, School of Engineering, The University of Edinburgh, Edinburgh, UK; The Quzhou Affiliated Hospital of Wenzhou Medical University, Quzhou People's Hospital, 324000 Quzhou, Zhejiang, China; Centre of Research Impact and Outcome, Chitkara University Institute of Engineering and Technology, Chitkara University, Rajpura 140401, Punjab, India; Department of Biomaterials, Saveetha Dental College and Hospitals, SIMATS, Saveetha University, Chennai 600077, India
| | - Siavash Iravani
- Independent Researcher, W Nazar ST, Boostan Ave, Isfahan, Iran.
| | - Yi Xu
- Department of Science & Technology, Department of Urology, NanoBioMed Group, The Quzhou Affiliated Hospital of Wenzhou Medical University, Quzhou People's Hospital, Quzhou, China.
| |
Collapse
|
15
|
Dutta RS, Elhassan GO, Devi TB, Bhattacharjee B, Singh M, Jana BK, Sahu S, Mazumder B, Sahu RK, Khan J. Enhanced efficacy of β-carotene loaded solid lipid nanoparticles optimized and developed via central composite design on breast cancer cell lines. Heliyon 2024; 10:e28457. [PMID: 38586388 PMCID: PMC10998123 DOI: 10.1016/j.heliyon.2024.e28457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 03/16/2024] [Accepted: 03/19/2024] [Indexed: 04/09/2024] Open
Abstract
β-carotene is obtained from both plants and animals and has been the subject of intense research because of its provitamin-A, antioxidant, and anticancer effects. Its limited absorption and oxidative degradation significantly reduce its antitumor efficacy when taken orally. In our study, we utilize a central composite design to develop "bio-safe and highly bio-compatible" solid lipid nanoparticles (SLNs) by using only the combination of palmitic acid and poloxamer-407, a block co-polymer as a surfactant. The current research aim to develop and characterize SLNs loaded with β-carotene to improve their bioavailability and therapeutic efficacy. In addition, the improved cytotoxicity of solid lipid nanoparticles loaded with β-carotene was screened in-vitro in human breast cancer cell lines (MCF-7). The nanoparticles exhibits good stability, as indicated by their mean zeta potential of -26.3 ± 1.3 mV. The particles demonstrated high drug loading and entrapment capabilities. The fabricated nanoparticle's prolonged release potential was shown by the in-vitro release kinetics, which showed a first-order release pattern that adhered to the Higuchi model and showed a slow, linear, and steady release over 48 h. Moreover, a diffusion-type release mechanism was used to liberate β-carotene from the nanoparticles. For six months, the nanoparticles also showed a notable degree of physical stability. Lastly, using the MTT assay, the anti-cancer properties of β-carotene-loaded solid lipid nanoparticles were compared with intact β-carotene on MCF-7 cell lines. The cytotoxicity tests have shown that the encapsulation of β-carotene in the lipid bilayers of the optimized formulation does not interfere with the anti-cancer activity of the drug. When compared to standard β-carotene, β-carotene loaded SLNs showed enhanced anticancer efficacy and it is a plausible therapeutic candidate for enhancing the solubility of water-insoluble and degradation-sensitive biotherapeutics like β-carotene.
Collapse
Affiliation(s)
- Rajat Subhra Dutta
- School of Pharmaceutical Sciences, Girijananda Chowdhury University-Tezpur Campus, 784501, Assam, India
- Department of Pharmaceutical Sciences, Dibrugarh University, Dibrugarh, 786004, Assam, India
| | - Gamal Osman Elhassan
- Department of Pharmaceutics, College of Pharmacy, Qassim University, Buraidah, 52571, Saudi Arabia
| | | | - Bedanta Bhattacharjee
- School of Pharmaceutical Sciences, Girijananda Chowdhury University-Tezpur Campus, 784501, Assam, India
| | - Mohini Singh
- Department of Pharmaceutical Sciences, Dibrugarh University, Dibrugarh, 786004, Assam, India
| | - Bani Kumar Jana
- Department of Pharmaceutical Sciences, Dibrugarh University, Dibrugarh, 786004, Assam, India
| | - Supriya Sahu
- School of Pharmaceutical Sciences, Girijananda Chowdhury University-Tezpur Campus, 784501, Assam, India
| | - Bhaskar Mazumder
- Department of Pharmaceutical Sciences, Dibrugarh University, Dibrugarh, 786004, Assam, India
| | - Ram Kumar Sahu
- Department of Pharmaceutical Sciences, Hemvati Nandan Bahuguna Garhwal University (A Central University), Chauras Campus, Tehri Garhwal, Uttarakhand, India
| | - Jiyauddin Khan
- School of Pharmacy, Management and Science University, 40100, Shah Alam, Selangor, Malaysia
| |
Collapse
|
16
|
Abd El-Hack ME, Kamal M, Alazragi RS, Alreemi RM, Qadhi A, Ghafouri K, Azhar W, Shakoori AM, Alsaffar N, Naffadi HM, Taha AE, Abdelnour SA. Impacts of chitosan and its nanoformulations on the metabolic syndromes: a review. BRAZ J BIOL 2024; 83:e276530. [PMID: 38422267 DOI: 10.1590/1519-6984.276530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Accepted: 11/15/2023] [Indexed: 03/02/2024] Open
Abstract
A significant public health issue worldwide is metabolic syndrome, a cluster of metabolic illnesses that comprises insulin resistance, obesity, dyslipidemia, hyperglycemia, and hypertension. The creation of natural treatments and preventions for metabolic syndrome is crucial. Chitosan, along with its nanoformulations, is an oligomer of chitin, the second-most prevalent polymer in nature, which is created via deacetylation. Due to its plentiful biological actions in recent years, chitosan and its nanoformulations have drawn much interest. Recently, the chitosan nanoparticle-based delivery of CRISPR-Cas9 has been applied in treating metabolic syndromes. The benefits of chitosan and its nanoformulations on insulin resistance, obesity, diabetes mellitus, dyslipidemia, hyperglycemia, and hypertension will be outlined in the present review, highlighting potential mechanisms for the avoidance and medication of the metabolic syndromes by chitosan and its nanoformulations.
Collapse
Affiliation(s)
- M E Abd El-Hack
- Zagazig University, Faculty of Agriculture, Department of Poultry, Zagazig, Egypt
| | - M Kamal
- Agricultural Research Center, Animal Production Research Institute, Dokki, Giza, Egypt
| | - R S Alazragi
- University of Jeddah, College of Science, Department of Biochemistry, Jeddah, Saudi Arabia
| | - R M Alreemi
- University of Jeddah, College of Science, Department of Biochemistry, Jeddah, Saudi Arabia
| | - A Qadhi
- Umm Al-Qura University, Faculty of Applied Medical Sciences, Clinical Nutrition Department, Makkah, Saudi Arabia
| | - K Ghafouri
- Umm Al-Qura University, Faculty of Applied Medical Sciences, Clinical Nutrition Department, Makkah, Saudi Arabia
| | - W Azhar
- Umm Al-Qura University, Faculty of Applied Medical Sciences, Clinical Nutrition Department, Makkah, Saudi Arabia
| | - A M Shakoori
- Umm Al-Qura University, Faculty of Applied Medical Sciences, Laboratory Medicine Department, Makkah, Kingdom of Saudi Arabia
| | - N Alsaffar
- Mohammed Al-Mana College for Medical Sciences, Biochemistry and Molecular Biology Department, Dammam, Saudi Arabia
| | - H M Naffadi
- Umm Al-Qura University, College of Medicine, Department of Medical Genetics, Makkah, Kingdom of Saudi Arabia
| | - A E Taha
- Alexandria University, Faculty of Veterinary Medicine, Department of Animal Husbandry and Animal Wealth Development, Edfina, Egypt
| | - S A Abdelnour
- Zagazig University, Faculty of Agriculture, Department of Animal Production, Zagazig, Egypt
| |
Collapse
|
17
|
Pathak R, Bhatt S, Punetha VD, Punetha M. Chitosan nanoparticles and based composites as a biocompatible vehicle for drug delivery: A review. Int J Biol Macromol 2023; 253:127369. [PMID: 37839608 DOI: 10.1016/j.ijbiomac.2023.127369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 10/06/2023] [Accepted: 10/09/2023] [Indexed: 10/17/2023]
Abstract
The shellfish processing industry is one of the largest growing industries across the globe with a market size of around USD 62B. However, it also leads to a significant environmental issue as it produces >80,000 tons of waste shells globally. Unfortunately, the slow degradation of this waste causes it to accumulate over time, posing a serious threat to the marine environment. The key solution to this problem is to recycle this sea waste into a valuable product like chitin which is further used to produce chitosan. Chitosan is a natural biopolymeric substance obtained via N-deacetylation of the chitin. The chitosan-based nanoparticles are further useful for the fabrication of biopolymeric nanocomposites which are used in various biomedical applications specifically in drug delivery. Here, we review the recent advancements in the development of chitosan-based nanocomposites as a biocompatible carrier for drug delivery, specifically focusing on gene delivery, wound healing, microbial treatment, and anticancer drug delivery. By providing a valuable and up-to-date resource, this review illuminates the current state of research concerning chitosan's pivotal role in the biomedical domain as an efficacious drug delivery agent.
Collapse
Affiliation(s)
- Rakshit Pathak
- 2D Materials and LASER Actuation Laboratory, Centre of Excellence for Research, PP Savani University, NH-8, Surat 394125, Gujarat, India.
| | - Shalini Bhatt
- 2D Materials and LASER Actuation Laboratory, Centre of Excellence for Research, PP Savani University, NH-8, Surat 394125, Gujarat, India
| | - Vinay Deep Punetha
- 2D Materials and LASER Actuation Laboratory, Centre of Excellence for Research, PP Savani University, NH-8, Surat 394125, Gujarat, India
| | - Mayank Punetha
- 2D Materials and LASER Actuation Laboratory, Centre of Excellence for Research, PP Savani University, NH-8, Surat 394125, Gujarat, India
| |
Collapse
|
18
|
Sangnim T, Dheer D, Jangra N, Huanbutta K, Puri V, Sharma A. Chitosan in Oral Drug Delivery Formulations: A Review. Pharmaceutics 2023; 15:2361. [PMID: 37765329 PMCID: PMC10538129 DOI: 10.3390/pharmaceutics15092361] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 09/03/2023] [Accepted: 09/18/2023] [Indexed: 09/29/2023] Open
Abstract
Nanoformulations have become increasingly useful as drug delivery technologies in recent decades. As therapeutics, oral administration is the most common delivery method, although it is not always the most effective route because of challenges with swallowing, gastrointestinal discomfort, low solubility, and poor absorption. One of the most significant barriers that medications must overcome to exert a therapeutic effect is the impact of the first hepatic transit. Studies have shown that controlled-release systems using nanoparticles composed of biodegradable natural polymers significantly improve oral administration, which is why these materials have attracted significant attention. Chitosan possesses a wide variety of properties and functions in the pharmaceutical as well as healthcare industries. Drug encapsulation and transport within the body are two of its most important features. Moreover, chitosan can enhance drug efficacy by facilitating drug interaction with target cells. Based on its physicochemical properties, chitosan can potentially be synthesized into nanoparticles, and this review summarizes recent advances and applications of orally delivered chitosan nanoparticle interventions.
Collapse
Affiliation(s)
- Tanikan Sangnim
- Faculty of Pharmaceutical Sciences, Burapha University, Chonburi 20131, Thailand
| | - Divya Dheer
- Chitkara School of Pharmacy, Chitkara University, Baddi 174103, Himachal Pradesh, India
- Chemical Biology Unit, Institute of Nano Science and Technology, Knowledge City, Sector 81, Mohali 140306, Punjab, India
| | - Nitin Jangra
- Chitkara School of Pharmacy, Chitkara University, Baddi 174103, Himachal Pradesh, India
| | - Kampanart Huanbutta
- Department of Manufacturing Pharmacy, College of Pharmacy, Rangsit University, Pathum Thani 12000, Thailand
| | - Vivek Puri
- Chitkara School of Pharmacy, Chitkara University, Baddi 174103, Himachal Pradesh, India
| | - Ameya Sharma
- Chitkara School of Pharmacy, Chitkara University, Baddi 174103, Himachal Pradesh, India
| |
Collapse
|