1
|
Ostróżka-Cieślik A, Strasser C, Dolińska B. Insulin-Loaded Chitosan-Cellulose-Derivative Hydrogels: In Vitro Permeation of Hormone through Strat-M ® Membrane and Rheological and Textural Analysis. Polymers (Basel) 2024; 16:2619. [PMID: 39339083 PMCID: PMC11435918 DOI: 10.3390/polym16182619] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2024] [Revised: 09/12/2024] [Accepted: 09/14/2024] [Indexed: 09/30/2024] Open
Abstract
This work is part of the current research trend to develop a hydrogel carrier of insulin to promote wound healing. Topically applied insulin promotes keratinocyte proliferation and migration, increases collagen synthesis, reduces inflammation and oxidative stress, and exhibits antimicrobial activity. The aim of this study was to design an insulin hydrogel matrix based on selected cellulose derivatives (methylcellulose, hydroxyethylcellulose, and hydroxypropylmethylcellulose) and chitosan. Rheological parameters of the formulations were evaluated using rotational rheometry and an oscillation test. Textural tests were performed. In vitro pharmaceutical insulin availability studies were carried out using the innovative Strat-M® membrane to imitate the skin barrier. It was found that the pharmaceutical formulation of insulin based on chitosan and methylcellulose showed an acceptable balance between rheological and textural parameters and ease of application. The API was released from the carrier in a prolonged manner, eliminating the need to apply the formulation several times per day. The developed hydrogel shows potential for use in clinical practice.
Collapse
Affiliation(s)
- Aneta Ostróżka-Cieślik
- Department of Pharmaceutical Technology, Faculty of Pharmaceutical Sciences in Sosnowiec, Medical University of Silesia, Jedności Street 10, 41-200 Sosnowiec, Poland
| | - Claire Strasser
- NETZSCH-Geratebau GmbH, Wittelsbacherstraße 42, 95100 Selb, Germany
| | - Barbara Dolińska
- Department of Pharmaceutical Technology, Faculty of Pharmaceutical Sciences in Sosnowiec, Medical University of Silesia, Jedności Street 10, 41-200 Sosnowiec, Poland
| |
Collapse
|
2
|
Zanchetta FC, De Wever P, Morari J, Gaspar RC, Prado TPD, De Maeseneer T, Cardinaels R, Araújo EP, Lima MHM, Fardim P. In Vitro and In Vivo Evaluation of Chitosan/HPMC/Insulin Hydrogel for Wound Healing Applications. Bioengineering (Basel) 2024; 11:168. [PMID: 38391653 PMCID: PMC10886365 DOI: 10.3390/bioengineering11020168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Revised: 02/06/2024] [Accepted: 02/07/2024] [Indexed: 02/24/2024] Open
Abstract
Treatment of chronic wounds is challenging, and the development of different formulations based on insulin has shown efficacy due to their ability to regulate oxidative stress and inflammatory reactions. The formulation of insulin with polysaccharides in biohybrid hydrogel systems has the advantage of synergistically combining the bioactivity of the protein with the biocompatibility and hydrogel properties of polysaccharides. In this study, a hydrogel formulation containing insulin, chitosan, and hydroxypropyl methyl cellulose (Chi/HPMC/Ins) was prepared and characterized by FTIR, thermogravimetric, and gel point analyses. The in vitro cell viability and cell migration potential of the Chi/HPMC/Ins hydrogel were evaluated in human keratinocyte cells (HaCat) by MTT and wound scratch assay. The hydrogel was applied to excisional full-thickness wounds in diabetic mice for twenty days for in vivo studies. Cell viability studies indicated no cytotoxicity of the Chi/HPMC/Ins hydrogel. Moreover, the Chi/HPMC/Ins hydrogel promoted faster gap closure in the scratch assay. In vivo, the wounds treated with the Chi/HPMC/Ins hydrogel resulted in faster wound closure, formation of a more organized granulation tissue, and hair follicle regeneration. These results suggest that Chi/HPMC/Ins hydrogels might promote wound healing in vitro and in vivo and could be a new potential dressing for wound healing.
Collapse
Affiliation(s)
- Flávia Cristina Zanchetta
- Faculty of Nursing, University of Campinas, Campinas 13083-887, Brazil
- Laboratory of Cell Signaling, Obesity and Comorbidities Research Center, University of Campinas, Campinas 13083-887, Brazil
| | - Pieter De Wever
- Department of Chemical Engineering, University of Leuven KU Leuven, 3001 Leuven, Belgium
| | - Joseane Morari
- Laboratory of Cell Signaling, Obesity and Comorbidities Research Center, University of Campinas, Campinas 13083-887, Brazil
| | - Rita Caiado Gaspar
- Department of Chemical Engineering, University of Leuven KU Leuven, 3001 Leuven, Belgium
| | - Thaís Paulino do Prado
- Faculty of Nursing, University of Campinas, Campinas 13083-887, Brazil
- Laboratory of Cell Signaling, Obesity and Comorbidities Research Center, University of Campinas, Campinas 13083-887, Brazil
| | - Tess De Maeseneer
- Department of Chemical Engineering, University of Leuven KU Leuven, 3001 Leuven, Belgium
| | - Ruth Cardinaels
- Department of Chemical Engineering, University of Leuven KU Leuven, 3001 Leuven, Belgium
| | - Eliana Pereira Araújo
- Faculty of Nursing, University of Campinas, Campinas 13083-887, Brazil
- Laboratory of Cell Signaling, Obesity and Comorbidities Research Center, University of Campinas, Campinas 13083-887, Brazil
| | - Maria Helena Melo Lima
- Faculty of Nursing, University of Campinas, Campinas 13083-887, Brazil
- Laboratory of Cell Signaling, Obesity and Comorbidities Research Center, University of Campinas, Campinas 13083-887, Brazil
| | - Pedro Fardim
- Department of Chemical Engineering, University of Leuven KU Leuven, 3001 Leuven, Belgium
| |
Collapse
|
3
|
Sohn JS, Choi JS. Development of a tadalafil transdermal formulation and evaluation of its ability to in vitro transdermal permeate using Strat-M® membrane. Eur J Pharm Sci 2024; 192:106615. [PMID: 37863443 DOI: 10.1016/j.ejps.2023.106615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 09/23/2023] [Accepted: 10/17/2023] [Indexed: 10/22/2023]
Abstract
Tadalafil (TDF) has low water solubility, high intestinal permeability and belongs to the Biopharmaceutics Classification System (BCS) Class II. Due to high intestinal permeability, only oral administration (tablets) and oral thin film formulations have been developed. Therefore, it is necessary to develop various formulations, such as external formulations and transdermal absorption formulations requested by patients. The purpose of this study is to improve the solubility and skin permeability of TDF, and to develop a novel transdermal formulation with secured stability over time. The research strategy is to determine solvents that will improve TDF solubility and to screen substances that will enhance TDF permeability. Skin penetration tests were simulated by using a Strat-M® membrane in Franz diffusion cell systems. The optimal formulation (F1, consisting of TDF/HDTMA-Br at a ratio of 1:10 [weight/weight] in DPG) observed the highest permeability compared to all formulations in PBS (pH 7.4). Changes in thermal property of F1 formulation was observed and maintained its stability over 12 months including drug content (μg/mL), appearance, pH, and permeation (μg/cm2). In conclusion, DPG played a supported role in improving both TDF solubilization and permeability, whereas HDTMA-Br played a key role in enhancing permeability. It is thought that these results will be supplemented in the future to conduct research and experiments on humans.
Collapse
Affiliation(s)
- Jeong Sun Sohn
- College of General Education, Chosun University, Gwangju 61452, Republic of Korea
| | - Jin-Seok Choi
- Department of Medical Management, Chodang University, 380 Muan-ro, Muan-eup, Muan-gun, Jeollanam-do 58530, Republic of Korea.
| |
Collapse
|