1
|
Fan X, Deng S, Cao X, Meng B, Hu J, Liu J. Isomers of n-Type Poly(thiophene- alt- co-thiazole) for Organic Thermoelectrics. ACS APPLIED MATERIALS & INTERFACES 2024; 16:46741-46749. [PMID: 39162353 DOI: 10.1021/acsami.4c08553] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/21/2024]
Abstract
n-Type polythiophene represents a promising category of n-type polymer thermoelectric materials known for their straightforward structure and scalable synthesis. However, n-type polythiophene often suffers from a twisted backbone and poor stacking property when introducing high-density electron-withdrawing groups for a lower lowest unoccupied molecular orbital (LUMO) level, which is considered to be beneficial for n-doping efficiency. Herein, we developed two isomers of polythiophene derivatives, PTTz1 and PTTz2, by inserting thiazole units into the polythiophene backbone composed of thieno[3,4-c]pyrrole-4,6-dione (TPD) and thiophene-3,4-dicarbonitrile (2CNT). Although PTTz1 and PTTz2 share a similar polymer skeleton, they differ in thiazole configuration, with the nitrogen atoms of the thiazole units oriented toward TPD and 2CNT, respectively. The insertion of thiazole units significantly planarizes the polythiophene backbone while largely preserving low LUMO levels. Notably, PTTz2 exhibits a more coplanar backbone and closer π-stacking compared to PTTz1, resulting in a greatly enhanced electron mobility. Both PTTz1 and PTTz2 can be easily n-doped due to their deep LUMO levels. PTTz2 demonstrates superior thermoelectric performance, with an electrical conductivity of 50.3 S cm-1 and a power factor of 23.8 μW m-1 K-2, which is approximately double that of PTTz1. This study highlights the impact of the thiazole unit on n-type polythiophene derivatives and provides valuable guidelines for the design of high-performance n-type polymer thermoelectric materials.
Collapse
Affiliation(s)
- Xinyi Fan
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, P. R. China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China
| | - Sihui Deng
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, P. R. China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China
| | - Xu Cao
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, P. R. China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China
| | - Bin Meng
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, P. R. China
| | - Junli Hu
- Key Laboratory of UV-Emitting Materials and Technology, Northeast Normal University, Ministry of Education, Changchun, Jilin 130024, China
| | - Jun Liu
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, P. R. China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China
| |
Collapse
|
2
|
Ren S, Zhang W, Chen J, Yassar A. Theoretical and Experimental Study of Different Side Chains on 3,4-Ethylenedioxythiophene and Diketopyrrolopyrrole-Derived Polymers: Towards Organic Transistors. Int J Mol Sci 2024; 25:1099. [PMID: 38256172 PMCID: PMC10816275 DOI: 10.3390/ijms25021099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 01/09/2024] [Accepted: 01/15/2024] [Indexed: 01/24/2024] Open
Abstract
In this research, two polymers of P1 and P2 based on monomers consisting of thiophene, 3,4-Ethylenedioxythiophene (EDOT) and diketopyrrolopyrrole (DPP) are designed and obtained via Stille coupling polycondensation. The material shows excellent coplanarity and structural regularity due to the fine planarity of DPP itself and the weak non-covalent bonding interactions existing between the three units. Two different lengths of non-conjugated side chains are introduced and this has an effect on the intermolecular chain stacking, causing the film absorption to display different characteristic properties. On the other hand, the difference in the side chains does not have a significant effect on the thermal stability and the energy levels of the frontier orbitals of the materials, which is related to the fact that the materials both feature extremely high conjugation lengths and specific molecular compositions. Microscopic investigations targeting the side chains provide a contribution to the further design of organic semiconductor materials that meet device requirements. Tests based on organic transistors show a slight difference in conductivity between the two polymers, with P2 having better hole mobility than P1. This study highlights the importance of the impact of side chains on device performance, especially in the field of organic electronics.
Collapse
Affiliation(s)
- Shiwei Ren
- Advanced Materials Laboratory, Zhuhai-Fudan Innovation Institute, Guangdong-Macao in-Depth Cooperation Zone in Hengqin, Hengqin 519000, China;
| | - Wenqing Zhang
- Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China;
| | - Jinyang Chen
- Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China;
| | - Abderrahim Yassar
- Laboratory of Physics of Interfaces and Thin Films, Institut Polytechnique de Paris, 91128 Palaiseau, France
| |
Collapse
|
3
|
Chen J, Ding Y, Zhou J, Li N, Ren S, Zeng M. Preparation of Novel Organic Polymer Semiconductor and Its Properties in Transistors through Collaborative Theoretical and Experimental Approaches. Polymers (Basel) 2023; 15:4421. [PMID: 38006144 PMCID: PMC10674425 DOI: 10.3390/polym15224421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 11/14/2023] [Accepted: 11/14/2023] [Indexed: 11/26/2023] Open
Abstract
Conjugated polymer semiconductors based on donor-acceptor structures are commonly employed as core materials for optoelectronic devices in the field of organic electronics. In this study, we designed and synthesized a novel acceptor unit thiophene-vinyl-diketopyrrolopyrrole, named TVDPP, based on a four-step organic synthesis procedure. Stille coupling reactions were applied with high yields of polymerization of TVDPP with fluorinated thiophene (FT) monomer. The molecular weight and thermal stability of the polymers were tested and showed high molecular weight and good thermal stability. Theoretical simulation calculations and 2D grazing-incidence wide-angle X-ray scattering (GIWAXS) tests verified the planarity of the material and excellent stacking properties, which are favorable for achieving high carrier mobility. Measurements based on the polymer as an organic thin film transistor (OTFT) device were carried out, and the mobility and on/off current ratio reached 0.383 cm2 V-1 s-1 and 104, respectively, showing its great potential in organic optoelectronics.
Collapse
Affiliation(s)
- Jinyang Chen
- Zhejiang Key Laboratory of Alternative Technologies for Fine Chemicals Process, Shaoxing University, Shaoxing 312000, China; (J.C.); (N.L.)
| | - Yubing Ding
- Zhuhai-Fudan Innovation Research Institute, Hengqin 519000, China;
| | - Jie Zhou
- Zhejiang Key Laboratory of Alternative Technologies for Fine Chemicals Process, Shaoxing University, Shaoxing 312000, China; (J.C.); (N.L.)
| | - Na Li
- Zhejiang Key Laboratory of Alternative Technologies for Fine Chemicals Process, Shaoxing University, Shaoxing 312000, China; (J.C.); (N.L.)
| | - Shiwei Ren
- Zhuhai-Fudan Innovation Research Institute, Hengqin 519000, China;
| | - Minfeng Zeng
- Zhejiang Key Laboratory of Alternative Technologies for Fine Chemicals Process, Shaoxing University, Shaoxing 312000, China; (J.C.); (N.L.)
| |
Collapse
|
4
|
Masilamani G, Krishna GR, Debnath S, Bedi A. Origin of Optoelectronic Contradictions in 3,4-Cycloalkyl[ c]-chalcogenophenes: A Computational Study. Polymers (Basel) 2023; 15:4240. [PMID: 37959920 PMCID: PMC10650045 DOI: 10.3390/polym15214240] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Revised: 10/21/2023] [Accepted: 10/24/2023] [Indexed: 11/15/2023] Open
Abstract
The planar morphology of the backbone significantly contributes to the subtle optoelectronic features of π-conjugated polymers. On the other hand, the atomistic tuning of an otherwise identical π-backbone could also impact optoelectronic properties systematically. In this manuscript, we compare a series of 3,4-cycloalkylchalcogenophenes by tuning them atomistically using group-16 elements. Additionally, the effect of systematically extending these building blocks in the form of oligomers and polymers is studied. The size of the 3,4-substitution affected the morphology of the oligomers. In addition, the heteroatoms contributed to a further alteration in their geometry and resultant optoelectronic properties. The chalcogenophenes, containing smaller 3,4-cycloalkanes, resulted in lower bandgap oligomers or polymers compared to those with larger 3,4-cycloalkanes. Natural bonding orbital (NBO) calculations were performed to understand the disparity alongside the contour maps of frontier molecular orbitals (FMO).
Collapse
Affiliation(s)
- Ganesh Masilamani
- Department of Chemistry, SRM Institute of Science and Technology, Kattankulathur 603203, India
| | - Gamidi Rama Krishna
- Organic Chemistry Division, CSIR—National Chemical Laboratory, Pune 411008, India
| | - Sashi Debnath
- Department of Radiology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Anjan Bedi
- Department of Chemistry, SRM Institute of Science and Technology, Kattankulathur 603203, India
| |
Collapse
|
5
|
Ren S, Habibi A, Ni P, Zhang Y, Yassar A. Tuning the Photophysical Properties of Acceptor-Donor-Acceptor Di-2-(2-oxindolin-3-ylidene) Malononitrile Materials via Extended π-Conjugation: A Joint Experimental and Theoretical Study. MATERIALS (BASEL, SWITZERLAND) 2023; 16:6410. [PMID: 37834547 PMCID: PMC10573274 DOI: 10.3390/ma16196410] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 09/22/2023] [Accepted: 09/25/2023] [Indexed: 10/15/2023]
Abstract
Many optoelectronic applications require organic semiconductor (OSC) materials with high electron affinity. In this work, a series of novel acceptor-donor-acceptor (A-D-A) materials with low-lying LUMO energy levels were designed and characterized. In this strategy, two acceptor dyes, bis-isatin and di-2-(2-oxindolin-3-ylidene) malononitrile, were connected by various π-bridges (benzene ring, benzo[c][1,2,5]thiadiazole, monothiophene, trithiophene). We varied the length of the π-conjugation of the central core and the linkage position of the acceptor core (4- vs. 6-position of the phenyl ring) to investigate the effect on the optical and electrochemical properties of the materials. We performed density functional theory (DFT) and time-dependent DFT (TD-DFT) studies to gain insight into the dyes' electronic properties by determining the energy levels. Our findings demonstrate that with increasing acceptor strength and π-conjugation length of the core, the wavelength of the longest absorption maximum as well as their respective extinction coefficients are enhanced, which results in band-gap reduction either by lowering the LUMO and/or raising the HOMO energy level of the molecules. The potential practical utility of these materials as electron-transport materials for perovskite solar cells (PSCs) has been demonstrated.
Collapse
Affiliation(s)
- Shiwei Ren
- Zhuhai Fudan Innovation Institute of Fudan University, Guangdong-Macao in-Depth Cooperation Zone in Hengqin, Hengqin 518057, China;
| | - Amirhossein Habibi
- Laboratory of Physics of Interfaces and Thin Films, CNRS, Ecole Polytechnique, Institut Polytechnique de Paris, Route de Saclay, 91128 Palaiseau, France
| | - Pingping Ni
- Laboratory of Physics of Interfaces and Thin Films, CNRS, Ecole Polytechnique, Institut Polytechnique de Paris, Route de Saclay, 91128 Palaiseau, France
| | - Yuexing Zhang
- Shandong Provincial Key Laboratory of Monocrystalline Silicon Semiconductor Materials and Technology, Shandong Universities Engineering Research Center of Integrated Circuits Functional Materials and Expanded Applications, College of Chemistry and Chemical Engineering, Dezhou University, Dezhou 253023, China
| | - Abderrahim Yassar
- Laboratory of Physics of Interfaces and Thin Films, CNRS, Ecole Polytechnique, Institut Polytechnique de Paris, Route de Saclay, 91128 Palaiseau, France
| |
Collapse
|