1
|
Zhao Y, Wang J, Zhang Y, Liu C, Chen Y, Li P, Xu T, Gao L, Zhang W. Bletilla striata polysaccharide-based dissolving microneedle patch integrated with nanoparticles for promoting hair regrowth. Int J Biol Macromol 2025; 303:140336. [PMID: 39892550 DOI: 10.1016/j.ijbiomac.2025.140336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 03/09/2024] [Accepted: 01/24/2025] [Indexed: 02/03/2025]
Abstract
Hair loss (alopecia) has become a condition that plagues billions of people worldwide, which can occur at any age. Alopecia severely reduces the life quality and affects the self-esteem of patients, especially in adolescents. Due to the deficiency of current therapeutic formulations, such as frequent dosing, low bioavailability, significant side effects and high cost, it is urgent to develop a safe and effective strategy for the treatment of hair loss. Herein, we designed a dissolving microneedle patch (TFB@NP-MNs) integrated with tofacitinib-loaded nanoparticles (TFB@NP). Hyaluronic acid and Bletilla striata polysaccharide constituted the main body of microneedles and promoted the sustained release of TFB. MNs patch invasively punctured into the stratum corneum and delivered TFB with sustained release for 48 h. Compared with daily topical administration of commercially available TFB, in vivo results showed that TFB@NP-MNs significantly increased the number of hair follicles and had a similar or superior hair regeneration effect with less drug, which significantly improved drug delivery efficiency and the dual function of mechanical stimulation and the long-term release of TFB. These results suggest that this MN patch may offer a promising strategy for alopecia therapy clinically by reducing dosing frequency and increasing patient compliance.
Collapse
Affiliation(s)
- Yanyan Zhao
- School of Pharmacy, Shandong Second Medical University, Weifang 261053, Shandong, PR China; Shandong Engineering Research Center for Smart Materials and Regenerative Medicine, Shandong Second Medical University, Weifang 261053, Shandong, PR China
| | - Jicheng Wang
- School of Pharmacy, Shandong Second Medical University, Weifang 261053, Shandong, PR China; Shandong Engineering Research Center for Smart Materials and Regenerative Medicine, Shandong Second Medical University, Weifang 261053, Shandong, PR China
| | - Ying Zhang
- School of Pharmacy, Shandong Second Medical University, Weifang 261053, Shandong, PR China; Shandong Engineering Research Center for Smart Materials and Regenerative Medicine, Shandong Second Medical University, Weifang 261053, Shandong, PR China
| | - Chunhui Liu
- School of Pharmacy, Shandong Second Medical University, Weifang 261053, Shandong, PR China; Shandong Engineering Research Center for Smart Materials and Regenerative Medicine, Shandong Second Medical University, Weifang 261053, Shandong, PR China
| | - Yuqian Chen
- School of Pharmacy, Shandong Second Medical University, Weifang 261053, Shandong, PR China; Shandong Engineering Research Center for Smart Materials and Regenerative Medicine, Shandong Second Medical University, Weifang 261053, Shandong, PR China
| | - Pan Li
- School of Pharmacy, Shandong Second Medical University, Weifang 261053, Shandong, PR China; Shandong Engineering Research Center for Smart Materials and Regenerative Medicine, Shandong Second Medical University, Weifang 261053, Shandong, PR China
| | - Tailin Xu
- Synthetic Biology Research Center, Institute for Advanced Study (IAS), Shenzhen University, Shenzhen, Guangdong 518060, PR China.
| | - Lina Gao
- Shandong Engineering Research Center for Smart Materials and Regenerative Medicine, Shandong Second Medical University, Weifang 261053, Shandong, PR China; School of Traditional Chinese Medicine, Shandong Second Medical University, Weifang 261053, Shandong, PR China.
| | - Weifen Zhang
- School of Pharmacy, Shandong Second Medical University, Weifang 261053, Shandong, PR China; Shandong Engineering Research Center for Smart Materials and Regenerative Medicine, Shandong Second Medical University, Weifang 261053, Shandong, PR China.
| |
Collapse
|
2
|
Kolekar KA, Kumbhar PS, Vishwas S, Dua K, Singh SK. Dissolving microneedles for brain delivery: Recent advances and challenges. Drug Discov Today 2025; 30:104330. [PMID: 40086788 DOI: 10.1016/j.drudis.2025.104330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2024] [Revised: 02/16/2025] [Accepted: 03/09/2025] [Indexed: 03/16/2025]
Abstract
Over the past decade, dissolving microneedles (DMNs) have emerged as a promising approach for drug delivery to the brain. They are tiny devices designed to penetrate biological barriers, offering a painless method for localized and controlled drug delivery. They are suitable for delivering drugs that are susceptible to degradation when delivered orally. Recently, drug-loaded DMNs have been explored for treating neurodegenerative diseases, including Alzheimer's (AD) and Parkinson's disease (PD). DMNs can deliver drugs efficiently to the brain via the intranasal, transdermal, and intracranial routes. In this review, we discuss the use of DMNs for delivering drugs to the brain, recent technological advances, clinical status, and current challenges related to their translation.
Collapse
Affiliation(s)
- Kaustubh Ajit Kolekar
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab 144411, India
| | - Popat S Kumbhar
- Department of Pharmaceutics, Tatyasaheb Kore College of Pharmacy, Warananagar, Panhala, Kolhapur, Maharashtra 416113, India
| | - Sukriti Vishwas
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab 144411, India
| | - Kamal Dua
- Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, Sydney, NSW 2007, Australia; Faculty of Health, Australian Research Centre in Complementary & Integrative Medicine, University of Technology Sydney, Ultimo, NSW 2007, Australia
| | - Sachin Kumar Singh
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab 144411, India; Sunway Biofunctional Molecules Discovery Centre (SBMDC), School of Medical and Life Sciences, Sunway University, Bandar Sunway, 47500, Malaysia.
| |
Collapse
|
3
|
Bonomi F, Limido E, Weinzierl A, Harder Y, Menger MD, Laschke MW. Preconditioning Strategies for Improving the Outcome of Fat Grafting. TISSUE ENGINEERING. PART B, REVIEWS 2025; 31:94-108. [PMID: 38818802 DOI: 10.1089/ten.teb.2024.0090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2024]
Abstract
Autologous fat grafting is a common procedure in plastic, reconstructive, and aesthetic surgery. However, it is frequently associated with an unpredictable resorption rate of the graft depending on the engraftment kinetics. This, in turn, is determined by the interaction of the grafted adipose tissue with the tissue at the recipient site. Accordingly, preconditioning strategies have been developed following the principle of exposing these tissues in the pretransplantation phase to stimuli inducing endogenous protective and regenerative cellular adaptations, such as the upregulation of stress-response genes or the release of cytokines and growth factors. As summarized in the present review, these stimuli include hypoxia, dietary restriction, local mechanical stress, heat, and exposure to fractional carbon dioxide laser. Preclinical studies show that they promote cell viability, adipogenesis, and angiogenesis, while reducing inflammation, fibrosis, and cyst formation, resulting in a higher survival rate and quality of fat grafts in different experimental settings. Hence, preconditioning represents a promising approach to improve the outcome of fat grafting in future clinical practice. For this purpose, it is necessary to establish standardized preconditioning protocols for specific clinical applications that are efficient, safe, and easy to implement into routine procedures.
Collapse
Affiliation(s)
- Francesca Bonomi
- Institute for Clinical and Experimental Surgery, Saarland University, Homburg, Germany
| | - Ettore Limido
- Institute for Clinical and Experimental Surgery, Saarland University, Homburg, Germany
| | - Andrea Weinzierl
- Institute for Clinical and Experimental Surgery, Saarland University, Homburg, Germany
- Department of Plastic Surgery and Hand Surgery, University Hospital Zurich, Zurich, Switzerland
| | - Yves Harder
- Department of Plastic, Reconstructive and Aesthetic Surgery, Ospedale Regionale di Lugano, Ente Ospedaliero Cantonale (EOC), Lugano, Switzerland
- Faculty of Biomedical Sciences, Università della Svizzera Italiana, Lugano, Switzerland
| | - Michael D Menger
- Institute for Clinical and Experimental Surgery, Saarland University, Homburg, Germany
| | - Matthias W Laschke
- Institute for Clinical and Experimental Surgery, Saarland University, Homburg, Germany
| |
Collapse
|
4
|
Bigham A, Zarepour A, Khosravi A, Iravani S, Zarrabi A. Microneedle patches: a new vantage point for diabetic wound treatments. Biomater Sci 2025; 13:379-407. [PMID: 39620710 DOI: 10.1039/d4bm01229a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2024]
Abstract
Microneedle patches have emerged as a promising approach for diabetic wound healing by enabling the targeted delivery of therapeutic agents such as stem cells and their derived exosomes, as well as localized delivery of bioactive moieties. These patches offer a non-invasive and efficient method for administering therapeutic payloads directly to the site of the wound, bypassing systemic circulation and minimizing potential side effects. The targeted delivery of stem cells holds immense potential for promoting tissue regeneration and accelerating wound healing in diabetic patients. Similarly, the localized delivery of stem cell-derived exosomes, which are known for their regenerative and anti-inflammatory properties, can enhance the healing process. Furthermore, microneedle patches enable the precise and controlled release of bioactive moieties, such as growth factors and cytokines, directly to the wound site, creating a conducive microenvironment for tissue repair and regeneration. The challenges associated with microneedle patches for diabetic wound healing are multifaceted. Biocompatibility issues, variability in skin characteristics among diabetic patients, regulatory hurdles, scalability, cost considerations, long-term stability, and patient acceptance and compliance all present significant barriers to the widespread adoption and optimization of microneedle technology in clinical practice. Overcoming these challenges will require collaborative efforts from various stakeholders to advance the field and address critical gaps in research and development. Ongoing research focuses on enhancing the biocompatibility and mechanical properties of microneedle materials, developing customizable technologies for personalized treatment approaches, integrating advanced functionalities such as sensors for real-time monitoring, and improving patient engagement and adherence through education and support mechanisms. These advancements have the potential to improve diabetic wound management by providing tailored and precise therapies that promote faster healing and reduce complications. This review explores the current landscape of microneedle patches in the context of diabetic wound management, highlighting both the challenges that need to be addressed and future perspectives for this innovative treatment modality.
Collapse
Affiliation(s)
- Ashkan Bigham
- Institute of Polymers, Composites, and Biomaterials, National Research Council (IPCB-CNR), Naples 80125, Italy
- Department of Chemical, Materials and Production Engineering, University of Naples Federico II, Piazzale V. Tecchio 80, 80125 Naples, Italy
| | - Atefeh Zarepour
- Department of Research Analytics, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai 600 077, India
| | - Arezoo Khosravi
- Department of Genetics and Bioengineering, Faculty of Engineering and Natural Sciences, Istanbul Okan University, Istanbul 34959, Türkiye
| | - Siavash Iravani
- Independent Researcher, W Nazar ST, Boostan Ave, Isfahan, Iran.
| | - Ali Zarrabi
- Department of Biomedical Engineering, Faculty of Engineering and Natural Sciences, Istinye University, Istanbul 34396, Türkiye.
- Graduate School of Biotechnology and Bioengineering, Yuan Ze University, Taoyuan 320315, Taiwan
| |
Collapse
|
5
|
Cao J, Wu B, Yuan P, Liu Y, Hu C. Advances in Research of Hydrogel Microneedle-Based Delivery Systems for Disease Treatment. Pharmaceutics 2024; 16:1571. [PMID: 39771550 PMCID: PMC11676655 DOI: 10.3390/pharmaceutics16121571] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2024] [Revised: 11/30/2024] [Accepted: 12/06/2024] [Indexed: 01/11/2025] Open
Abstract
Microneedles (MNs), composed of multiple micron-scale needle-like structures attached to a base, offer a minimally invasive approach for transdermal drug delivery by penetrating the stratum corneum and delivering therapeutic agents directly to the epidermis or dermis. Hydrogel microneedles (HMNs) stand out among various MN types due to their excellent biocompatibility, high drug-loading capacity, and tunable drug-release properties. This review systematically examines the matrix materials and fabrication methods of HMN systems, highlighting advancements in natural and synthetic polymers, and explores their applications in treating conditions such as wound healing, hair loss, cardiovascular diseases, and cancer. Furthermore, the potential of HMNs for disease diagnostics is discussed. The review identifies key challenges, including limited mechanical strength, drug-loading efficiency, and lack of standardization, while proposing strategies to overcome these issues. With the integration of intelligent design and enhanced control over drug dosage and safety, HMNs are poised to revolutionize transdermal drug delivery and expand their applications in personalized medicine.
Collapse
Affiliation(s)
- Juan Cao
- School of Fashion and Design Art, Sichuan Normal University, Chengdu 610066, China;
| | - Bo Wu
- School of Mechanical Engineering, Sichuan University, Chengdu 610065, China; (B.W.); (Y.L.)
| | - Ping Yuan
- School of Mechanical Engineering, Chengdu University, Chengdu 610106, China;
| | - Yeqi Liu
- School of Mechanical Engineering, Sichuan University, Chengdu 610065, China; (B.W.); (Y.L.)
| | - Cheng Hu
- National Engineering Research Center for Biomaterials, College of Biomedical Engineering, Sichuan University, Chengdu 610065, China
| |
Collapse
|
6
|
Li H, Cui J, Zhang T, Lin F, Zhang G, Feng Z. Research Progress on Chitosan Microneedle Arrays in Transdermal Drug Delivery. Int J Nanomedicine 2024; 19:12957-12973. [PMID: 39651356 PMCID: PMC11624690 DOI: 10.2147/ijn.s487313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Accepted: 10/04/2024] [Indexed: 12/11/2024] Open
Abstract
As a type of transdermal drug delivery system (TDDS), Microneedles (MNs) have garnered significant attention from researchers due to their ability to penetrate the stratum corneum (SC) of the skin, enhance drug permeability and bioavailability, avoid first-pass metabolism, and cause minimal damage to the skin. This makes them particularly suitable for localized transdermal drug delivery. Dissolvable microneedles (DMNs) can encapsulate sensitive particles, provide high drug-loading capacity, and possess biodegradability and biocompatibility, attracting extensive research interest. Chitosan (CS) has been selected as the matrix for manufacturing DMNs due to its excellent properties, including not eliciting an immune response in vivo and having active functional groups such as hydroxyl and amino groups that allow for modifications to impart appropriate mechanical strength and functionality to DMNs for specific applications. This paper provides a comprehensive review of the research status of various chitosan-based microneedles (CSMNs), explores the mechanisms of their dissolution in vivo, and discusses their applications in promoting wound healing, delivering macromolecular drugs, vaccine delivery, and anti-tumor therapies.
Collapse
Affiliation(s)
- Haonan Li
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, Shandong, 250355, People’s Republic of China
| | - Jie Cui
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, Shandong, 250355, People’s Republic of China
| | - Tianyi Zhang
- Graduate School, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, People’s Republic of China
| | - Fengli Lin
- Graduate School, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, People’s Republic of China
| | - Guimin Zhang
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, Shandong, 250355, People’s Republic of China
- Lunan Pharmaceutical Group Co., Ltd., Linyi, Shandong, 276000, People’s Republic of China
| | - Zhong Feng
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, Shandong, 250355, People’s Republic of China
- Graduate School, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, People’s Republic of China
- Lunan Pharmaceutical Group Co., Ltd., Linyi, Shandong, 276000, People’s Republic of China
| |
Collapse
|
7
|
Liu C, Yin X, Xu H, Xu J, Gong M, Li Z, Xu Q, Cao D, Li D. Microneedle-Array-Mediated Transdermal Delivery of GCV-Functionalized Zeolitic Imidazolate Framework-8 Nanoparticles for KSHV Treatment. Int J Mol Sci 2024; 25:12946. [PMID: 39684656 DOI: 10.3390/ijms252312946] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Revised: 11/25/2024] [Accepted: 11/28/2024] [Indexed: 12/18/2024] Open
Abstract
Kaposi's sarcoma-associated herpesvirus (KSHV) is a variety of the human gamma-herpesvirus that often leads to the occurrence of malignant tumors. In addition, the occurrence of Kaposi's sarcoma is a major cause of death among AIDS patients. Ganciclovir (GCV) is the most widely used drug against KSHV infection in the clinic. GCV can restrict the in vivo synthesis of DNA polymerase in KSHV, thereby inhibiting the replication of the herpesvirus. However, GCV still suffers from poor specificity and transmembrane capabilities, leading to many toxic side effects. Therefore, developing a drug delivery system that increases GCV concentrations in target cells remains a significant clinical challenge. In this study, zeolite imidazole salt framework-8 (ZIF-8), a biocompatible porous material constructed by coordinating zinc ions and 2-methylimidazole, was used to load GCV. A nano-delivery system with a microneedle structure was also constructed using a polydimethylsiloxane (PDMS) microneedle mold to fabricate MN/GCV@ZIF-8 arrays. These arrays not only offered good skin-piercing capabilities but also significantly inhibited the cleavage and replication of the virus in vivo, exerting an anti-KSHV function. For these reasons, the arrays were able penetrate the skin's stratum corneum at the tumor site to deliver GCV and play an anti-KSHV role.
Collapse
Affiliation(s)
- Chengjing Liu
- Key Laboratory of Xinjiang Endemic and Ethnic Diseases, NHC Key Laboratory of Prevention and Treatment of Central Asia High Incidence Diseases, School of Medicine, Shihezi University, Shihezi 832003, China
| | - Xiuyuan Yin
- Shanghai Key Laboratory of Functional Materials Chemistry, Key Laboratory for Advanced Materials, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Huiling Xu
- Key Laboratory of Xinjiang Endemic and Ethnic Diseases, NHC Key Laboratory of Prevention and Treatment of Central Asia High Incidence Diseases, School of Medicine, Shihezi University, Shihezi 832003, China
| | - Jianyu Xu
- Key Laboratory of Xinjiang Endemic and Ethnic Diseases, NHC Key Laboratory of Prevention and Treatment of Central Asia High Incidence Diseases, School of Medicine, Shihezi University, Shihezi 832003, China
| | - Mengru Gong
- Key Laboratory of Xinjiang Endemic and Ethnic Diseases, NHC Key Laboratory of Prevention and Treatment of Central Asia High Incidence Diseases, School of Medicine, Shihezi University, Shihezi 832003, China
| | - Zhenzhong Li
- Key Laboratory of Xinjiang Endemic and Ethnic Diseases, NHC Key Laboratory of Prevention and Treatment of Central Asia High Incidence Diseases, School of Medicine, Shihezi University, Shihezi 832003, China
| | - Qianhe Xu
- Shanghai Key Laboratory of Functional Materials Chemistry, Key Laboratory for Advanced Materials, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Dongdong Cao
- Key Laboratory of Xinjiang Endemic and Ethnic Diseases, NHC Key Laboratory of Prevention and Treatment of Central Asia High Incidence Diseases, School of Medicine, Shihezi University, Shihezi 832003, China
| | - Dongmei Li
- Key Laboratory of Xinjiang Endemic and Ethnic Diseases, NHC Key Laboratory of Prevention and Treatment of Central Asia High Incidence Diseases, School of Medicine, Shihezi University, Shihezi 832003, China
| |
Collapse
|
8
|
Cao X, Wu X, Zhang Y, Qian X, Sun W, Zhao Y. Emerging biomedical technologies for scarless wound healing. Bioact Mater 2024; 42:449-477. [PMID: 39308549 PMCID: PMC11415838 DOI: 10.1016/j.bioactmat.2024.09.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 08/16/2024] [Accepted: 09/01/2024] [Indexed: 09/25/2024] Open
Abstract
Complete wound healing without scar formation has attracted increasing attention, prompting the development of various strategies to address this challenge. In clinical settings, there is a growing preference for emerging biomedical technologies that effectively manage fibrosis following skin injury, as they provide high efficacy, cost-effectiveness, and minimal side effects compared to invasive and costly surgical techniques. This review gives an overview of the latest developments in advanced biomedical technologies for scarless wound management. We first introduce the wound healing process and key mechanisms involved in scar formation. Subsequently, we explore common strategies for wound treatment, including their fabrication methods, superior performance and the latest research developments in this field. We then shift our focus to emerging biomedical technologies for scarless wound healing, detailing the mechanism of action, unique properties, and advanced practical applications of various biomedical technology-based therapies, such as cell therapy, drug therapy, biomaterial therapy, and synergistic therapy. Finally, we critically assess the shortcomings and potential applications of these biomedical technologies and therapeutic methods in the realm of scar treatment.
Collapse
Affiliation(s)
- Xinyue Cao
- Department of Otolaryngology Head and Neck Surgery, Nanjing Drum Tower Hospital, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, China
| | - Xiangyi Wu
- Department of Otolaryngology Head and Neck Surgery, Nanjing Drum Tower Hospital, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, China
| | - Yuanyuan Zhang
- Department of Otolaryngology Head and Neck Surgery, Nanjing Drum Tower Hospital, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, China
| | - Xiaoyun Qian
- Department of Otolaryngology Head and Neck Surgery, Nanjing Drum Tower Hospital, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, China
| | - Weijian Sun
- Department of Gastrointestinal Surgery, The First Affiliated Hospital, Wenzhou Medical University, Wenzhou, 325035, China
| | - Yuanjin Zhao
- Department of Otolaryngology Head and Neck Surgery, Nanjing Drum Tower Hospital, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, China
- Shenzhen Research Institute, Southeast University, Shenzhen, 518071, China
| |
Collapse
|
9
|
Cui X, Geng H, Guo H, Wang L, Zhu Z, Zhang Y, Chen P, Wang X, Sun C. Visualizing the transdermal delivery of berberine loaded within chitosan microneedles using mass spectrometry imaging. Anal Bioanal Chem 2024; 416:6869-6877. [PMID: 39400576 DOI: 10.1007/s00216-024-05584-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2024] [Revised: 09/05/2024] [Accepted: 10/01/2024] [Indexed: 10/15/2024]
Abstract
Berberine (BR), an alkaloid isolated from the Chinese traditional medicine Coptidis rhizoma, exhibits therapeutic effects on several diseases including bacterial infections, diabetes, and hyperlipidemia, but the oral availability is poor. In this work, we prepared the chitosan microneedle array-loaded BR (BR-CS MNAs) to transdermally deliver BR, and the spatial distribution of BR in heterogeneous skin tissues was analyzed and imaged by matrix-assisted laser desorption ionization mass spectrometry imaging (MALDI-MSI). Some endogenous phospholipids with specific spatial distribution were used to differentiate the epidermis and dermis regions of the skin. The results showed that BR was effectively delivered and could permeate to both epidermis and dermis regions of the skin. This demonstrated the feasibility of MALDI-MSI to evaluate the transdermal delivery efficiency of microneedle arrays and suggested BR could be transdermally delivered by CS MNAs.
Collapse
Affiliation(s)
- Xiaoqing Cui
- Key Laboratory for Applied Technology of Sophisticated Analytical Instruments of Shandong Province, Shandong Analysis and Test Center, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250014, China
- Key Laboratory for Natural Active Pharmaceutical Constituents Research in Universities of Shandong Province, School of Pharmaceutical Sciences, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250014, China
| | - Haoyuan Geng
- Key Laboratory for Applied Technology of Sophisticated Analytical Instruments of Shandong Province, Shandong Analysis and Test Center, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250014, China
- Key Laboratory for Natural Active Pharmaceutical Constituents Research in Universities of Shandong Province, School of Pharmaceutical Sciences, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250014, China
| | - Huanying Guo
- Key Laboratory for Applied Technology of Sophisticated Analytical Instruments of Shandong Province, Shandong Analysis and Test Center, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250014, China
- Key Laboratory for Natural Active Pharmaceutical Constituents Research in Universities of Shandong Province, School of Pharmaceutical Sciences, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250014, China
| | - Lei Wang
- Key Laboratory for Applied Technology of Sophisticated Analytical Instruments of Shandong Province, Shandong Analysis and Test Center, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250014, China
- Key Laboratory for Natural Active Pharmaceutical Constituents Research in Universities of Shandong Province, School of Pharmaceutical Sciences, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250014, China
| | - Zihan Zhu
- School of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, 250355, China
| | - Yaqi Zhang
- Key Laboratory for Applied Technology of Sophisticated Analytical Instruments of Shandong Province, Shandong Analysis and Test Center, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250014, China
- Key Laboratory for Natural Active Pharmaceutical Constituents Research in Universities of Shandong Province, School of Pharmaceutical Sciences, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250014, China
| | - Panpan Chen
- Key Laboratory for Applied Technology of Sophisticated Analytical Instruments of Shandong Province, Shandong Analysis and Test Center, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250014, China
- Key Laboratory for Natural Active Pharmaceutical Constituents Research in Universities of Shandong Province, School of Pharmaceutical Sciences, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250014, China
| | - Xiao Wang
- Key Laboratory for Applied Technology of Sophisticated Analytical Instruments of Shandong Province, Shandong Analysis and Test Center, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250014, China.
- Key Laboratory for Natural Active Pharmaceutical Constituents Research in Universities of Shandong Province, School of Pharmaceutical Sciences, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250014, China.
| | - Chenglong Sun
- Key Laboratory for Applied Technology of Sophisticated Analytical Instruments of Shandong Province, Shandong Analysis and Test Center, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250014, China.
- Key Laboratory for Natural Active Pharmaceutical Constituents Research in Universities of Shandong Province, School of Pharmaceutical Sciences, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250014, China.
| |
Collapse
|
10
|
Cao Y, Chen B, Liu Q, Mao Y, He Y, Liu X, Zhao X, Chen Y, Li X, Li Y, Liu L, Guo C, Liu S, Tan F, Lu H, Liu J, Chen C. Dissolvable microneedle-based wound dressing transdermally and continuously delivers anti-inflammatory and pro-angiogenic exosomes for diabetic wound treatment. Bioact Mater 2024; 42:32-51. [PMID: 39280578 PMCID: PMC11399477 DOI: 10.1016/j.bioactmat.2024.08.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2024] [Revised: 07/30/2024] [Accepted: 08/17/2024] [Indexed: 09/18/2024] Open
Abstract
Due to overactive inflammation and hindered angiogenesis, self-healing of diabetic wounds (DW) remains challenging in the clinic. Platelet-derived exosomes (PLT-Exos), a novel exosome capable of anti-inflammation and pro-angiogenesis, show great potential in DW treatment. However, previous administration of exosomes into skin wounds is topical daub or intradermal injection, which cannot intradermally deliver PLT-Exos into the dermis layer, thus impeding its long-term efficacy in anti-inflammation and pro-angiogenesis. Herein, a dissolvable microneedle-based wound dressing (PLT-Exos@ADMMA-MN) was developed for transdermal and long-term delivery of PLT-Exos. Firstly, a photo-crosslinking methacrylated acellular dermal matrix-based hydrogel (ADMMA-GEL), showing physiochemical tailorability, fast-gelling performance, excellent biocompatibility, and pro-angiogenic capacities, was synthesized as a base material of our dressing. For endowing the dressing with anti-inflammation and pro-angiogenesis, PLT-Exos were encapsulated into ADMMA-GEL with a minimum effective concentration determined by our in-vitro experiments. Then, in-vitro results show that this dressing exhibits excellent properties in anti-inflammation and pro-angiogenesis. Lastly, in-vivo experiments showed that this dressing could continuously and transdermally deliver PLT-Exos into skin wounds to switch local macrophage into M2 phenotype while stimulating neovascularization, thus proving a low-inflammatory and pro-angiogenic microenvironment for DW healing. Collectively, this study provides a novel wound dressing capable of suppressing inflammation and stimulating vascularization for DW treatment.
Collapse
Affiliation(s)
- Yanpeng Cao
- Department of Limbs (Foot and Hand) Microsurgery, Chenzhou No.1 People's Hospital, The First Clinical Medical College Affiliated to Southern Medical University, Chenzhou, Hunan, China
| | - Bei Chen
- Department of Limbs (Foot and Hand) Microsurgery, Chenzhou No.1 People's Hospital, The First Clinical Medical College Affiliated to Southern Medical University, Chenzhou, Hunan, China
- Department of Orthopedics, Xiangya Hospital, Central South University, Changsha, Hunan, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China
- Key Laboratory of Organ Injury, Aging and Regenerative Medicine of Hunan Province, Changsha, Hunan, China
| | - Qixing Liu
- Department of Limbs (Foot and Hand) Microsurgery, Chenzhou No.1 People's Hospital, The First Clinical Medical College Affiliated to Southern Medical University, Chenzhou, Hunan, China
| | - Yiyang Mao
- Department of Orthopedics, Xiangya Hospital, Central South University, Changsha, Hunan, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Yusheng He
- Department of Limbs (Foot and Hand) Microsurgery, Chenzhou No.1 People's Hospital, The First Clinical Medical College Affiliated to Southern Medical University, Chenzhou, Hunan, China
| | - Xiaoren Liu
- Department of Limbs (Foot and Hand) Microsurgery, Chenzhou No.1 People's Hospital, The First Clinical Medical College Affiliated to Southern Medical University, Chenzhou, Hunan, China
| | - Xin Zhao
- Department of Limbs (Foot and Hand) Microsurgery, Chenzhou No.1 People's Hospital, The First Clinical Medical College Affiliated to Southern Medical University, Chenzhou, Hunan, China
| | - Yaowu Chen
- Department of Limbs (Foot and Hand) Microsurgery, Chenzhou No.1 People's Hospital, The First Clinical Medical College Affiliated to Southern Medical University, Chenzhou, Hunan, China
| | - Xiying Li
- Department of Limbs (Foot and Hand) Microsurgery, Chenzhou No.1 People's Hospital, The First Clinical Medical College Affiliated to Southern Medical University, Chenzhou, Hunan, China
| | - Yabei Li
- Department of Limbs (Foot and Hand) Microsurgery, Chenzhou No.1 People's Hospital, The First Clinical Medical College Affiliated to Southern Medical University, Chenzhou, Hunan, China
| | - Liang Liu
- Department of Limbs (Foot and Hand) Microsurgery, Chenzhou No.1 People's Hospital, The First Clinical Medical College Affiliated to Southern Medical University, Chenzhou, Hunan, China
| | - Chengwu Guo
- Department of Limbs (Foot and Hand) Microsurgery, Chenzhou No.1 People's Hospital, The First Clinical Medical College Affiliated to Southern Medical University, Chenzhou, Hunan, China
| | - Shiyu Liu
- Department of Limbs (Foot and Hand) Microsurgery, Chenzhou No.1 People's Hospital, The First Clinical Medical College Affiliated to Southern Medical University, Chenzhou, Hunan, China
| | - Fenghua Tan
- Department of Limbs (Foot and Hand) Microsurgery, Chenzhou No.1 People's Hospital, The First Clinical Medical College Affiliated to Southern Medical University, Chenzhou, Hunan, China
| | - Hongbin Lu
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China
- Department of Sports Medicine, Xiangya Hospital, Central South University Changsha, Hunan, China
- Key Laboratory of Organ Injury, Aging and Regenerative Medicine of Hunan Province, Changsha, Hunan, China
| | - Jun Liu
- Department of Limbs (Foot and Hand) Microsurgery, Chenzhou No.1 People's Hospital, The First Clinical Medical College Affiliated to Southern Medical University, Chenzhou, Hunan, China
| | - Can Chen
- Department of Orthopedics, Xiangya Hospital, Central South University, Changsha, Hunan, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China
- Key Laboratory of Organ Injury, Aging and Regenerative Medicine of Hunan Province, Changsha, Hunan, China
| |
Collapse
|
11
|
Wang B, Yang Y, Ding X, Sun J, Yu W, Zhao Y, Ma Q, Yu Y. Prevention of early thrombosis in transplanted vein model by encapsulation with tirofiban microneedle drug delivery system. Biomed Mater 2024; 20:015010. [PMID: 39536450 DOI: 10.1088/1748-605x/ad920d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Accepted: 11/13/2024] [Indexed: 11/16/2024]
Abstract
Early thrombosis following coronary artery bypass grafting (CABG) surgery leads to perioperative myocardial infarction, which causes difficulties for clinicians and patients. Moreover, once perioperative myocardial infarction occurs, the mortality rate is extremely high. In recent years, microneedle (MN) drug delivery systems have become a research hotspot with broad clinical application prospects. These systems are capable of achieving sustained, safe, and painless local drug release. In cardiovascular applications, MNs maximize local anticoagulant effects, inhibit endometrial hyperplasia, and reduce systemic side effects. We speculate that a MN drug delivery system can be used to target transplanted veins to inhibit their thrombosis and reduce the incidence of perioperative myocardial infarction after CABG surgery. Therefore, this study developed a hyaluronic acid MN patch loaded with tirofiban and conducted preliminary physicochemical tests. The safety, efficacy, biocompatibility, and targeting of the MN system were evaluated usingin vitroandin vivoexperiments using a jugular vein transplantation model. The results indicate that the MN system has excellent physical properties, safety, effectiveness, biocompatibility, and strong targeting, which can effectively inhibit early local thrombus formation. In addition, the observation of early postoperative endometrial hyperplasia activation provides a foundation for future research.
Collapse
Affiliation(s)
- Bolin Wang
- Beijing Anzhen Hospital Affiliated to Capital Medical University, Coronary Heart Disease Surgery Center Zone 1, Beijing, People's Republic of China
| | - Yazhu Yang
- Beijing Anzhen Hospital Affiliated to Capital Medical University, Center for Cardiac Critical Care, Beijing, People's Republic of China
| | - Xiaohang Ding
- Beijing Anzhen Hospital Affiliated to Capital Medical University, Coronary Heart Disease Surgery Center Zone 1, Beijing, People's Republic of China
| | - Jiefang Sun
- Beijing Center for Disease Control and Prevention, Central Laboratory, Beijing, People's Republic of China
| | - Wenyuan Yu
- Beijing Anzhen Hospital Affiliated to Capital Medical University, Coronary Heart Disease Surgery Center Zone 1, Beijing, People's Republic of China
| | - Yuehua Zhao
- Department of Ultrasound Medicine, Huanghua People's Hospital, CangZhou, Hebei, People's Republic of China
| | - Qian Ma
- Beijing Anzhen Hospital Affiliated to Capital Medical University, Geriatric Center, Beijing, People's Republic of China
| | - Yang Yu
- Beijing Anzhen Hospital Affiliated to Capital Medical University, Coronary Heart Disease Surgery Center Zone 1, Beijing, People's Republic of China
| |
Collapse
|
12
|
Huang J, Wang X, Li Z. Dissolving microneedles: standing out in melanoma treatment. J Mater Chem B 2024; 12:11573-11595. [PMID: 39431729 DOI: 10.1039/d4tb01142b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2024]
Abstract
Melanoma is one of the most significant and dangerous superficial skin tumors with a high fatality rate, thanks to its high invasion rate, drug resistance and frequent metastasis properties. Unfortunately, researchers for decades have demonstrated that the outcome of using conventional therapies like chemotherapy and immunotherapy with normal drug delivery routes, such as an oral route to treat melanoma was not satisfactory. The severe adverse effects, slow drug delivery efficiency and low drug accumulation at targeted malignancy sites all lead to poor anti-cancer efficacy and terrible treatment experience. As a novel transdermal drug delivery system, microneedles (MNs) have emerged as an effective solution to help improve the low cure rate of melanoma. The excellent characteristics of MNs make it easy to penetrate the stratum corneum (SC) and then locally deliver the drug towards the lesion without drug leakage to mitigate the occurrence of side effects and increase the drug accumulation. Therefore, loading chemotherapeutic drugs or immunotherapy drugs in MNs can address the problems mentioned above, and MNs play a crucial role in improving the curative effect of conventional treatment methods. Notably, novel tumor therapies like photothermal therapy (PTT), photodynamic therapy (PDT) and chemodynamic therapy (CDT) have shown good application prospects in the treatment of melanoma, and MNs provide a valid platform for the combination of conventional therapies and novel therapies by encompassing different therapeutic materials in the matrix of MNs. The synergistic effect of multiple therapies can enhance the therapeutic efficacy compared to single therapies, showing great potential in melanoma treatment. Dissolving MNs have been the most commonly used microneedles in the treatment of melanoma in recent years, mainly because of their simple fabrication procedure and enough drug loading. So, considering the increasing use of dissolving MNs, this review collects research studies published in the last four years (2020-2024) that have rarely been included in other reviews to update the progress of applications of dissolving MNs in anti-melanoma treatment, especially in synergistic therapies. This review also presents current design and fabrication methods of dissolving MNs; the limitations of microneedle technology in the treatment of melanoma are comprehensively discussed. This review can provide valuable guidance for their future development.
Collapse
Affiliation(s)
- Jingting Huang
- Department of Burn and Plastic Surgery, Sichuan University West China Hospital, Chengdu, China.
| | - Xihao Wang
- Department of Burn and Plastic Surgery, Sichuan University West China Hospital, Chengdu, China.
| | - Zhengyong Li
- Department of Burn and Plastic Surgery, Sichuan University West China Hospital, Chengdu, China.
| |
Collapse
|
13
|
Abbasi M, Heath B. Iontophoresis and electroporation-assisted microneedles: advancements and therapeutic potentials in transdermal drug delivery. Drug Deliv Transl Res 2024:10.1007/s13346-024-01722-7. [PMID: 39433696 DOI: 10.1007/s13346-024-01722-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/02/2024] [Indexed: 10/23/2024]
Abstract
Transdermal drug delivery (TDD) using electrically assisted microneedle (MN) systems has emerged as a promising alternative to traditional drug administration routes. This review explores recent advancements in this technology across various therapeutic applications. Integrating iontophoresis (IP) and electroporation (EP) with MN technology has shown significant potential in improving treatment outcomes for various conditions. Studies demonstrate their effectiveness in enhancing vaccine and DNA delivery, improving diabetes management, and increasing efficacy in dermatological applications. The technology has also exhibited promise in delivering nonsteroidal anti-inflammatory drugs (NSAIDs), treating multiple sclerosis, and advancing obesity and cancer therapy. These systems offer improved drug permeation, targeted delivery, and enhanced therapeutic effects. While challenges remain, including safety concerns and technological limitations, ongoing research focuses on optimizing these systems for broader clinical applications. The future of electrically assisted MN technologies in TDD appears promising, with potential advancements in personalized medicine, smart monitoring systems, and expanded therapeutic applications.
Collapse
Affiliation(s)
- Mehrnaz Abbasi
- College of Human Sciences, Department of Nutritional Sciences, Auburn University, Auburn, AL, 36849, USA.
| | - Braeden Heath
- College of Sciences and Mathematics, Department of Biomedical Sciences, Auburn University, Auburn, AL, 36849, USA
| |
Collapse
|
14
|
Tabatabaee RS, Naghdi T, Peyravian M, Kiani MA, Golmohammadi H. An Invisible Dermal Nanotattoo-Based Smart Wearable Sensor for eDiagnostics of Jaundice. ACS NANO 2024; 18:28012-28025. [PMID: 39356285 DOI: 10.1021/acsnano.4c06191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/03/2024]
Abstract
Despite substantial progress in the diagnosis of jaundice/hyperbilirubinemia as the most common disease and cause of hospitalization of newborns, on the eve of Industry/Healthcare 5.0, the development of accurate and reliable wearable diagnostic sensors for noninvasive smart monitoring of bilirubin (BIL) is still in high demand. Aiming to fabricate a smart wearable sensor for early diagnosis of neonatal jaundice and its therapeutic monitoring, we here report a fluorescent dermal nanotattoo that further coupled with an IoT-integrated wearable optoelectronic reader for minimally invasive, continuous, and real-time monitoring of BIL in interstitial fluid. Selective recovery of quenched fluorescence of the dermal tattoo sensor, composed of biocompatible dissolving/hydrogel microneedles loaded with fluorescent carbon quantum dots, upon blue light exposure used for jaundice phototherapy was utilized for highly selective BIL sensing. The fascinating features of our developed smart wearable tattoo sensor and its successful results with high correlation with blood BIL results make it a highly promising sensor for easy, minimally invasive, reliable, and smart eDiagnostics and continuous therapeutic eMonitoring of jaundice and other BIL-induced diseases at the point of care. We envision that the developed nanotattoo sensing bioplatform will inspire the development of future smart tattoo sensors in various diagnostic and monitoring scenarios.
Collapse
Affiliation(s)
- Raziyeh Sadat Tabatabaee
- Nanosensor Bioplatforms Laboratory, Chemistry and Chemical Engineering Research Center of Iran, Tehran 14335-186, Iran
| | - Tina Naghdi
- Nanosensor Bioplatforms Laboratory, Chemistry and Chemical Engineering Research Center of Iran, Tehran 14335-186, Iran
- IMTEK - Department of Microsystems Engineering, University of Freiburg, Freiburg 79110, Germany
| | - Mohammad Peyravian
- Nanosensor Bioplatforms Laboratory, Chemistry and Chemical Engineering Research Center of Iran, Tehran 14335-186, Iran
| | - Mohammad Ali Kiani
- Nanosensor Bioplatforms Laboratory, Chemistry and Chemical Engineering Research Center of Iran, Tehran 14335-186, Iran
| | - Hamed Golmohammadi
- Nanosensor Bioplatforms Laboratory, Chemistry and Chemical Engineering Research Center of Iran, Tehran 14335-186, Iran
- IMTEK - Department of Microsystems Engineering, University of Freiburg, Freiburg 79110, Germany
| |
Collapse
|
15
|
Sang Z, Zhu T, Qu X, Zhang Z, Wang W, Hao Y. A hyaluronic acid-based dissolving microneedle patch loaded with 5-aminolevulinic acid for improved oral leukoplakia treatment. Colloids Surf B Biointerfaces 2024; 245:114216. [PMID: 39260274 DOI: 10.1016/j.colsurfb.2024.114216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 06/01/2024] [Accepted: 09/05/2024] [Indexed: 09/13/2024]
Abstract
INTRODUCTION A local microneedle patch loaded with 5-aminolevulinic acid (ALA) was constructed to improve the efficiency of ALA photodynamic treatment of oral leukoplakia, reduce local photosensitivity reactions, and promote the healing of lesions. METHODS The microneedle patch loaded with ALA was constructed with the hyaluronic acid (HA) solution (ALA-HAMN), and its morphology, strength, mucosal penetration, and biocompatibility were tested. RESULTS In vivo safety and permeability tests confirmed that ALA-HAMN had good biocompatibility and could penetrate the mucosal barrier and quickly dissolve and release ALA for in situ transdermal administration. The 4-nitroquinoline oxide (NQO) rat model experiment showed that ALA-HAMN can significantly improve photodynamic therapy (PDT) efficiency and has no damage to mucosal tissue compared with the commonly used ALA cotton ball dressing. CONCLUSIONS The ALA-loaded microneedle patch was successfully constructed for the photodynamic treatment of oral leukoplakia, and the photodynamic efficiency and comfort of oral leukoplakia were improved, which provided an effective delivery mode to improve clinical ALA-PDT treatment of oral leukoplakia (OLK).
Collapse
Affiliation(s)
- Zhiqin Sang
- School of Stomatology, Qingdao University, Qingdao 266023, China.
| | - Tingting Zhu
- School of Stomatology, Qingdao University, Qingdao 266023, China.
| | - Xiaoru Qu
- Qingdao Stomatological Hospital Affiliated to Qingdao University, Qingdao 266001, China
| | - Zhe Zhang
- Qingdao Stomatological Hospital Affiliated to Qingdao University, Qingdao 266001, China
| | - Wanchun Wang
- Qingdao Stomatological Hospital Affiliated to Qingdao University, Qingdao 266001, China.
| | - Yuanping Hao
- Qingdao Stomatological Hospital Affiliated to Qingdao University, Qingdao 266001, China.
| |
Collapse
|
16
|
Chanabodeechalermrung B, Chaiwarit T, Udomsom S, Rachtanapun P, Piboon P, Jantrawut P. Determination of vat-photopolymerization parameters for microneedles fabrication and characterization of HPMC/PVP K90 dissolving microneedles utilizing 3D-printed mold. Sci Rep 2024; 14:16174. [PMID: 39003398 PMCID: PMC11246459 DOI: 10.1038/s41598-024-67243-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Accepted: 07/09/2024] [Indexed: 07/15/2024] Open
Abstract
Three-dimensional (3D) printing serves as an alternative method for fabricating microneedle (MN) patches with a high object resolution. In this investigation, four distinct needle shapes: pyramid mounted over a long cube (shape A), cone mounted over a cylinder (shape B), pyramidal shape (shape C), and conical shape (shape D) were designed using computer-aided design (CAD) software with compensated bases of 350, 450 and 550 µm. Polylactic acid (PLA) biophotopolymer resin from eSun and stereolithography (SLA) 3D printer from Anycubic technology were used to print MN patches. The 3D-printed MN patches were employed to construct MN molds, and those molds were used to produce hydroxypropyl methylcellulose (HPMC) and polyvinyl pyrrolidone (PVP) K90 dissolving microneedles (DMNs). Various printing parameters, such as curing time, printing angle, and anti-aliasing (AA), were varied to evaluate suitable printing conditions for each shape. Furthermore, physical appearance, mechanical property, and skin insertion ability of HPMC/PVP K90 DMNs were examined. The results showed that for shape A and C, the suitable curing time and printing angle were 1.5 s and 30° while for shapes B and D, they were 2.0 s and 45°, respectively. All four shapes required AA to eliminate their stair-stepped edges. Additionally, it was demonstrated that all twelve designs of 3D-printed MN patches could be employed for fabricating MN molds. HPMC/PVP K90 DMNs with the needles of shape A and B exhibited better physicochemical properties compared to those of shape C and D. Particularly, both sample 9 and 10 displayed sharp needle without bent tips, coupled with minimal height reduction (< 10%) and a high percentage of blue dots (approximately 100%). As a result, 3D printing can be utilized to custom construct 3D-printed MN patches for producing MN molds, and HPMC/PVP K90 DMNs manufactured by those molds showed excellent physicochemical properties.
Collapse
Affiliation(s)
| | - Tanpong Chaiwarit
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, Chiang Mai University, Chiang Mai, 50200, Thailand
| | - Suruk Udomsom
- Biomedical Engineering and Innovation Research Center, Chiang Mai University, Chiang Mai, 50200, Thailand
- Biomedical Engineering Institute (BMEI), Chiang Mai University, Chiang Mai, 50200, Thailand
- Office of Research Administration, Chiang Mai University, Chiang Mai, 50200, Thailand
| | - Pornchai Rachtanapun
- Division of Packaging Technology, School of Agro-Industry, Faculty of Agro-Industry, Chiang Mai University, Chiang Mai, 50100, Thailand
- Center of Excellence in Materials Science and Technology, Chiang Mai University, Chiang Mai, 50200, Thailand
- Center of Excellence in Agro Bio-Circular-Green Industry (Agro BCG), Agro-Industry, Chiang Mai University, Chiang Mai, 50100, Thailand
| | - Promporn Piboon
- Faculty of Veterinary Medicine, Chiang Mai University, Chiang Mai, 50100, Thailand
| | - Pensak Jantrawut
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, Chiang Mai University, Chiang Mai, 50200, Thailand.
- Center of Excellence in Materials Science and Technology, Chiang Mai University, Chiang Mai, 50200, Thailand.
- Center of Excellence in Agro Bio-Circular-Green Industry (Agro BCG), Agro-Industry, Chiang Mai University, Chiang Mai, 50100, Thailand.
| |
Collapse
|
17
|
Chudzińska J, Wawrzyńczak A, Feliczak-Guzik A. Microneedles Based on a Biodegradable Polymer-Hyaluronic Acid. Polymers (Basel) 2024; 16:1396. [PMID: 38794589 PMCID: PMC11124840 DOI: 10.3390/polym16101396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 05/10/2024] [Accepted: 05/13/2024] [Indexed: 05/26/2024] Open
Abstract
Transdermal transport can be challenging due to the difficulty in diffusing active substances through the outermost layer of the epidermis, as the primary function of the skin is to protect against the entry of exogenous compounds into the body. In addition, penetration of the epidermis for substances hydrophilic in nature and particles larger than 500 Da is highly limited due to the physiological properties and non-polar nature of its outermost layer, namely the stratum corneum. A solution to this problem can be the use of microneedles, which "bypass" the problematic epidermal layer by dispensing the active substance directly into the deeper layers of the skin. Microneedles can be obtained with various materials and come in different types. Of special interest are carriers based on biodegradable and biocompatible polymers, such as polysaccharides. Therefore, this paper reviews the latest literature on methods to obtain hyaluronic acid-based microneedles. It focuses on the current advancements in this field and consequently provides an opportunity to guide future research in this area.
Collapse
Affiliation(s)
| | - Agata Wawrzyńczak
- Faculty of Chemistry, Adam Mickiewicz University in Poznań, Uniwersytetu Poznańskiego 8, 61-614 Poznań, Poland; (J.C.); (A.F.-G.)
| | | |
Collapse
|
18
|
Cocoș DI, Dumitriu Buzia O, Tatu AL, Dinu M, Nwabudike LC, Stefan CS, Earar K, Galea C. Challenges in Optimizing Nanoplatforms Used for Local and Systemic Delivery in the Oral Cavity. Pharmaceutics 2024; 16:626. [PMID: 38794288 PMCID: PMC11124955 DOI: 10.3390/pharmaceutics16050626] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 05/03/2024] [Accepted: 05/04/2024] [Indexed: 05/26/2024] Open
Abstract
In this study, we focused on innovative approaches to improve drug administration in oral pathology, especially by transmucosal and transdermal pathways. These improvements refer to the type of microneedles used (proposing needles in the saw), to the use of certain enhancers such as essential oils (which, besides the amplifier action, also have intrinsic actions on oral health), to associations of active substances with synergistic action, as well as the use of copolymeric membranes, cemented directly on the tooth. We also propose a review of the principles of release at the level of the oral mucosa and of the main release systems used in oral pathology. Controlled failure systems applicable in oral pathology include the following: fast dissolving films, mucoadhesive tablets, hydrogels, intraoral mucoadhesive films, composite wafers, and smart drugs. The novelty elements brought by this paper refer to the possibilities of optimizing the localized drug delivery system in osteoarthritis of the temporomandibular joint, neuropathic pain, oral cancer, periodontitis, and pericoronitis, as well as in maintaining oral health. We would like to mention the possibility of incorporating natural products into the controlled failure systems used in oral pathology, paying special attention to essential oils.
Collapse
Affiliation(s)
- Dorin Ioan Cocoș
- Centre in the Medical-Pharmaceutical Field, Faculty of Medicine and Pharmacy, “Dunarea de Jos” the University of Galati, 800008 Galati, Romania; (D.I.C.); (C.S.S.); (K.E.)
| | - Olimpia Dumitriu Buzia
- Centre in the Medical-Pharmaceutical Field, Faculty of Medicine and Pharmacy, “Dunarea de Jos” the University of Galati, 800008 Galati, Romania; (D.I.C.); (C.S.S.); (K.E.)
| | - Alin Laurențiu Tatu
- Clinical Medical Department, Faculty of Medicine and Pharmacy, “Dunarea de Jos” University, 800008 Galati, Romania;
- Dermatology Department, “Sf. Cuvioasa Parascheva” Clinical Hospital of Infectious Diseases, 800179 Galati, Romania
- Multidisciplinary Integrative Center for Dermatologic Interface Research MIC-DIR, 800010 Galati, Romania
| | - Monica Dinu
- Centre in the Medical-Pharmaceutical Field, Faculty of Medicine and Pharmacy, “Dunarea de Jos” the University of Galati, 800008 Galati, Romania; (D.I.C.); (C.S.S.); (K.E.)
| | | | - Claudia Simona Stefan
- Centre in the Medical-Pharmaceutical Field, Faculty of Medicine and Pharmacy, “Dunarea de Jos” the University of Galati, 800008 Galati, Romania; (D.I.C.); (C.S.S.); (K.E.)
| | - Kamel Earar
- Centre in the Medical-Pharmaceutical Field, Faculty of Medicine and Pharmacy, “Dunarea de Jos” the University of Galati, 800008 Galati, Romania; (D.I.C.); (C.S.S.); (K.E.)
| | - Carmen Galea
- Department of Medical Disciplines, Faculty of Dental Medicine, University of Targu Mures, 540099 Targu Mures, Romania;
| |
Collapse
|
19
|
Yamagishi R, Miura S, Yabu K, Ando M, Hachikubo Y, Yokoyama Y, Yasuda K, Takei S. Fabrication Technology of Self-Dissolving Sodium Hyaluronate Gels Ultrafine Microneedles for Medical Applications with UV-Curing Gas-Permeable Mold. Gels 2024; 10:65. [PMID: 38247787 PMCID: PMC10815747 DOI: 10.3390/gels10010065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 01/10/2024] [Accepted: 01/11/2024] [Indexed: 01/23/2024] Open
Abstract
Microneedles are of great interest in diverse fields, including cosmetics, drug delivery systems, chromatography, and biological sensing for disease diagnosis. Self-dissolving ultrafine microneedles of pure sodium hyaluronate hydrogels were fabricated using a UV-curing TiO2-SiO2 gas-permeable mold polymerized by sol-gel hydrolysis reactions in nanoimprint lithography processes under refrigeration at 5 °C, where thermal decomposition of microneedle components can be avoided. The moldability, strength, and dissolution behavior of sodium hyaluronate hydrogels with different molecular weights were compared to evaluate the suitability of ultrafine microneedles with a bottom diameter of 40 μm and a height of 80 μm. The appropriate molecular weight range and formulation of pure sodium hyaluronate hydrogels were found to control the dissolution behavior of self-dissolving ultrafine microneedles while maintaining the moldability and strength of the microneedles. This fabrication technology of ultrafine microneedles expands their possibilities as a next-generation technique for bioactive gels for controlling the blood levels of drugs and avoiding pain during administration.
Collapse
Affiliation(s)
- Rio Yamagishi
- Graduate School of Biotechnology and Pharmaceutical Engineering, Toyama Prefectural University, Imizu 939-0398, Toyama, Japan; (R.Y.); (S.M.); (K.Y.)
| | - Sayaka Miura
- Graduate School of Biotechnology and Pharmaceutical Engineering, Toyama Prefectural University, Imizu 939-0398, Toyama, Japan; (R.Y.); (S.M.); (K.Y.)
| | - Kana Yabu
- Department of Pharmaceutical Engineering, Toyama Prefectural University, Imizu 939-0398, Toyama, Japan; (K.Y.); (M.A.); (Y.H.)
| | - Mano Ando
- Department of Pharmaceutical Engineering, Toyama Prefectural University, Imizu 939-0398, Toyama, Japan; (K.Y.); (M.A.); (Y.H.)
| | - Yuna Hachikubo
- Department of Pharmaceutical Engineering, Toyama Prefectural University, Imizu 939-0398, Toyama, Japan; (K.Y.); (M.A.); (Y.H.)
| | - Yoshiyuki Yokoyama
- Toyama Industrial Technology Research and Development Center, Takaoka 933-0981, Toyama, Japan;
| | - Kaori Yasuda
- Graduate School of Biotechnology and Pharmaceutical Engineering, Toyama Prefectural University, Imizu 939-0398, Toyama, Japan; (R.Y.); (S.M.); (K.Y.)
| | - Satoshi Takei
- Graduate School of Biotechnology and Pharmaceutical Engineering, Toyama Prefectural University, Imizu 939-0398, Toyama, Japan; (R.Y.); (S.M.); (K.Y.)
| |
Collapse
|