1
|
Abdo VL, Suarez LJ, de Paula LG, Costa RC, Shibli J, Feres M, Barāo VAR, Bertolini M, Souza JGS. Underestimated microbial infection of resorbable membranes on guided regeneration. Colloids Surf B Biointerfaces 2023; 226:113318. [PMID: 37075523 DOI: 10.1016/j.colsurfb.2023.113318] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 03/29/2023] [Accepted: 04/12/2023] [Indexed: 04/21/2023]
Abstract
Barrier membranes are critical in creating tissuecompartmentalization for guided tissue (GTR) and bone regeneration (GBR) therapies. More recently, resorbable membranes have been widely used for tissue and bone regeneration due to their improved properties and the dispensable re-entry surgery for membrane removal. However, in cases with membrane exposure, this may lead to microbial contamination that will compromise the integrity of the membrane, surrounding tissue, and bone regeneration, resulting in treatment failure. Although the microbial infection can negatively influence the clinical outcomes of regenerative therapy, such as GBR and GTR, there is a lack of clinical investigations in this field, especially concerning the microbial colonization of different types of membranes. Importantly, a deeper understanding of the mechanisms of biofilm growth and composition and pathogenesis on exposed membranes is still missing, explaining the mechanisms by which bone regeneration is reduced during membrane exposure. This scoping review comprehensively screened and discussed the current in vivo evidence and possible new perspectives on the microbial contamination of resorbable membranes. Results from eligible in vivo studies suggested that different bacterial species colonized exposed membranes according to their composition (collagen, expanded polytetrafluoroethylene (non-resorbable), and polylactic acid), but in all cases, it negatively affected the attachment level and amount of bone gain. However, limited models and techniques have evaluated the newly developed materials, and evidence is scarce. Finally, new approaches to enhance the antimicrobial effect should consider changing the membrane surface or incorporating long-term released antimicrobials in an effort to achieve better clinical success.
Collapse
Affiliation(s)
- Victoria L Abdo
- Department of Periodontology, Dental Research Division, Guarulhos University, Praça Tereza Cristina, 88 - Centro, Guarulhos, São Paulo 07023-070, Brazil
| | - Lina J Suarez
- Department of Periodontology, Dental Research Division, Guarulhos University, Praça Tereza Cristina, 88 - Centro, Guarulhos, São Paulo 07023-070, Brazil; Departamento de Ciencias Básicas y Medicina Oral, Universidad Nacional de Colombia, Cra 45 # 26-85, Bogotá 11001, Colombia
| | - Lucca Gomes de Paula
- Dental Science School (Faculdade de Ciências Odontológicas - FCO), Av. Waldomiro Marcondes Oliveira, 20 - Ibituruna, Montes Claros, Minas Gerais 39401-303, Brazil
| | - Raphael C Costa
- Department of Prosthodontics and Periodontology, Piracicaba Dental School, University of Campinas (UNICAMP), Av. Limeira, 901, Piracicaba, São Paulo 13414-903, Brazil
| | - Jamil Shibli
- Department of Periodontology, Dental Research Division, Guarulhos University, Praça Tereza Cristina, 88 - Centro, Guarulhos, São Paulo 07023-070, Brazil
| | - Magda Feres
- Department of Periodontology, Dental Research Division, Guarulhos University, Praça Tereza Cristina, 88 - Centro, Guarulhos, São Paulo 07023-070, Brazil; Harvard School of Dental Medicine, Boston, Massachusetts, USA
| | - Valentim A R Barāo
- Department of Prosthodontics and Periodontology, Piracicaba Dental School, University of Campinas (UNICAMP), Av. Limeira, 901, Piracicaba, São Paulo 13414-903, Brazil
| | - Martinna Bertolini
- Department of Periodontics and Preventive Dentistry, University of Pittsburgh School of Dental Medicine, 3501 Terrace St, Pittsburgh, PA 15213, USA
| | - Joāo Gabriel Silva Souza
- Department of Periodontology, Dental Research Division, Guarulhos University, Praça Tereza Cristina, 88 - Centro, Guarulhos, São Paulo 07023-070, Brazil; Dental Science School (Faculdade de Ciências Odontológicas - FCO), Av. Waldomiro Marcondes Oliveira, 20 - Ibituruna, Montes Claros, Minas Gerais 39401-303, Brazil.
| |
Collapse
|
2
|
Ahmed T. Functional biomaterials for biomimetic 3D in vitro tumor microenvironment modeling. IN VITRO MODELS 2023; 2:1-23. [PMID: 39872875 PMCID: PMC11756483 DOI: 10.1007/s44164-023-00043-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 01/11/2023] [Accepted: 01/16/2023] [Indexed: 01/30/2025]
Abstract
The translational potential of promising anticancer medications and treatments may be enhanced by the creation of 3D in vitro models that can accurately reproduce native tumor microenvironments. Tumor microenvironments for cancer treatment and research can be built in vitro using biomaterials. Three-dimensional in vitro cancer models have provided new insights into the biology of cancer. Cancer researchers are creating artificial three-dimensional tumor models based on functional biomaterials that mimic the microenvironment of the real tumor. Our understanding of tumor stroma activity over the course of cancer has improved because of the use of scaffold and matrix-based three-dimensional systems intended for regenerative medicine. Scientists have created synthetic tumor models thanks to recent developments in materials engineering. These models enable researchers to investigate the biology of cancer and assess the therapeutic effectiveness of available medications. The emergence of biomaterial engineering technologies with the potential to hasten treatment outcomes is highlighted in this review, which also discusses the influence of creating in vitro biomimetic 3D tumor microenvironments utilizing functional biomaterials. Future cancer treatments will rely much more heavily on biomaterials engineering.
Collapse
Affiliation(s)
- Tanvir Ahmed
- Department of Pharmaceutical Sciences, North South University, Bashundhara R/A, Dhaka-1229 Dhaka, Bangladesh
| |
Collapse
|
3
|
Jawadi Z, Yang C, Haidar ZS, Santa Maria PL, Massa S. Bio-Inspired Muco-Adhesive Polymers for Drug Delivery Applications. Polymers (Basel) 2022; 14:5459. [PMID: 36559825 PMCID: PMC9785024 DOI: 10.3390/polym14245459] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 12/03/2022] [Accepted: 12/04/2022] [Indexed: 12/15/2022] Open
Abstract
Muco-adhesive drug delivery systems continue to be one of the most studied for controlled pharmacokinetics and pharmacodynamics. Briefly, muco-adhesive polymers, can be described as bio-polymers that adhere to the mucosal (mucus) surface layer, for an extended residency period of time at the site of application, by the help of interfacial forces resulting in improved drug delivery. When compared to traditional drug delivery systems, muco-adhesive carriers have the potential to enhance therapeutic performance and efficacy, locally and systematically, in oral, rectal, vaginal, amongst other routes. Yet, the achieving successful muco-adhesion in a novel polymeric drug delivery solution is a complex process involving key physico-chemico-mechanical parameters such as adsorption, wettability, polymer chain length, inter-penetration and cross-linking, to list a few. Hence, and in light of accruing progress, evidence and interest, during the last decade, this review aims to provide the reader with an overview of the theories, principles, properties, and underlying mechanisms of muco-adhesive polymers for pharmaceutics; from basics to design to characterization to optimization to evaluation to market. A special focus is devoted to recent advances incorporating bio-inspired polymers for designing controlled muco-adhesive drug delivery systems.
Collapse
Affiliation(s)
- Zina Jawadi
- Department of Otolaryngology—Head & Neck Surgery, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Christine Yang
- Department of Otolaryngology—Head & Neck Surgery, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Ziyad S. Haidar
- BioMAT’X I+D+i (HAiDAR R&D&I LAB), Universidad de los Andes, Santiago 7620001, Chile
- Centro de Investigación e Innovación Biomédica (CiiB), Universidad de los Andes, Santiago 7620001, Chile
- Programa de Doctorado en BioMedicina, Facultad de Medicina, Universidad de los Andes, Santiago 7620001, Chile
- Department of Biomaterials and BioEngineering, Facultad de Odontología, Universidad de los Andes, Santiago 7620001, Chile
| | - Peter L. Santa Maria
- Department of Otolaryngology—Head & Neck Surgery, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Solange Massa
- Department of Otolaryngology—Head & Neck Surgery, Stanford University School of Medicine, Stanford, CA 94305, USA
| |
Collapse
|
4
|
Shiohara A, Prieto-Simon B, Voelcker NH. Porous polymeric membranes: fabrication techniques and biomedical applications. J Mater Chem B 2021; 9:2129-2154. [PMID: 33283821 DOI: 10.1039/d0tb01727b] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Porous polymeric membranes have shown great potential in biological and biomedical applications such as tissue engineering, bioseparation, and biosensing, due to their structural flexibility, versatile surface chemistry, and biocompatibility. This review outlines the advantages and limitations of the fabrication techniques commonly used to produce porous polymeric membranes, with especial focus on those featuring nano/submicron scale pores, which include track etching, nanoimprinting, block-copolymer self-assembly, and electrospinning. Recent advances in membrane technology have been key to facilitate precise control of pore size, shape, density and surface properties. The review provides a critical overview of the main biological and biomedical applications of these porous polymeric membranes, especially focusing on drug delivery, tissue engineering, biosensing, and bioseparation. The effect of the membrane material and pore morphology on the role of the membranes for each specific application as well as the specific fabrication challenges, and future prospects of these membranes are thoroughly discussed.
Collapse
Affiliation(s)
- Amane Shiohara
- Drug Delivery, Deposition, and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria 3052, Australia. and Commonwealth Scientific and Industrial Research Organisation (CSIRO), Clayton, Victoria 3168, Australia and Melbourne Centre of Nanofabrication, Victorian Node of the Australian National Fabrication Facility, Clayton, Victoria 3168, Australia
| | - Beatriz Prieto-Simon
- Drug Delivery, Deposition, and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria 3052, Australia. and Department of Electronic Engineering, Universitat Rovira i Virgili, 43007 Tarragona, Spain and ICREA, Pg. Lluís Companys 23, 08010 Barcelona, Spain
| | - Nicolas H Voelcker
- Drug Delivery, Deposition, and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria 3052, Australia. and Commonwealth Scientific and Industrial Research Organisation (CSIRO), Clayton, Victoria 3168, Australia and Melbourne Centre of Nanofabrication, Victorian Node of the Australian National Fabrication Facility, Clayton, Victoria 3168, Australia
| |
Collapse
|
5
|
Küçüktürkmen B, Öz UC, Toptaş M, Devrim B, Saka OM, Bilgili H, Deveci MS, Ünsal E, Bozkır A. Development of Zoledronic Acid Containing Biomaterials for Enhanced Guided Bone Regeneration. J Pharm Sci 2021; 110:3200-3207. [PMID: 33984339 DOI: 10.1016/j.xphs.2021.05.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Revised: 05/01/2021] [Accepted: 05/03/2021] [Indexed: 12/17/2022]
Abstract
In recent years, biomaterial-based treatments, also called guided bone regeneration (GBR), which aim to establish a bone regeneration site and prevent the migration of gingival connective tissue and / or peripheral epithelium through the defective area during periodontal surgical procedures have come to the fore. In this report, we have developed a nanoparticle bearing thermosensitive in situ gel formulation of Pluronic F127 and poly(D,L-lactic acid) based membrane to reveal their utilization at GBR by in-vivo applications. In addition, the encouragement of the bone formation in defect area via inhibition of osteoclastic activity is intended by fabrication these biodegradable biomaterials at a lowered Zoledronic Acid (ZA) dose. Both of the developed materials remained stable under specified stability conditions (25 °C, 6 months) and provided the extended release profile of ZA. The in-vivo efficacy of nanoparticle bearing in situ gel formulation, membrane formulation and simultaneous application for guided bone regeneration was investigated in New Zealand female rabbits with a critical size defect of 0.5 × 0.5 cm in the tibia bone for eight weeks. Based on the histopathological findings, lamellar bone and primarily woven bone formations were observed after 8 weeks of post-implantation of both formulations, while fibrosis was detected only in the untreated group. Lamellar bone growth was remarkably achieved just four weeks after the simultaneous application of formulations. Consequently, the simultaneous application of ZA-membrane and ZA-nanoparticles loaded in-situ gel formulations offers enhanced and faster GBR therapy alternatives.
Collapse
Affiliation(s)
- Berrin Küçüktürkmen
- Faculty of Pharmacy Department of Pharmaceutical Technology, Ankara University, Ankara, Turkey
| | - Umut Can Öz
- Faculty of Pharmacy Department of Pharmaceutical Technology, Ankara University, Ankara, Turkey.
| | - Mete Toptaş
- Faculty of Dentistry Department of Periodontology, Bezmialem University, İstanbul, Turkey
| | - Burcu Devrim
- Faculty of Pharmacy Department of Pharmaceutical Technology, Ankara University, Ankara, Turkey
| | - Ongun Mehmet Saka
- Faculty of Pharmacy Department of Pharmaceutical Technology, Ankara University, Ankara, Turkey
| | - Hasan Bilgili
- Faculty of Veterinary Medicine Department of Surgery, Ankara University, Ankara, Turkey
| | - Mehmet Salih Deveci
- Health Sciences University Gulhane Medical Faculty Pathology Department, Ankara, Turkey
| | - Elif Ünsal
- Faculty of Dentistry Department of Periodontology, Ankara University, Ankara, Turkey
| | - Asuman Bozkır
- Faculty of Pharmacy Department of Pharmaceutical Technology, Ankara University, Ankara, Turkey
| |
Collapse
|
6
|
Szczepańska E, Synak A, Bojarski P, Niedziałkowski P, Wcisło A, Ossowski T, Grobelna B. Dansyl-Labelled Ag@SiO 2 Core-Shell Nanostructures-Synthesis, Characterization, and Metal-Enhanced Fluorescence. MATERIALS (BASEL, SWITZERLAND) 2020; 13:E5168. [PMID: 33207805 PMCID: PMC7697960 DOI: 10.3390/ma13225168] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Revised: 11/06/2020] [Accepted: 11/12/2020] [Indexed: 02/06/2023]
Abstract
The present work describes synthesis, characterization, and use of a new dansyl-labelled Ag@SiO2 nanocomposite as an element of a new plasmonic platform to enhance the fluorescence intensity. Keeping in mind that typical surface plasmon resonance (SPR) characteristics of silver nanoparticles coincide well enough with the absorption of dansyl molecules, we used them to build the core of the nanocomposite. Moreover, we utilized 10 nm amino-functionalized silica shell as a separator between silver nanoparticles and the dansyl dye to prevent the dye-to-metal energy transfer. The dansyl group was incorporated into Ag@SiO2 core-shell nanostructures by the reaction of aminopropyltrimethoxysilane with dansyl chloride and we characterized the new dansyl-labelled Ag@SiO2 nanocomposite using transmission electron microscopy (TEM) and Fourier-transform infrared spectroscopy (FTIR). Additionally, water wettability measurements (WWM) were carried out to assess the hydrophobicity and hydrophilicity of the studied surface. We found that the nanocomposite deposited on a semitransparent silver mirror strongly increased the fluorescence intensity of dansyl dye (about 87-fold) compared with the control sample on the glass, proving that the system is a perfect candidate for a sensitive plasmonic platform.
Collapse
Affiliation(s)
- Elżbieta Szczepańska
- Faculty of Chemistry, University of Gdansk, Wita Stwosza 63, 80-308 Gdańsk, Poland; (E.S.); (P.N.); (A.W.); (T.O.)
| | - Anna Synak
- Faculty of Mathematics, Physics and Informatics, University of Gdansk, Wita Stwosza 57, 80-308 Gdańsk, Poland;
| | - Piotr Bojarski
- Faculty of Mathematics, Physics and Informatics, University of Gdansk, Wita Stwosza 57, 80-308 Gdańsk, Poland;
| | - Paweł Niedziałkowski
- Faculty of Chemistry, University of Gdansk, Wita Stwosza 63, 80-308 Gdańsk, Poland; (E.S.); (P.N.); (A.W.); (T.O.)
| | - Anna Wcisło
- Faculty of Chemistry, University of Gdansk, Wita Stwosza 63, 80-308 Gdańsk, Poland; (E.S.); (P.N.); (A.W.); (T.O.)
| | - Tadeusz Ossowski
- Faculty of Chemistry, University of Gdansk, Wita Stwosza 63, 80-308 Gdańsk, Poland; (E.S.); (P.N.); (A.W.); (T.O.)
| | - Beata Grobelna
- Faculty of Chemistry, University of Gdansk, Wita Stwosza 63, 80-308 Gdańsk, Poland; (E.S.); (P.N.); (A.W.); (T.O.)
| |
Collapse
|
7
|
Öz UC, Toptaş M, Küçüktürkmen B, Devrim B, Saka OM, Deveci MS, Bilgili H, Ünsal E, Bozkır A. Guided bone regeneration by the development of alendronate sodium loaded in-situ gel and membrane formulations. Eur J Pharm Sci 2020; 155:105561. [PMID: 32950618 DOI: 10.1016/j.ejps.2020.105561] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Revised: 09/03/2020] [Accepted: 09/14/2020] [Indexed: 12/11/2022]
Abstract
Biocompatible materials applied in guided bone regeneration are needed to prevent leakage caused by the invasion of peripheral epithelium. (2.1) The aim of this study is to develop a thermosensitive in situ gel system containing alendronate sodium loaded PLGA nanoparticles and alendronate sodium loaded membranes for guided bone regeneration. Thermosensitive Pluronic F127 gel system was preferred to prevent soft tissue migration to the defect site and prolong the residence time of the nanoparticles in this region. In situ gel system was combined with membrane formulation to enhance bone regenaration activity. Efficacy of combination system was investigated by implanting in 0.5 × 0.5 cm critical size defect in tibia of New Zealand female rabbits. According to the histopathological results, fibroblast formations were found at defect area after 6 weeks of post implantation. In contrast, treatment with the combination of in-situ gel containing nanoparticles with membrane provided woven bone formation with mature bone after 4 weeks of post implantation. As a results, the combination of in-situ gel formulation containing alendronate sodium-loaded nanoparticles with membrane formulation could be effectively applided for guided bone regeneration.
Collapse
Affiliation(s)
- Umut Can Öz
- Ankara University Faculty of Pharmacy Department of Pharmaceutical Technology, 06560 Yenimahalle-Ankara, Ankara, Turkey
| | - Mete Toptaş
- Bezmialem University Faculty of Dentistry Department of Periodontology, İstanbul, Turkey
| | - Berrin Küçüktürkmen
- Ankara University Faculty of Pharmacy Department of Pharmaceutical Technology, 06560 Yenimahalle-Ankara, Ankara, Turkey
| | - Burcu Devrim
- Ankara University Faculty of Pharmacy Department of Pharmaceutical Technology, 06560 Yenimahalle-Ankara, Ankara, Turkey.
| | - Ongun Mehmet Saka
- Ankara University Faculty of Pharmacy Department of Pharmaceutical Technology, 06560 Yenimahalle-Ankara, Ankara, Turkey
| | - Mehmet Salih Deveci
- Health Sciences University Gulhane Medical Faculty Pathology Department, Ankara, Turkey
| | - Hasan Bilgili
- Ankara University Faculty of Veterinary Medicine Department of Surgery, Ankara, Turkey
| | - Elif Ünsal
- Ankara University Faculty of Dentistry Department of Periodontology, Ankara, Turkey
| | - Asuman Bozkır
- Ankara University Faculty of Pharmacy Department of Pharmaceutical Technology, 06560 Yenimahalle-Ankara, Ankara, Turkey
| |
Collapse
|
8
|
Choudhary S, Kalra V, Kumar M, Tiwary AK, Sood J, Silakari O. Bio-Inspired Strategies against Diabetes and Associated Complications: A Review. ACTA ACUST UNITED AC 2019; 13:273-282. [PMID: 31884934 DOI: 10.2174/1872211314666191224120145] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2019] [Revised: 12/13/2019] [Accepted: 12/16/2019] [Indexed: 01/22/2023]
Abstract
Bio-molecules are the most important target to be considered while designing any drug delivery system. The logic lies in using such bio-sensing or bio-mimicking systems in their formulations that can mimic the active site of those receptors to which the drug is going to bind. Polymers mimicking the active site of target enzymes are regarded as bio-inspired polymers and can be used to ameliorate many diseased conditions. Nowadays, this strategy is also being adopted against diabetes and its complications. Under hyperglycemic conditions, many pathways get activated which are responsible for the progression of diabetes-associated secondary complications viz. retinopathy, neuropathy, and nephropathy. The enzymes involved in the progression of these complications can be mimicked for their effective management. For an instance, Aldose Reductase (ALR2), a rate-limiting enzyme of the polyol pathway (downstream pathway) which gets over-activated under hyperglycemic condition is reported to be mimicked by using polymers which are having same functionalities in their structure. This review aims at critically appraising reports in which target mimicking bio-inspired formulations have been envisaged against diabetes and its complications. The information summarized in this review will provide an idea about the bio-sensing approaches utilized to manage blood glucose level and the utility of bio-inspired polymers for the management of diabetic complications (DC). Such type of information may be beneficial to pharmaceutical companies and academia for better development of targeted drug delivery systems with sustained-release property against these diseased conditions.
Collapse
Affiliation(s)
- Shalki Choudhary
- Department of Pharmaceutical Sciences and Drug Research, Punjabi University, Patiala, Punjab, 147002, India
| | - Vinni Kalra
- Department of Pharmaceutical Sciences and Drug Research, Punjabi University, Patiala, Punjab, 147002, India
| | - Manoj Kumar
- Department of Pharmaceutical Sciences and Drug Research, Punjabi University, Patiala, Punjab, 147002, India
| | - Ashok Kumar Tiwary
- Department of Pharmaceutical Sciences and Drug Research, Punjabi University, Patiala, Punjab, 147002, India
| | - Jatin Sood
- Formulation Research and Development Department, Peace Naturals Project Inc. The Cronos Group, Stayner, Ontario, Canada
| | - Om Silakari
- Department of Pharmaceutical Sciences and Drug Research, Punjabi University, Patiala, Punjab, 147002, India
| |
Collapse
|
9
|
Rasheed T, Nabeel F, Raza A, Bilal M, Iqbal H. Biomimetic nanostructures/cues as drug delivery systems: a review. MATERIALS TODAY CHEMISTRY 2019; 13:147-157. [DOI: 10.1016/j.mtchem.2019.06.001] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
10
|
Ranjbar M, Khazaeli P, Pardakhty A, Tahamipour B, Amanatfard A. Preparation of polyacrylamide/polylactic acid co-assembled core/shell nanofibers as designed beads for dapsone in vitro efficient delivery. ARTIFICIAL CELLS NANOMEDICINE AND BIOTECHNOLOGY 2019; 47:917-926. [PMID: 30856353 DOI: 10.1080/21691401.2019.1577881] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
The main aim of this study is to synthesize and prepare polyacrylamide (PAM)/polylactic acid (PLA) co-assembled core/shell nanofibers in order to investigate an effective dapsone-loaded capability and dapsone-release in the aqueous medium. Dapsone (4,4-diamino-diphenyl sulfone) has high permeability and low solubility in water. In vitro release testing indicates that maximum incorporation of the dapsone nanoemulsions into core/shell nanofibrous structures were 77.71 after 400 min. Products were characterized with X-Ray Diffraction (XRD), Scanning Electron Microscopy (SEM), Transmission Electron Microscopy (TEM), Fourier Transform Infrared Spectroscopy (FT-IR), Thermo-Gravimetric Analysis (TGA), Dynamic light scattering (DLS) analysis, Contact Angle Measurement (CAM) and nitrogen adsorption [i.e. Brunauer-Emmett-Teller (BET) Surface Area Analysis] techniques. The porosimetric measurements of the nanofibers structures showed that high porosity diameter, adsorption cross-section area, pore volumes and dead volume were obtained as 0.162 nm2, 0.1005 cm3g-1 and 15.693 cm3, respectively. TGA curve of the core/shell nanofibrous structures shows thermal stability between 240 °C and 260 °C.
Collapse
Affiliation(s)
- Mehdi Ranjbar
- a Pharmaceutics Research Center, Institute of Neuropharmacology , Kerman University of Medical Sciences , Kerman , Iran
| | - Payam Khazaeli
- a Pharmaceutics Research Center, Institute of Neuropharmacology , Kerman University of Medical Sciences , Kerman , Iran.,b Faculty of Pharmacy , Kerman University of Medical Sciences , Kerman , Iran
| | - Abbas Pardakhty
- a Pharmaceutics Research Center, Institute of Neuropharmacology , Kerman University of Medical Sciences , Kerman , Iran.,b Faculty of Pharmacy , Kerman University of Medical Sciences , Kerman , Iran
| | - Batool Tahamipour
- c Young Researchers and Elite Club , Islamic Azad University , Sirjan , Iran
| | - Arezou Amanatfard
- a Pharmaceutics Research Center, Institute of Neuropharmacology , Kerman University of Medical Sciences , Kerman , Iran
| |
Collapse
|
11
|
Tadyszak K, Wychowaniec JK, Litowczenko J. Biomedical Applications of Graphene-Based Structures. NANOMATERIALS (BASEL, SWITZERLAND) 2018; 8:E944. [PMID: 30453490 PMCID: PMC6267346 DOI: 10.3390/nano8110944] [Citation(s) in RCA: 107] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/04/2018] [Revised: 10/24/2018] [Accepted: 11/12/2018] [Indexed: 12/23/2022]
Abstract
Graphene and graphene oxide (GO) structures and their reduced forms, e.g., GO paper and partially or fully reduced three-dimensional (3D) aerogels, are at the forefront of materials design for extensive biomedical applications that allow for the proliferation and differentiation/maturation of cells, drug delivery, and anticancer therapies. Various viability tests that have been conducted in vitro on human cells and in vivo on mice reveal very promising results, which make graphene-based materials suitable for real-life applications. In this review, we will give an overview of the latest studies that utilize graphene-based structures and their composites in biological applications and show how the biomimetic behavior of these materials can be a step forward in bridging the gap between nature and synthetically designed graphene-based nanomaterials.
Collapse
Affiliation(s)
- Krzysztof Tadyszak
- NanoBioMedical Centre, Adam Mickiewicz University, ul. Umultowska 85, PL61614 Poznań, Poland.
| | - Jacek K Wychowaniec
- NanoBioMedical Centre, Adam Mickiewicz University, ul. Umultowska 85, PL61614 Poznań, Poland.
- School of Chemistry, University College Dublin, Belfield, Dublin 4, Ireland.
| | - Jagoda Litowczenko
- NanoBioMedical Centre, Adam Mickiewicz University, ul. Umultowska 85, PL61614 Poznań, Poland.
- Department of Molecular Virology, Faculty of Biology, Adam Mickiewicz University, Umultowska 89, PL61614 Poznań, Poland.
| |
Collapse
|
12
|
Preparation of Reduction-Responsive Camptothecin Nanocapsules by Combining Nanoprecipitation and In Situ Polymerization for Anticancer Therapy. Pharmaceutics 2018; 10:pharmaceutics10040173. [PMID: 30282921 PMCID: PMC6320973 DOI: 10.3390/pharmaceutics10040173] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2018] [Revised: 09/23/2018] [Accepted: 09/26/2018] [Indexed: 11/28/2022] Open
Abstract
Stimuli-responsive systems for controlled drug release have been extensively explored in recent years. In this work, we developed a reduction-responsive camptothecin (CPT) nanocapsule (CPT-NC) by combining nanoprecipitation and in situ polymerization using a polymerized surface ligand and a disulfide bond-containing crosslinker. Dissolution rate studies proved that the CPT-NCs have robust drug-release profiles in the presence of glutathione (GSH) owing to the division of the disulfide bond crosslinker which triggers the collapse of the polymer layer. Furthermore, the in vitro investigations demonstrated that the CPT-NCs exhibited a high-cellular uptake efficiency and cytotoxicity for cancer cells of squamous cell carcinoma (SCC-15). Our approach thus presents an effective intracellular drug delivery strategy for anticancer therapy.
Collapse
|
13
|
Jiang D, Liu Z, Wu K, Mou L, Ovalle-Robles R, Inoue K, Zhang Y, Yuan N, Ding J, Qiu J, Huang Y, Liu Z. Fabrication of Stretchable Copper Coated Carbon Nanotube Conductor for Non-Enzymatic Glucose Detection Electrode with Low Detection Limit and Selectivity. Polymers (Basel) 2018; 10:E375. [PMID: 30966410 PMCID: PMC6415456 DOI: 10.3390/polym10040375] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2018] [Revised: 03/18/2018] [Accepted: 03/19/2018] [Indexed: 11/17/2022] Open
Abstract
The increasing demand for wearable glucose sensing has stimulated growing interest in stretchable electrodes. The development of the electrode materials having large stretchability, low detection limit, and good selectivity is the key component for constructing high performance wearable glucose sensors. In this work, we presented fabrication of stretchable conductor based on the copper coated carbon nanotube sheath-core fiber, and its application as non-enzymatic electrode for glucose detection with high stretchability, low detection limit, and selectivity. The sheath-core fiber was fabricated by coating copper coated carbon nanotube on a pre-stretched rubber fiber core followed by release of pre-stretch, which had a hierarchically buckled structure. It showed a small resistance change as low as 27% as strain increasing from 0% to 500% strain, and a low resistance of 0.4 Ω·cm-1 at strain of 500%. This electrode showed linear glucose concentration detection in the range between 0.05 mM and 5 mM and good selectivity against sucrose, lactic acid, uric acid, acrylic acid in phosphate buffer saline solution, and showed stable signal in high salt concentration. The limit of detection (LOD) was 0.05 mM, for the range of 0.05⁻5 mM, the sensitivity is 46 mA·M-1. This electrode can withstand large strain of up to 60% with negligible influence on its performance.
Collapse
Affiliation(s)
- Dawei Jiang
- School of Materials Science and Engineering, Jiangsu Collaborative Innovation Center of Photovolatic Science and Engineering, Changzhou University, Changzhou 213164, China.
| | - Zhongsheng Liu
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Functional Polymer Materials, Ministry of Education, College of Pharmacy, Nankai University, Tianjin 300071, China.
| | - Kunkun Wu
- School of Materials Science and Engineering, Jiangsu Collaborative Innovation Center of Photovolatic Science and Engineering, Changzhou University, Changzhou 213164, China.
| | - Linlin Mou
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Functional Polymer Materials, Ministry of Education, College of Pharmacy, Nankai University, Tianjin 300071, China.
| | - Raquel Ovalle-Robles
- Lintec of America, Nano-Science and Technology Center Richardson, Dallas, TX 75081, USA.
| | - Kanzan Inoue
- Lintec of America, Nano-Science and Technology Center Richardson, Dallas, TX 75081, USA.
| | - Yu Zhang
- Department of Building Engineering, Logistics University of PAPF, Tianjin 300309, China.
- College of Civil Engineering, Tongji University, Shanghai 200092, China.
| | - Ningyi Yuan
- School of Materials Science and Engineering, Jiangsu Collaborative Innovation Center of Photovolatic Science and Engineering, Changzhou University, Changzhou 213164, China.
| | - Jianning Ding
- School of Materials Science and Engineering, Jiangsu Collaborative Innovation Center of Photovolatic Science and Engineering, Changzhou University, Changzhou 213164, China.
| | - Jianhua Qiu
- School of Materials Science and Engineering, Jiangsu Collaborative Innovation Center of Photovolatic Science and Engineering, Changzhou University, Changzhou 213164, China.
| | - Yi Huang
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Functional Polymer Materials, Ministry of Education, College of Pharmacy, Nankai University, Tianjin 300071, China.
| | - Zunfeng Liu
- School of Materials Science and Engineering, Jiangsu Collaborative Innovation Center of Photovolatic Science and Engineering, Changzhou University, Changzhou 213164, China.
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Functional Polymer Materials, Ministry of Education, College of Pharmacy, Nankai University, Tianjin 300071, China.
| |
Collapse
|
14
|
Kumar K, Penugurti V, Levi G, Mastai Y, Manavathi B, Paik P. Bio-inspired synthesis of a hierarchical self-assembled zinc phosphate nanostructure in the presence of cowpea mosaic virus: in vitro cell cycle, proliferation and prospects for tissue regeneration. ACTA ACUST UNITED AC 2017; 13:015013. [PMID: 29216013 DOI: 10.1088/1748-605x/aa84e9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Self-assembly is an important auto-organization process used in designing structural biomaterials which have the potential capability to heal tissues after traumatic injury. Although various materials having the ability to heal after injury are available, there is still a substantial need to develop new improved materials. To address this issue, we have developed hierarchical three-dimensional (3D) self-assembled zinc phosphate (Zn3(PO4)2) in the presence of cowpea mosaic virus (CPMV). Zn3(PO4)2 nanoparticles are self-assembled into nanosheets with a high degree of isotropy and then self-organized into a 3D structure that can enhance surface interactions with biological entities. The self-assembled structure is formed through the auto-organization of nanoparticles of size ∼50 nm under the influence of CPMV. The cellular response of self-assembled Zn3(PO4)2 and cell-particle adhesion behavior have been investigated through in vitro studies using modeled osteoblast-like MG63 cells. Self-assembled Zn3(PO4)2 resulted in proliferation of MG63 cells of up to 310% within 7 days of incubation. A 15% higher proliferation was obtained than with commercially available hydroxyapatite (HAp). Immunofluorescent analysis of MG63 cells after co-culturing with self-assembled Zn3(PO4)2 confirmed the healthy cytoskeletal organization and dense proliferation of MG63 cells. Further, Zn3(PO4)2 exhibited ∼28% cell-cycle progression in S phase, which is higher than obtained with commercially available HAp. Overall, these results demonstrate the multiple functions of hierarchical self-assembled Zn3(PO4)2 in the regeneration of bone tissue without defects and increasing the formation of cellular networks, and suggest its use in bone tissue engineering.
Collapse
Affiliation(s)
- Koushi Kumar
- School of Engineering Sciences and Technology, University of Hyderabad, Hyderabad, India
| | | | | | | | | | | |
Collapse
|
15
|
Abstract
This review is focused on the use of membranes for the specific application of bone regeneration. The first section focuses on the relevance of membranes in this context and what are the specifications that they should possess to improve the regeneration of bone. Afterward, several techniques to engineer bone membranes by using "bulk"-like methods are discussed, where different parameters to induce bone formation are disclosed in a way to have desirable structural and functional properties. Subsequently, the production of nanostructured membranes using a bottom-up approach is discussed by highlighting the main advances in the field of bone regeneration. Primordial importance is given to the promotion of osteoconductive and osteoinductive capability during the membrane design. Whenever possible, the films prepared using different techniques are compared in terms of handability, bone guiding ability, osteoinductivity, adequate mechanical properties, or biodegradability. A last chapter contemplates membranes only composed by cells, disclosing their potential to regenerate bone.
Collapse
Affiliation(s)
- Sofia G Caridade
- Department of Chemistry CICECO, Aveiro Institute of Materials, University of Aveiro , Aveiro, Portugal
| | - João F Mano
- Department of Chemistry CICECO, Aveiro Institute of Materials, University of Aveiro , Aveiro, Portugal
| |
Collapse
|
16
|
Elbaz A, Lu J, Gao B, Zheng F, Mu Z, Zhao Y, Gu Z. Chitin-Based Anisotropic Nanostructures of Butterfly Wings for Regulating Cells Orientation. Polymers (Basel) 2017; 9:E386. [PMID: 30965691 PMCID: PMC6418998 DOI: 10.3390/polym9090386] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2017] [Revised: 08/21/2017] [Accepted: 08/21/2017] [Indexed: 11/16/2022] Open
Abstract
In recent years, multiple types of substrates have been applied for regulating cell orientation. Among them, surface topography patterns with grooves or ridges have been widely utilizing for cell culturing. However, this construction is still complicated, low cost-effective and exhibits some technological limitations with either "top-down" or "bottom-up" approaches. Here, a simple and green method was developed by utilizing butterfly wings (Morpho menelaus, Papilio ulysses telegonus and Ornithoptera croesus lydius) with natural anisotropic nanostructures to generate cell alignment. A two-step chemical treatment was proposed to achieve more hydrophilic butterfly wings preceding cell culturing. Furthermore, calcein acetoxymethyl ester (Calcein-AM) staining and Methylthiazolyldiphenyl-tetrazolium bromide (MTT) assay results demonstrated the appropriate viability of NIH-3T3 fibroblast cells on those butterfly wings. Moreover, the cells displayed a high degree of alignment in each specimen of these wings. We anticipate that those originating from natural butterfly wings will pose important applications for tissue engineering.
Collapse
Affiliation(s)
- Abdelrahman Elbaz
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China.
- National Demonstration Center for Experimental Biomedical Engineering Education, Southeast University, Nanjing 210096, China.
| | - Jie Lu
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China.
- National Demonstration Center for Experimental Biomedical Engineering Education, Southeast University, Nanjing 210096, China.
| | - Bingbing Gao
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China.
- National Demonstration Center for Experimental Biomedical Engineering Education, Southeast University, Nanjing 210096, China.
| | - Fuyin Zheng
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China.
- National Demonstration Center for Experimental Biomedical Engineering Education, Southeast University, Nanjing 210096, China.
| | - Zhongde Mu
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China.
- National Demonstration Center for Experimental Biomedical Engineering Education, Southeast University, Nanjing 210096, China.
| | - Yuanjin Zhao
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China.
- National Demonstration Center for Experimental Biomedical Engineering Education, Southeast University, Nanjing 210096, China.
| | - Zhongze Gu
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China.
- National Demonstration Center for Experimental Biomedical Engineering Education, Southeast University, Nanjing 210096, China.
- Laboratory of Environment and Biosafety Research Institute of Southeast University in Suzhou, Suzhou 215123, China.
| |
Collapse
|
17
|
Zardad AZ, Choonara YE, Du Toit LC, Kumar P, Mabrouk M, Kondiah PPD, Pillay V. A Review of Thermo- and Ultrasound-Responsive Polymeric Systems for Delivery of Chemotherapeutic Agents. Polymers (Basel) 2016; 8:E359. [PMID: 30974645 PMCID: PMC6431863 DOI: 10.3390/polym8100359] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2016] [Revised: 10/03/2016] [Accepted: 10/09/2016] [Indexed: 12/31/2022] Open
Abstract
There has been an exponential increase in research into the development of thermal- and ultrasound-activated delivery systems for cancer therapy. The majority of researchers employ polymer technology that responds to environmental stimuli some of which are physiologically induced such as temperature, pH, as well as electrical impulses, which are considered as internal stimuli. External stimuli include ultrasound, light, laser, and magnetic induction. Biodegradable polymers may possess thermoresponsive and/or ultrasound-responsive properties that can complement cancer therapy through sonoporation and hyperthermia by means of High Intensity Focused Ultrasound (HIFU). Thermoresponsive and other stimuli-responsive polymers employed in drug delivery systems can be activated via ultrasound stimulation. Polyethylene oxide/polypropylene oxide co-block or triblock polymers and polymethacrylates are thermal- and pH-responsive polymer groups, respectively but both have proven to have successful activity and contribution in chemotherapy when exposed to ultrasound stimulation. This review focused on collating thermal- and ultrasound-responsive delivery systems, and combined thermo-ultrasonic responsive systems; and elaborating on the advantages, as well as shortcomings, of these systems in cancer chemotherapy. The mechanisms of these systems are explicated through their physical alteration when exposed to the corresponding stimuli. The properties they possess and the modifications that enhance the mechanism of chemotherapeutic drug delivery from systems are discussed, and the concept of pseudo-ultrasound responsive systems is introduced.
Collapse
Affiliation(s)
- Az-Zamakhshariy Zardad
- Wits Advanced Drug Delivery Platform Research Unit, Department of Pharmacy and Pharmacology, School of Therapeutic Sciences, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, 7 York Road, Parktown 2193, South Africa.
| | - Yahya Essop Choonara
- Wits Advanced Drug Delivery Platform Research Unit, Department of Pharmacy and Pharmacology, School of Therapeutic Sciences, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, 7 York Road, Parktown 2193, South Africa.
| | - Lisa Claire Du Toit
- Wits Advanced Drug Delivery Platform Research Unit, Department of Pharmacy and Pharmacology, School of Therapeutic Sciences, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, 7 York Road, Parktown 2193, South Africa.
| | - Pradeep Kumar
- Wits Advanced Drug Delivery Platform Research Unit, Department of Pharmacy and Pharmacology, School of Therapeutic Sciences, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, 7 York Road, Parktown 2193, South Africa.
| | - Mostafa Mabrouk
- Refractories, Ceramics and Building Materials, National Research Centre, 33 El-Bohouth St. (former El-Tahrir St.), Dokki, Giza P.O. 12622, Egypt.
| | - Pierre Pavan Demarco Kondiah
- Wits Advanced Drug Delivery Platform Research Unit, Department of Pharmacy and Pharmacology, School of Therapeutic Sciences, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, 7 York Road, Parktown 2193, South Africa.
| | - Viness Pillay
- Wits Advanced Drug Delivery Platform Research Unit, Department of Pharmacy and Pharmacology, School of Therapeutic Sciences, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, 7 York Road, Parktown 2193, South Africa.
| |
Collapse
|
18
|
|
19
|
Wang J, Wang L, Zhou Z, Lai H, Xu P, Liao L, Wei J. Biodegradable Polymer Membranes Applied in Guided Bone/Tissue Regeneration: A Review. Polymers (Basel) 2016; 8:E115. [PMID: 30979206 PMCID: PMC6431950 DOI: 10.3390/polym8040115] [Citation(s) in RCA: 188] [Impact Index Per Article: 20.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2016] [Revised: 03/20/2016] [Accepted: 03/24/2016] [Indexed: 12/14/2022] Open
Abstract
Polymer membranes have been widely used in guided tissue regeneration (GTR) and guided bone regeneration (GBR). In this review, various commercially available membranes are described. Much attention is paid to the recent development of biodegradable polymers applied in GTR and GBR, and the important issues of biodegradable polymeric membranes, including their classification, latest experimental research and clinical applications, as well as their main challenges are addressed. Herein, natural polymers, synthetic polymers and their blends are all introduced. Pure polymer membranes are biodegradable and biocompatible, but they lack special properties such as antibacterial properties, osteoconductivity, and thus polymer membranes loaded with functional materials such as antibacterial agents and growth factors show many more advantages and have also been introduced in this review. Despite there still being complaints about polymer membranes, such as their low mechanical properties, uncontrollable degradation speed and some other drawbacks, these problems will undoubtedly be conquered and biodegradable polymers will have more applications in GTR and GBR.
Collapse
Affiliation(s)
- Jiaolong Wang
- Department of Prosthodontics, Affiliated Stomatological Hospital of Nanchang University, Nanchang 330006, China.
- College of Chemistry, Nanchang University, Nanchang 330031, China.
| | - Lina Wang
- College of Chemistry, Nanchang University, Nanchang 330031, China.
- College of Science, Nanchang Institute of Technology, Nanchang 330029, China.
| | - Ziyu Zhou
- Department of Prosthodontics, Affiliated Stomatological Hospital of Nanchang University, Nanchang 330006, China.
| | - Hanjian Lai
- College of Chemistry, Nanchang University, Nanchang 330031, China.
| | - Pan Xu
- College of Chemistry, Nanchang University, Nanchang 330031, China.
| | - Lan Liao
- Department of Prosthodontics, Affiliated Stomatological Hospital of Nanchang University, Nanchang 330006, China.
| | - Junchao Wei
- College of Chemistry, Nanchang University, Nanchang 330031, China.
| |
Collapse
|
20
|
Shukla SK, Shukla SK, Govender PP, Giri NG. Biodegradable polymeric nanostructures in therapeutic applications: opportunities and challenges. RSC Adv 2016. [DOI: 10.1039/c6ra15764e] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Biodegradable polymeric nanostructures (BPNs) have shown great promise in different therapeutic applications such as diagnosis, imaging, drug delivery, cosmetics, organ implants, and tissue engineering.
Collapse
Affiliation(s)
- S. K. Shukla
- Department of Polymer Science
- Bhaskaracharya College of Applied Sciences
- University of Delhi
- Delhi-110075
- India
| | - Sudheesh K. Shukla
- Department of Applied Chemistry
- University of Johannesburg
- Johannesburg
- South Africa
| | - Penny P. Govender
- Department of Applied Chemistry
- University of Johannesburg
- Johannesburg
- South Africa
| | - N. G. Giri
- Department of Chemistry
- Shivaji College
- University of Delhi
- New Delhi-110027
- India
| |
Collapse
|
21
|
Piotrowski M, Jantas D, Szczepanowicz K, Łukasiewicz S, Lasoń W, Warszyński P. Polyelectrolyte-coated nanocapsules containing undecylenic acid: Synthesis, biocompatibility and neuroprotective properties. Colloids Surf B Biointerfaces 2015; 135:8-17. [DOI: 10.1016/j.colsurfb.2015.07.029] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2015] [Revised: 05/28/2015] [Accepted: 07/13/2015] [Indexed: 02/08/2023]
|
22
|
Dai Y, Xia Y, Chen HB, Li N, Chen G, Zhang FM, Gu N. Optimization of sterilization methods for electrospun poly(ε-caprolactone) to enhance pre-osteoblast cell behaviors for guided bone regeneration. J BIOACT COMPAT POL 2015. [DOI: 10.1177/0883911515598795] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
The aim of this study was to determine the optimal sterilization procedure for biodegradable polyester-based guided bone regeneration membranes. The effects of sterilization using low-temperature hydrogen peroxide gas plasma, 75% ethanol (EtOH; two soaking times), and ultraviolet radiation on the structure and biological properties of electrospun poly(ε-caprolactone) membranes were investigated. The results demonstrated that all were effective sterilization methods. The membranes were then assessed for surface structure, wettability, and in vitro cellular responses including osteogenic differentiation by seeding with pre-osteoblasts (MC3T3-E1 cells). The cells grew well on all the sterilized membranes. The low-temperature hydrogen peroxide gas plasma–sterilized membranes, which exhibited significantly improved hydrophilicity ( p < 0.05), were better for cell osteogenic differentiation compared to the membranes sterilized by other methods. In addition, the cell behavior on the membranes sterilized by EtOH was superior to those sterilized by ultraviolet radiation. Finally, EtOH soaking time appeared to influence cell behavior. The results suggested that low-temperature hydrogen peroxide gas plasma treatment is the most promising method to sterilize electrospun poly(ε-caprolactone) membranes for guided bone regeneration.
Collapse
Affiliation(s)
- Yun Dai
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing, China
- Nanjing Stomatological Hospital, Medical School of Nanjing University, Nanjing, China
| | - Yang Xia
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing, China
- Jiangsu Key Laboratory for Biomaterials and Devices, Southeast University, Nanjing, China
| | - Han-Bang Chen
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing, China
| | - Na Li
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing, China
| | - Gang Chen
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing, China
| | - Fei-Min Zhang
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing, China
- Suzhou Key Laboratory of Biomaterials and Technologies & Collaborative Innovation Center of Suzhou Nano Science and Technology, Suzhou, China
| | - Ning Gu
- Suzhou Key Laboratory of Biomaterials and Technologies & Collaborative Innovation Center of Suzhou Nano Science and Technology, Suzhou, China
| |
Collapse
|
23
|
Zhang W, Ye J, Zhang Y, Li Q, Dong X, Jiang H, Wang X. One-step facile synthesis of fluorescent gold nanoclusters for rapid bio-imaging of cancer cells and small animals. RSC Adv 2015. [DOI: 10.1039/c5ra11321k] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Fluorescent bio-imaging has become a major topic of the modern biomedical research field.
Collapse
Affiliation(s)
- Wanjun Zhang
- State Key Laboratory of Bioelectronics (Chien-Shiung Wu Lab)
- School of Biological Science and Medical Engineering
- Southeast University
- Nanjing
- PR China
| | - Jing Ye
- State Key Laboratory of Bioelectronics (Chien-Shiung Wu Lab)
- School of Biological Science and Medical Engineering
- Southeast University
- Nanjing
- PR China
| | - Yuanyuan Zhang
- State Key Laboratory of Bioelectronics (Chien-Shiung Wu Lab)
- School of Biological Science and Medical Engineering
- Southeast University
- Nanjing
- PR China
| | - Qiwei Li
- State Key Laboratory of Bioelectronics (Chien-Shiung Wu Lab)
- School of Biological Science and Medical Engineering
- Southeast University
- Nanjing
- PR China
| | - Xiawei Dong
- State Key Laboratory of Bioelectronics (Chien-Shiung Wu Lab)
- School of Biological Science and Medical Engineering
- Southeast University
- Nanjing
- PR China
| | - Hui Jiang
- State Key Laboratory of Bioelectronics (Chien-Shiung Wu Lab)
- School of Biological Science and Medical Engineering
- Southeast University
- Nanjing
- PR China
| | - Xuemei Wang
- State Key Laboratory of Bioelectronics (Chien-Shiung Wu Lab)
- School of Biological Science and Medical Engineering
- Southeast University
- Nanjing
- PR China
| |
Collapse
|
24
|
Nakanishi K, Tomita M, Masuda Y, Kato K. Gold nanoparticle–mesoporous silica sheet composites with enhanced antibody adsorption capacity. NEW J CHEM 2015. [DOI: 10.1039/c5nj00033e] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
For the enhancement of antibody adsorption capacity, gold nanoparticle–MPS sheet composites were prepared. The dispersed gold nanoparticles were loaded onto an MPS sheetviadeposition–precipitation using HAuCl4.
Collapse
Affiliation(s)
- Kazuma Nakanishi
- Department of Chemistry for Materials
- Graduate School of Engineering
- Mie University
- Tsu
- Japan
| | - Masahiro Tomita
- Department of Chemistry for Materials
- Graduate School of Engineering
- Mie University
- Tsu
- Japan
| | - Yoshitake Masuda
- National Institute of Advanced Industrial Science and Technology
- Nagoya
- Japan
| | - Katsuya Kato
- National Institute of Advanced Industrial Science and Technology
- Nagoya
- Japan
| |
Collapse
|
25
|
Monteiro N, Martins A, Reis RL, Neves NM. Liposomes in tissue engineering and regenerative medicine. J R Soc Interface 2014; 11:20140459. [PMID: 25401172 PMCID: PMC4223894 DOI: 10.1098/rsif.2014.0459] [Citation(s) in RCA: 222] [Impact Index Per Article: 20.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2014] [Accepted: 10/02/2014] [Indexed: 01/13/2023] Open
Abstract
Liposomes are vesicular structures made of lipids that are formed in aqueous solutions. Structurally, they resemble the lipid membrane of living cells. Therefore, they have been widely investigated, since the 1960s, as models to study the cell membrane, and as carriers for protection and/or delivery of bioactive agents. They have been used in different areas of research including vaccines, imaging, applications in cosmetics and tissue engineering. Tissue engineering is defined as a strategy for promoting the regeneration of tissues for the human body. This strategy may involve the coordinated application of defined cell types with structured biomaterial scaffolds to produce living structures. To create a new tissue, based on this strategy, a controlled stimulation of cultured cells is needed, through a systematic combination of bioactive agents and mechanical signals. In this review, we highlight the potential role of liposomes as a platform for the sustained and local delivery of bioactive agents for tissue engineering and regenerative medicine approaches.
Collapse
Affiliation(s)
- Nelson Monteiro
- 3B's Research Group—Biomaterials, Biodegradables and Biomimetics Department of Polymer Engineering, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Zona Industrial da Gandra S. Cláudio do Barco, 4806-909, Caldas das Taipas, Guimarães, Portugal
- ICVS/3B's, PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Albino Martins
- 3B's Research Group—Biomaterials, Biodegradables and Biomimetics Department of Polymer Engineering, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Zona Industrial da Gandra S. Cláudio do Barco, 4806-909, Caldas das Taipas, Guimarães, Portugal
- ICVS/3B's, PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Rui L. Reis
- 3B's Research Group—Biomaterials, Biodegradables and Biomimetics Department of Polymer Engineering, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Zona Industrial da Gandra S. Cláudio do Barco, 4806-909, Caldas das Taipas, Guimarães, Portugal
- ICVS/3B's, PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Nuno M. Neves
- 3B's Research Group—Biomaterials, Biodegradables and Biomimetics Department of Polymer Engineering, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Zona Industrial da Gandra S. Cláudio do Barco, 4806-909, Caldas das Taipas, Guimarães, Portugal
- ICVS/3B's, PT Government Associate Laboratory, Braga/Guimarães, Portugal
| |
Collapse
|
26
|
Carrow JK, Gaharwar AK. Bioinspired Polymeric Nanocomposites for Regenerative Medicine. MACROMOL CHEM PHYS 2014. [DOI: 10.1002/macp.201400427] [Citation(s) in RCA: 102] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Affiliation(s)
- James K. Carrow
- Department of Biomedical Engineering; Texas A&M University; College Station TX 77843 USA
| | - Akhilesh K. Gaharwar
- Department of Biomedical Engineering; Texas A&M University; College Station TX 77843 USA
- Department of Materials Science and Engineering; Texas A&M University; College Station TX 77843 USA
| |
Collapse
|
27
|
Park SM, Cha JM, Nam J, Kim MS, Park SJ, Park ES, Lee H, Kim HR. Formulation optimization and in vivo proof-of-concept study of thermosensitive liposomes balanced by phospholipid, elastin-like polypeptide, and cholesterol. PLoS One 2014; 9:e103116. [PMID: 25068721 PMCID: PMC4113353 DOI: 10.1371/journal.pone.0103116] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2014] [Accepted: 06/27/2014] [Indexed: 11/25/2022] Open
Abstract
One application of nanotechnology in medicine that is presently being developed involves a drug delivery system (DDS) employing nanoparticles to deliver drugs to diseased sites in the body avoiding damage of healthy tissue. Recently, the mild hyperthermia-triggered drug delivery combined with anticancer agent-loaded thermosensitive liposomes was widely investigated. In this study, thermosensitive liposomes (TSLs), composed of 1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC), 1,2-distearoyl-sn-glycero-3-phosphoethanolamine-N-[methoxy(polyethyleneglycol)-2000] (DSPE-PEG), cholesterol, and a fatty acid conjugated elastin-like polypeptide (ELP), were developed and optimized for triggered drug release, controlled by external heat stimuli. We introduced modified ELP, tunable for various biomedical purposes, to our thermosensitive liposome (e-TSL) to convey a high thermoresponsive property. We modulated thermosensitivity and stability by varying the ratios of e-TSL components, such as phospholipid, ELP, and cholesterol. Experimental data obtained in this study corresponded to results from a simulation study that demonstrated, through the calculation of the lateral diffusion coefficient, increased permeation of the lipid bilayer with higher ELP concentrations, and decreased permeation in the presence of cholesterol. Finally, we identified effective drug accumulation in tumor tissues and antitumor efficacy with our optimized e-TSL, while adjusting lag-times for systemic accumulation.
Collapse
Affiliation(s)
- Sun Min Park
- Drug Delivery System Group, Bio Research Center, Samsung Advanced Institute of Technology (SAIT), Yongin, Gyeonggi-do, South Korea
| | - Jae Min Cha
- Drug Delivery System Group, Bio Research Center, Samsung Advanced Institute of Technology (SAIT), Yongin, Gyeonggi-do, South Korea
| | - Jungyong Nam
- Drug Delivery System Group, Bio Research Center, Samsung Advanced Institute of Technology (SAIT), Yongin, Gyeonggi-do, South Korea
| | - Min Sang Kim
- Drug Delivery System Group, Bio Research Center, Samsung Advanced Institute of Technology (SAIT), Yongin, Gyeonggi-do, South Korea
| | - Sang-Jun Park
- Drug Delivery System Group, Bio Research Center, Samsung Advanced Institute of Technology (SAIT), Yongin, Gyeonggi-do, South Korea
| | - Eun Sung Park
- Drug Delivery System Group, Bio Research Center, Samsung Advanced Institute of Technology (SAIT), Yongin, Gyeonggi-do, South Korea
| | - Hwankyu Lee
- Department of Chemical Engineering, Dankook University, Yongin, Gyeonggi-do, South Korea
| | - Hyun Ryoung Kim
- Drug Delivery System Group, Bio Research Center, Samsung Advanced Institute of Technology (SAIT), Yongin, Gyeonggi-do, South Korea
- * E-mail:
| |
Collapse
|
28
|
Chatterjee K, Sarkar S, Jagajjanani Rao K, Paria S. Core/shell nanoparticles in biomedical applications. Adv Colloid Interface Sci 2014; 209:8-39. [PMID: 24491963 DOI: 10.1016/j.cis.2013.12.008] [Citation(s) in RCA: 244] [Impact Index Per Article: 22.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2013] [Revised: 12/19/2013] [Accepted: 12/19/2013] [Indexed: 12/21/2022]
Abstract
Nanoparticles have several exciting applications in different areas and biomedial field is not an exception of that because of their exciting performance in bioimaging, targeted drug and gene delivery, sensors, and so on. It has been found that among several classes of nanoparticles core/shell is most promising for different biomedical applications because of several advantages over simple nanoparticles. This review highlights the development of core/shell nanoparticles-based biomedical research during approximately past two decades. Applications of different types of core/shell nanoparticles are classified in terms of five major aspects such as bioimaging, biosensor, targeted drug delivery, DNA/RNA interaction, and targeted gene delivery.
Collapse
|
29
|
Runowski M, Dąbrowska K, Grzyb T, Miernikiewicz P, Lis S. Core/shell-type nanorods of Tb 3+-doped LaPO 4, modified with amine groups, revealing reduced cytotoxicity. JOURNAL OF NANOPARTICLE RESEARCH : AN INTERDISCIPLINARY FORUM FOR NANOSCALE SCIENCE AND TECHNOLOGY 2013; 15:2068. [PMID: 24307860 PMCID: PMC3840287 DOI: 10.1007/s11051-013-2068-5] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2013] [Accepted: 10/11/2013] [Indexed: 05/27/2023]
Abstract
ABSTRACT A simple co-precipitation reaction between Ln3+ cations (Ln = lanthanide) and phosphate ions in the presence of polyethylene glycol (PEG), including post-treatment under hydrothermal conditions, leads to the formation of Tb3+-doped LaPO4 crystalline nanorods. The nanoparticles obtained can be successfully coated with amorphous and porous silica, forming core/shell-type nanorods. Both products reveal intensive green luminescence under UV lamp irradiation. The surface of the core/shell-type product can also be modified with -NH2 groups via silylation procedure, using 3-aminopropyltriethoxysilane as a modifier. Powder X-ray diffraction, transmission electron microscopy, and scanning electron microscopy confirm the desired structure and needle-like shape of the products synthesized. Fourier transform infrared spectroscopy and specific surface area measurements by Brunauer-Emmett-Teller method reveal a successful surface modification with amine groups of the core/shell-type nanoparticles prepared. The nanomaterials synthesized exhibit green luminescence characteristic of Tb3+ ions, as solid powders and aqueous colloids, examined by spectrofluorometry. The in vitro cytotoxicity studies reveal different degree toxicity of the products. LaPO4:Tb3+@SiO2@NH2 exhibits the smallest toxicity against B16F0 mouse melanoma cancer cells and human skin microvascular endothelial cell lines, in contrast to the most toxic LaPO4:Tb3+@SiO2.
Collapse
Affiliation(s)
- Marcin Runowski
- Department of Rare Earths, Faculty of Chemistry, Adam Mickiewicz University, Grunwaldzka 6, 60-780 Poznań, Poland
| | - Krystyna Dąbrowska
- Bacteriophage Laboratory, Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Rudolfa Weigla 12, 53-114 Wrocław, Poland
| | - Tomasz Grzyb
- Department of Rare Earths, Faculty of Chemistry, Adam Mickiewicz University, Grunwaldzka 6, 60-780 Poznań, Poland
| | - Paulina Miernikiewicz
- Bacteriophage Laboratory, Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Rudolfa Weigla 12, 53-114 Wrocław, Poland
| | - Stefan Lis
- Department of Rare Earths, Faculty of Chemistry, Adam Mickiewicz University, Grunwaldzka 6, 60-780 Poznań, Poland
| |
Collapse
|
30
|
Murou M, Kitano H, Fujita M, Maeda M, Saruwatari Y. Self-association of zwitterionic polymer–lipid conjugates in water as examined by scattering measurements. J Colloid Interface Sci 2013; 390:47-53. [DOI: 10.1016/j.jcis.2012.09.035] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2012] [Revised: 09/14/2012] [Accepted: 09/16/2012] [Indexed: 11/25/2022]
|
31
|
Zhang T, Ma Y, Qi L. Bioinspired colloidal materials with special optical, mechanical, and cell-mimetic functions. J Mater Chem B 2013; 1:251-264. [DOI: 10.1039/c2tb00175f] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
32
|
Santo VE, Gomes ME, Mano JF, Reis RL. From nano- to macro-scale: nanotechnology approaches for spatially controlled delivery of bioactive factors for bone and cartilage engineering. Nanomedicine (Lond) 2012; 7:1045-66. [DOI: 10.2217/nnm.12.78] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The field of biomaterials has advanced towards the molecular and nanoscale design of bioactive systems for tissue engineering, regenerative medicine and drug delivery. Spatial cues are displayed in the 3D extracellular matrix and can include signaling gradients, such as those observed during chemotaxis. Architectures range from the nanometer to the centimeter length scales as exemplified by extracellular matrix fibers, cells and macroscopic shapes. The main focus of this review is the application of a biomimetic approach by the combination of architectural cues, obtained through the application of micro- and nanofabrication techniques, with the ability to sequester and release growth factors and other bioactive agents in a spatiotemporal controlled manner for bone and cartilage engineering.
Collapse
Affiliation(s)
- Vítor E Santo
- 3B’s Research Group - Biomaterials, Biodegradables & Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, 4806-909 Taipas, Guimarães, Portugal
| | - Manuela E Gomes
- 3B’s Research Group - Biomaterials, Biodegradables & Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, 4806-909 Taipas, Guimarães, Portugal
| | - João F Mano
- 3B’s Research Group - Biomaterials, Biodegradables & Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, 4806-909 Taipas, Guimarães, Portugal
| | - Rui L Reis
- 3B’s Research Group - Biomaterials, Biodegradables & Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, 4806-909 Taipas, Guimarães, Portugal
| |
Collapse
|
33
|
|
34
|
Gentile P, Chiono V, Tonda-Turo C, Ferreira AM, Ciardelli G. Polymeric membranes for guided bone regeneration. Biotechnol J 2011; 6:1187-97. [DOI: 10.1002/biot.201100294] [Citation(s) in RCA: 203] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2011] [Revised: 06/15/2011] [Accepted: 08/01/2011] [Indexed: 11/10/2022]
|
35
|
A Novel Self-Assembled Liposome-Based Polymeric Hydrogel for Cranio-Maxillofacial Applications: Preliminary Findings. Polymers (Basel) 2011. [DOI: 10.3390/polym3020967] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
|