1
|
Scholten PBV, Figueirêdo MB. Back to the Future with Biorefineries: Bottom‐Up and Top‐Down Approaches toward Polymers and Monomers. MACROMOL CHEM PHYS 2022. [DOI: 10.1002/macp.202200017] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Philip B. V. Scholten
- Bloom Biorenewables Route de l'Ancienne Papeterie 106 Case postal 146 Marly 1723 Switzerland
| | - Monique B. Figueirêdo
- Bloom Biorenewables Route de l'Ancienne Papeterie 106 Case postal 146 Marly 1723 Switzerland
| |
Collapse
|
2
|
Bhattacharya K, Kalita U, Singha NK. Tailor-made Glycopolymers via Reversible Deactivation Radical Polymerization: Design, Properties and Applications. Polym Chem 2022. [DOI: 10.1039/d1py01640g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Investigating the underlying mechanism of biological interactions using glycopolymer is becoming increasingly important owing to their unique recognition properties. The multivalent interactions between lectin and glycopolymer are significantly influenced by...
Collapse
|
3
|
Chen J, Bao C, Han R, Li GZ, Zheng Z, Wang Y, Zhang Q. From poly(vinylimidazole) to cationic glycopolymers and glyco-particles: effective antibacterial agents with enhanced biocompatibility and selectivity. Polym Chem 2022. [DOI: 10.1039/d1py01711j] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Cationic glycopolymers have attracted great attention as a new type of antibacterial material.
Collapse
Affiliation(s)
- Jing Chen
- Institute of Polymer Ecomaterials, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, P. R. China
| | - Chunyang Bao
- Institute of Polymer Ecomaterials, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, P. R. China
| | - Rui Han
- School of Materials Science and Engineering, Xihua University, Chengdu 610039, China
| | - Guang-Zhao Li
- School of Materials Science and Engineering, Xihua University, Chengdu 610039, China
| | - Zhaoquan Zheng
- Institute of Polymer Ecomaterials, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, P. R. China
| | - Yan Wang
- Institute of Polymer Ecomaterials, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, P. R. China
| | - Qiang Zhang
- Institute of Polymer Ecomaterials, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, P. R. China
| |
Collapse
|
4
|
Clauss ZS, Wardzala CL, Schlirf AE, Wright NS, Saini SS, Onoa B, Bustamante C, Kramer JR. Tunable, biodegradable grafting-from glycopolypeptide bottlebrush polymers. Nat Commun 2021; 12:6472. [PMID: 34753949 PMCID: PMC8578664 DOI: 10.1038/s41467-021-26808-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2019] [Accepted: 10/01/2021] [Indexed: 11/09/2022] Open
Abstract
The cellular glycocalyx and extracellular matrix are rich in glycoproteins and proteoglycans that play essential physical and biochemical roles in all life. Synthetic mimics of these natural bottlebrush polymers have wide applications in biomedicine, yet preparation has been challenged by their high grafting and glycosylation densities. Using one-pot dual-catalysis polymerization of glycan-bearing α-amino acid N-carboxyanhydrides, we report grafting-from glycopolypeptide brushes. The materials are chemically and conformationally tunable where backbone and sidechain lengths were precisely altered, grafting density modulated up to 100%, and glycan density and identity tuned by monomer feed ratios. The glycobrushes are composed entirely of sugars and amino acids, are non-toxic to cells, and are degradable by natural proteases. Inspired by native lipid-anchored proteoglycans, cholesterol-modified glycobrushes were displayed on the surface of live human cells. Our materials overcome long-standing challenges in glycobrush polymer synthesis and offer new opportunities to examine glycan presentation and multivalency from chemically defined scaffolds. Synthetic mimics of glycoproteins and proteoglycans have wide applications in biomedicine, yet preparation has been challenged by their high grafting and glycosylation densities. Here the authors show one-pot dual-catalysis polymerization of glycan-bearing α-amino acid N-carboxyanhydrides to form glycopolypeptide brushes.
Collapse
Affiliation(s)
- Zachary S Clauss
- Department of Biomedical Engineering, University of Utah, Salt Lake City, Utah, 84102, USA
| | - Casia L Wardzala
- Department of Biomedical Engineering, University of Utah, Salt Lake City, Utah, 84102, USA
| | - Austin E Schlirf
- Department of Biomedical Engineering, University of Utah, Salt Lake City, Utah, 84102, USA
| | - Nathaniel S Wright
- Department of Biomedical Engineering, University of Utah, Salt Lake City, Utah, 84102, USA
| | - Simranpreet S Saini
- Department of Biomedical Engineering, University of Utah, Salt Lake City, Utah, 84102, USA
| | - Bibiana Onoa
- Howard Hughes Medical Institute University of California Berkeley, Berkeley, CA, 94720, USA
| | - Carlos Bustamante
- Howard Hughes Medical Institute University of California Berkeley, Berkeley, CA, 94720, USA.,Department of Chemistry, University of California Berkeley, Berkeley, CA, 94720, USA.,Institute for Quantitative Biosciences, University of California, Berkeley, CA, 94720, USA.,Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA.,Department of Physics, University of California Berkeley, Berkeley, CA, 94720, USA.,Department of Molecular and Cell Biology, University of California Berkeley, Berkeley, CA, 94720, USA
| | - Jessica R Kramer
- Department of Biomedical Engineering, University of Utah, Salt Lake City, Utah, 84102, USA. .,Department of Pharmaceutics and Pharmaceutical Chemistry, University of Utah, Salt Lake City, Utah, 84102, USA.
| |
Collapse
|
5
|
Gomez AM, Lopez JC. Bringing Color to Sugars: The Chemical Assembly of Carbohydrates to BODIPY Dyes. CHEM REC 2021; 21:3112-3130. [PMID: 34472184 DOI: 10.1002/tcr.202100190] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Revised: 08/10/2021] [Indexed: 12/29/2022]
Abstract
The combination of carbohydrates with BODIPY fluorophores gives rise to a family of BODIPY-carbohydrate hybrids or glyco-BODIPYs, which mutually benefit from the encounter. Thus, from the carbohydrates standpoint, glyco-BODIPYs can be regarded as fluorescent glycoconjugate derivatives with application in imaging techniques, whereas from the fluorophore view the BODIPY-carbohydrate hybrids benefit from the biocompatibility, water-solubility, and reduced toxicity, among others, brought about by the sugar moiety. In this Account we have intended to present the collection of available methods for the synthesis of BODIPY-carbohydrate hybrids, with a focus on the chemical transformations on the BODIPY core.
Collapse
Affiliation(s)
- Ana M Gomez
- Bioorganic Chemistry Department, Instituto Quimica Organica General (IQOG-CSIC), Juan de la Cierva 3, 28006, Madrid, Spain
| | - J Cristobal Lopez
- Bioorganic Chemistry Department, Instituto Quimica Organica General (IQOG-CSIC), Juan de la Cierva 3, 28006, Madrid, Spain
| |
Collapse
|
6
|
Rational Design of Biomolecules/Polymer Hybrids by Reversible Deactivation Radical Polymerization (RDRP) for Biomedical Applications. CHINESE JOURNAL OF POLYMER SCIENCE 2021. [DOI: 10.1007/s10118-021-2543-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
7
|
Qin Q, Lang S, Huang X. Synthetic linear glycopolymers and their biological applications. J Carbohydr Chem 2021; 40:1-44. [PMID: 35308080 PMCID: PMC8932951 DOI: 10.1080/07328303.2021.1928156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Accepted: 05/06/2021] [Indexed: 10/21/2022]
Abstract
As typical affinities of carbohydrates with their receptors are modest, polymers of carbohydrates (glycopolymers) are exciting tools to probe the multifaceted biological activities of glycans. In this review, the linear glycopolymers and the multivalency effects are first introduced. This is followed by discussions of methods to synthesize these polymers. Subsequently, the interactions of glycopolymers with plant lectins and viral/bacterial carbohydrate binding proteins are discussed. In addition, applications of the glycopolymers in facilitating glycan microarray studies, mimicking cell surface glycans, modulation of the immune system, cryoprotection of protein, and electron-beam lithography are presented to stimulate further development of this fascinating technology.
Collapse
Affiliation(s)
- Qian Qin
- Department of Chemistry, Michigan StateUniversity, East Lansing, MI, USA
| | - Shuyao Lang
- Department of Chemistry, Michigan StateUniversity, East Lansing, MI, USA
- Institute for Quantitative Health Science and Engineering, Michigan State University, East Lansing, MI, USA
| | - Xuefei Huang
- Department of Chemistry, Michigan StateUniversity, East Lansing, MI, USA
- Institute for Quantitative Health Science and Engineering, Michigan State University, East Lansing, MI, USA
- Department of Biomedical Engineering, Michigan State University, East Lansing, MI, USA
| |
Collapse
|
8
|
Amphiphilic copolymers in biomedical applications: Synthesis routes and property control. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2021; 123:111952. [PMID: 33812580 DOI: 10.1016/j.msec.2021.111952] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Revised: 01/29/2021] [Accepted: 02/02/2021] [Indexed: 12/16/2022]
Abstract
The request of new materials, matching strict requirements to be applied in precision and patient-specific medicine, is pushing for the synthesis of more and more complex block copolymers. Amphiphilic block copolymers are emerging in the biomedical field due to their great potential in terms of stimuli responsiveness, drug loading capabilities and reversible thermal gelation. Amphiphilicity guarantees self-assembly and thermoreversibility, while grafting polymers offers the possibility of combining blocks with various properties in one single material. These features make amphiphilic block copolymers excellent candidates for fine tuning drug delivery, gene therapy and for designing injectable hydrogels for tissue engineering. This manuscript revises the main techniques developed in the last decade for the synthesis of amphiphilic block copolymers for biomedical application. Strategies for fine tuning the properties of these novel materials during synthesis are discussed. A deep knowledge of the synthesis techniques and their effect on the performance and the biocompatibility of these polymers is the first step to move them from the lab to the bench. Current results predict a bright future for these materials in paving the way towards a smarter, less invasive, while more effective, medicine.
Collapse
|
9
|
Hutchins-Crawford HJ, Ninjiaranai P, Derry MJ, Molloy R, Tighe BJ, Topham PD. Bromoform-assisted aqueous free radical polymerisation: a simple, inexpensive route for the preparation of block copolymers. Polym Chem 2021. [DOI: 10.1039/d1py00672j] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Synthesis of ‘uncontrolled’ commercially-relevant block copolymers by metal- and sulfur-free, bromoform-assisted polymerisation.
Collapse
Affiliation(s)
| | - Padarat Ninjiaranai
- Aston Institute of Materials Research
- Aston University
- Birmingham
- UK
- Department of Chemistry
| | - Matthew J. Derry
- Aston Institute of Materials Research
- Aston University
- Birmingham
- UK
| | - Robert Molloy
- Materials Science Research Center
- Faculty of Science
- Chiang Mai University
- Chiang Mai 50200
- Thailand
| | - Brian J. Tighe
- Aston Institute of Materials Research
- Aston University
- Birmingham
- UK
| | - Paul D. Topham
- Aston Institute of Materials Research
- Aston University
- Birmingham
- UK
| |
Collapse
|
10
|
Zheng L, Luo Y, Chen K, Zhang Z, Chen G. Highly Branched Gradient Glycopolymer: Enzyme-Assisted Synthesis and Enhanced Bacteria-Binding Ability. Biomacromolecules 2020; 21:5233-5240. [DOI: 10.1021/acs.biomac.0c01311] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Lifang Zheng
- Center for Soft Condensed Matter Physics and Interdisciplinary Research, School of Physical Science and Technology, Soochow University, Suzhou 215006, P. R. China
| | - Yan Luo
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, P. R. China
| | - Kui Chen
- Center for Soft Condensed Matter Physics and Interdisciplinary Research, School of Physical Science and Technology, Soochow University, Suzhou 215006, P. R. China
| | - Zexin Zhang
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, P. R. China
| | - Gaojian Chen
- Center for Soft Condensed Matter Physics and Interdisciplinary Research, School of Physical Science and Technology, Soochow University, Suzhou 215006, P. R. China
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, P. R. China
| |
Collapse
|
11
|
Scholten PBV, Moatsou D, Detrembleur C, Meier MAR. Progress Toward Sustainable Reversible Deactivation Radical Polymerization. Macromol Rapid Commun 2020; 41:e2000266. [PMID: 32686239 DOI: 10.1002/marc.202000266] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Revised: 06/23/2020] [Indexed: 12/14/2022]
Abstract
The recent focus of media and governments on renewability, green chemistry, and circular economy has led to a surge in the synthesis of renewable monomers and polymers. In this review, focussing on renewable monomers for reversible deactivation radical polymerizations (RDRP), it is highlighted that for the majority of the monomers and polymers reported, the claim to renewability is not always accurate. By closely examining the sustainability of synthetic routes and the renewability of starting materials, fully renewable monomers are identified and discussed in terms of sustainability, polymerization behavior, and properties obtained after polymerization. The holistic discussion considering the overall preparation process of polymers, that is, monomer syntheses, origin of starting materials, solvents used, the type of RDRP technique utilized, and the purification method, allows to highlight certain topics which need to be addressed in order to progress toward not only (partially) renewable, but sustainable monomers and polymers using RDRPs.
Collapse
Affiliation(s)
- Philip B V Scholten
- Center for Education and Research on Macromolecules, CESAM Research Unit, Department of Chemistry, University of Liege, Sart-Tilman B6a, Liege, 4000, Belgium.,Karlsruhe Institute of Technology, Institute of Organic Chemistry, Materialwissenschaftliches Zentrum MZE, Straße am Forum 7, Karlsruhe, 76131, Germany
| | - Dafni Moatsou
- Karlsruhe Institute of Technology, Institute of Organic Chemistry, Materialwissenschaftliches Zentrum MZE, Straße am Forum 7, Karlsruhe, 76131, Germany
| | - Christophe Detrembleur
- Center for Education and Research on Macromolecules, CESAM Research Unit, Department of Chemistry, University of Liege, Sart-Tilman B6a, Liege, 4000, Belgium
| | - Michael A R Meier
- Karlsruhe Institute of Technology, Institute of Organic Chemistry, Materialwissenschaftliches Zentrum MZE, Straße am Forum 7, Karlsruhe, 76131, Germany.,Laboratory of Applied Chemistry, Institute of Toxicology and Genetics, Karlsruhe Institute of Technology, Hermann-von-Helmholtz-Platz 1, Eggenstein-Leopoldshafen, 76344, Germany
| |
Collapse
|
12
|
Ribeiro JPM, Mendonça PV, Coelho JFJ, Matyjaszewski K, Serra AC. Glycopolymer Brushes by Reversible Deactivation Radical Polymerization: Preparation, Applications, and Future Challenges. Polymers (Basel) 2020; 12:E1268. [PMID: 32492977 PMCID: PMC7362234 DOI: 10.3390/polym12061268] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 05/26/2020] [Accepted: 05/29/2020] [Indexed: 12/27/2022] Open
Abstract
The cellular surface contains specific proteins, also known as lectins, that are carbohydrates receptors involved in different biological events, such as cell-cell adhesion, cell recognition and cell differentiation. The synthesis of well-defined polymers containing carbohydrate units, known as glycopolymers, by reversible deactivation radical polymerization (RDRP) methods allows the development of tailor-made materials with high affinity for lectins because of their multivalent interaction. These polymers are promising candidates for the biomedical field, namely as novel diagnostic disease markers, biosensors, or carriers for tumor-targeted therapy. Although linear glycopolymers are extensively studied for lectin recognition, branched glycopolymeric structures, such as polymer brushes can establish stronger interactions with lectins. This specific glycopolymer topology can be synthesized in a bottlebrush form or grafted to/from surfaces by using RDRP methods, allowing a precise control over molecular weight, grafting density, and brush thickness. Here, the preparation and application of glycopolymer brushes is critically discussed and future research directions on this topic are suggested.
Collapse
Affiliation(s)
- Jessica P. M. Ribeiro
- Department of Chemical Engineering, Centre for Mechanical Engineering, Materials and Processes, University of Coimbra, Rua Sílvio Lima-Polo II, 3030-790 Coimbra, Portugal; (J.P.M.R.); (J.F.J.C.)
| | - Patrícia V. Mendonça
- Department of Chemical Engineering, Centre for Mechanical Engineering, Materials and Processes, University of Coimbra, Rua Sílvio Lima-Polo II, 3030-790 Coimbra, Portugal; (J.P.M.R.); (J.F.J.C.)
| | - Jorge F. J. Coelho
- Department of Chemical Engineering, Centre for Mechanical Engineering, Materials and Processes, University of Coimbra, Rua Sílvio Lima-Polo II, 3030-790 Coimbra, Portugal; (J.P.M.R.); (J.F.J.C.)
| | - Krzysztof Matyjaszewski
- Department of Materials Science & Engineering, Carnegie Mellon University, 5000 Forbes Avenue, Pittsburgh, PA 15213, USA;
| | - Arménio C. Serra
- Department of Chemical Engineering, Centre for Mechanical Engineering, Materials and Processes, University of Coimbra, Rua Sílvio Lima-Polo II, 3030-790 Coimbra, Portugal; (J.P.M.R.); (J.F.J.C.)
| |
Collapse
|
13
|
Thomas B, Yan KC, Hu XL, Donnier-Maréchal M, Chen GR, He XP, Vidal S. Fluorescent glycoconjugates and their applications. Chem Soc Rev 2020; 49:593-641. [DOI: 10.1039/c8cs00118a] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Fluorescent glycoconjugates are discussed for their applications in biology in vitro, in cell assays and in animal models. Advantages and limitations are presented for each design using a fluorescent core conjugated with glycosides, or vice versa.
Collapse
Affiliation(s)
- Baptiste Thomas
- Institut de Chimie et Biochimie Moléculaires et Supramoléculaires
- Laboratoire de Chimie Organique 2-Glycochimie
- UMR 5246
- CNRS and Université Claude Bernard Lyon 1
- Université de Lyon
| | - Kai-Cheng Yan
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering
- Feringa Nobel Prize Scientist Joint Research Center
- School of Chemistry and Molecular Engineering
- East China University of Science and Technology
- Shanghai 200237
| | - Xi-Le Hu
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering
- Feringa Nobel Prize Scientist Joint Research Center
- School of Chemistry and Molecular Engineering
- East China University of Science and Technology
- Shanghai 200237
| | - Marion Donnier-Maréchal
- Institut de Chimie et Biochimie Moléculaires et Supramoléculaires
- Laboratoire de Chimie Organique 2-Glycochimie
- UMR 5246
- CNRS and Université Claude Bernard Lyon 1
- Université de Lyon
| | - Guo-Rong Chen
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering
- Feringa Nobel Prize Scientist Joint Research Center
- School of Chemistry and Molecular Engineering
- East China University of Science and Technology
- Shanghai 200237
| | - Xiao-Peng He
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering
- Feringa Nobel Prize Scientist Joint Research Center
- School of Chemistry and Molecular Engineering
- East China University of Science and Technology
- Shanghai 200237
| | - Sébastien Vidal
- Institut de Chimie et Biochimie Moléculaires et Supramoléculaires
- Laboratoire de Chimie Organique 2-Glycochimie
- UMR 5246
- CNRS and Université Claude Bernard Lyon 1
- Université de Lyon
| |
Collapse
|
14
|
Mosaiab T, Farr DC, Kiefel MJ, Houston TA. Carbohydrate-based nanocarriers and their application to target macrophages and deliver antimicrobial agents. Adv Drug Deliv Rev 2019; 151-152:94-129. [PMID: 31513827 DOI: 10.1016/j.addr.2019.09.002] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2019] [Revised: 09/02/2019] [Accepted: 09/05/2019] [Indexed: 12/18/2022]
Abstract
Many deadly infections are produced by microorganisms capable of sustained survival in macrophages. This reduces exposure to chemadrotherapy, prevents immune detection, and is akin to criminals hiding in police stations. Therefore, the use of glyco-nanoparticles (GNPs) as carriers of therapeutic agents is a burgeoning field. Such an approach can enhance the penetration of drugs into macrophages with specific carbohydrate targeting molecules on the nanocarrier to interact with macrophage lectins. Carbohydrates are natural biological molecules and the key constituents in a large variety of biological events such as cellular communication, infection, inflammation, enzyme trafficking, cellular migration, cancer metastasis and immune functions. The prominent characteristics of carbohydrates including biodegradability, biocompatibility, hydrophilicity and the highly specific interaction of targeting cell-surface receptors support their potential application to drug delivery systems (DDS). This review presents the 21st century development of carbohydrate-based nanocarriers for drug targeting of therapeutic agents for diseases localized in macrophages. The significance of natural carbohydrate-derived nanoparticles (GNPs) as anti-microbial drug carriers is highlighted in several areas of treatment including tuberculosis, salmonellosis, leishmaniasis, candidiasis, and HIV/AIDS.
Collapse
Affiliation(s)
- Tamim Mosaiab
- Institute for Glycomics, Griffith University, Gold Coast Campus, QLD 4222, Australia
| | - Dylan C Farr
- Institute for Glycomics, Griffith University, Gold Coast Campus, QLD 4222, Australia
| | - Milton J Kiefel
- Institute for Glycomics, Griffith University, Gold Coast Campus, QLD 4222, Australia.
| | - Todd A Houston
- Institute for Glycomics, Griffith University, Gold Coast Campus, QLD 4222, Australia.
| |
Collapse
|
15
|
Hayama R, Koyama T, Matsushita T, Hatano K, Matsuoka K. Preparation of Functional Monomers as Precursors of Bioprobes from a Common Styrene Derivative and Polymer Synthesis. Molecules 2018; 23:E2875. [PMID: 30400356 PMCID: PMC6278513 DOI: 10.3390/molecules23112875] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2018] [Revised: 10/25/2018] [Accepted: 11/02/2018] [Indexed: 11/17/2022] Open
Abstract
CM-Str (4-(Chloromethyl)styrene) was used as a useful starting material for the construction of a series of functional monomers. Substitution of the chlorine to the corresponding azide was performed, and the reduction of the azide proceeded smoothly to afford an aminostyrene, which was used as a common precursor for the preparation of functional monomers. Condensation of the amine with a fluorophore, biotin and carbohydrate was accomplished. Among the monomers, a carbohydrate monomer was polymerized with or without acrylamide as a model polymerization to yield the corresponding water-soluble glycopolymers, and biological evaluations of the glycopolymers for a lectin, and wheat germ agglutinin (WGA), were carried out on the basis of the fluorescence change of tryptophan in the WGA.
Collapse
Affiliation(s)
- Riho Hayama
- Division of Material Science, Graduate School of Science and Engineering, Saitama University, Sakura, Saitama 338-8570, Japan.
| | - Tetsuo Koyama
- Division of Material Science, Graduate School of Science and Engineering, Saitama University, Sakura, Saitama 338-8570, Japan.
| | - Takahiko Matsushita
- Division of Material Science, Graduate School of Science and Engineering, Saitama University, Sakura, Saitama 338-8570, Japan.
- Medical Innovation Research Unit (MiU), Advanced Institute of Innovative Technology (AIIT), Saitama University, Sakura, Saitama 338-8570, Japan.
| | - Ken Hatano
- Division of Material Science, Graduate School of Science and Engineering, Saitama University, Sakura, Saitama 338-8570, Japan.
- Medical Innovation Research Unit (MiU), Advanced Institute of Innovative Technology (AIIT), Saitama University, Sakura, Saitama 338-8570, Japan.
| | - Koji Matsuoka
- Division of Material Science, Graduate School of Science and Engineering, Saitama University, Sakura, Saitama 338-8570, Japan.
- Medical Innovation Research Unit (MiU), Advanced Institute of Innovative Technology (AIIT), Saitama University, Sakura, Saitama 338-8570, Japan.
| |
Collapse
|
16
|
The preparation and aggregation behaviors of comb-like thermally-responsive fluoropolymer. JOURNAL OF POLYMER RESEARCH 2018. [DOI: 10.1007/s10965-018-1559-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
17
|
Development of new nanostructure based on poly(aspartic acid)-g-amylose for targeted curcumin delivery using helical inclusion complex. J Mol Liq 2018. [DOI: 10.1016/j.molliq.2018.02.116] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
18
|
Shaghaleh H, Xu X, Wang S. Current progress in production of biopolymeric materials based on cellulose, cellulose nanofibers, and cellulose derivatives. RSC Adv 2018; 8:825-842. [PMID: 35538958 PMCID: PMC9076966 DOI: 10.1039/c7ra11157f] [Citation(s) in RCA: 151] [Impact Index Per Article: 25.2] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2017] [Accepted: 12/19/2017] [Indexed: 12/22/2022] Open
Abstract
Cellulose has attracted considerable attention as the strongest potential candidate feedstock for bio-based polymeric material production. During the past decade, significant progress in the production of biopolymers based on different cellulosic forms has been achieved. This review highlights the most recent advances and developments in the three main routes for the production of cellulose-based biopolymers, and discusses their scope and applications. The use of cellulose fibers, nanocellulose, and cellulose derivatives as fillers or matrices in biocomposite materials is an efficient biosustainable alternative for the production of high-quality polymer composites and functional polymeric materials. The use of cellulose-derived monomers (glucose and other platform chemicals) in the synthesis of sustainable biopolymers and functional polymeric materials not only provides viable replacements for most petroleum-based polymers but also enables the development of novel polymers and functional polymeric materials. The present review describes the current status of biopolymers based on various forms of cellulose and the scope of their importance and applications. Challenges, promising research trends, and methods for dealing with challenges in exploitation of the promising properties of different forms of cellulose, which are vital for the future of the global polymeric industry, are discussed. Sustainable cellulosic biopolymers have potential applications not only in the replacement of existing petroleum-based polymers but also in cellulosic functional polymeric materials for a range of applications from electrochemical and energy-storage devices to biomedical applications.
Collapse
Affiliation(s)
- Hiba Shaghaleh
- College of Chemical Engineering, Jiangsu Provincial Key Lab for the Chemistry and Utilization of Agro-forest Biomass, Nanjing Forestry University Nanjing Jiangsu 210037 People's Republic of China +86 25 85428369 +86 25 85428369
- Jiangsu Key Lab of Biomass-based Green Fuels and Chemicals Nanjing 210037 People's Republic of China +86 25 85428369 +86 25 85428369
| | - Xu Xu
- College of Chemical Engineering, Jiangsu Provincial Key Lab for the Chemistry and Utilization of Agro-forest Biomass, Nanjing Forestry University Nanjing Jiangsu 210037 People's Republic of China +86 25 85428369 +86 25 85428369
- Jiangsu Key Lab of Biomass-based Green Fuels and Chemicals Nanjing 210037 People's Republic of China +86 25 85428369 +86 25 85428369
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources Nanjing 210037 People's Republic of China +86 25 85428369 +86 25 85428369
| | - Shifa Wang
- College of Chemical Engineering, Jiangsu Provincial Key Lab for the Chemistry and Utilization of Agro-forest Biomass, Nanjing Forestry University Nanjing Jiangsu 210037 People's Republic of China +86 25 85428369 +86 25 85428369
- Jiangsu Key Lab of Biomass-based Green Fuels and Chemicals Nanjing 210037 People's Republic of China +86 25 85428369 +86 25 85428369
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources Nanjing 210037 People's Republic of China +86 25 85428369 +86 25 85428369
| |
Collapse
|
19
|
Gan W, Cao X, Gao H. Recent Progress on Grafting-onto Synthesis of Molecular Brushes by Reversible Deactivation Radical Polymerization and CuAAC Coupling Reaction. ACS SYMPOSIUM SERIES 2018. [DOI: 10.1021/bk-2018-1285.ch014] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/05/2022]
Affiliation(s)
- Weiping Gan
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana 46556, United States
| | - Xiaosong Cao
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana 46556, United States
| | - Haifeng Gao
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana 46556, United States
| |
Collapse
|
20
|
Pröhl M, Englert C, Gottschaldt M, Brendel JC, Schubert US. RAFT polymerization and thio-bromo substitution: An efficient way towards well-defined glycopolymers. ACTA ACUST UNITED AC 2017. [DOI: 10.1002/pola.28745] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Michael Pröhl
- Laboratory of Organic and Macromolecular Chemistry (IOMC); Friedrich Schiller University Jena; Humboldtstraße 10, Jena 07743 Germany
- Jena Center for Soft Matter (JCSM), Friedrich Schiller University Jena; Philosophenweg 7, Jena 07743 Germany
| | - Christoph Englert
- Laboratory of Organic and Macromolecular Chemistry (IOMC); Friedrich Schiller University Jena; Humboldtstraße 10, Jena 07743 Germany
- Jena Center for Soft Matter (JCSM), Friedrich Schiller University Jena; Philosophenweg 7, Jena 07743 Germany
| | - Michael Gottschaldt
- Laboratory of Organic and Macromolecular Chemistry (IOMC); Friedrich Schiller University Jena; Humboldtstraße 10, Jena 07743 Germany
- Jena Center for Soft Matter (JCSM), Friedrich Schiller University Jena; Philosophenweg 7, Jena 07743 Germany
| | - Johannes C. Brendel
- Laboratory of Organic and Macromolecular Chemistry (IOMC); Friedrich Schiller University Jena; Humboldtstraße 10, Jena 07743 Germany
- Jena Center for Soft Matter (JCSM), Friedrich Schiller University Jena; Philosophenweg 7, Jena 07743 Germany
| | - Ulrich S. Schubert
- Laboratory of Organic and Macromolecular Chemistry (IOMC); Friedrich Schiller University Jena; Humboldtstraße 10, Jena 07743 Germany
- Jena Center for Soft Matter (JCSM), Friedrich Schiller University Jena; Philosophenweg 7, Jena 07743 Germany
| |
Collapse
|
21
|
Kempe K, Xiang SD, Wilson P, Rahim MA, Ju Y, Whittaker MR, Haddleton DM, Plebanski M, Caruso F, Davis TP. Engineered Hydrogen-Bonded Glycopolymer Capsules and Their Interactions with Antigen Presenting Cells. ACS APPLIED MATERIALS & INTERFACES 2017; 9:6444-6452. [PMID: 28186730 DOI: 10.1021/acsami.6b15459] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Hollow glycopolymer microcapsules were fabricated by hydrogen-bonded layer-by-layer (LbL) assembly, and their interactions with a set of antigen presenting cells (APCs), including dendritic cells (DCs), macrophages (MACs), and myeloid derived suppressor cells (MDSCs), were investigated. The glycopolymers were obtained by cascade postpolymerization modifications of poly(oligo(2-ethyl-2-oxazoline methacrylate)-stat-glycidyl methacrylate) involving the modification of the glycidyl groups with propargylamine and the subsequent attachment of mannose azide by copper(I)-catalyzed azide-alkyne cycloaddition (CuAAC). Multilayer assembly of the hydrogen-bonding pair (glycopolymer/poly(methacrylic acid) (PMA)) onto planar and particulate supports (SiO2 particles, d = 1.16 μm) yielded stable glycopolymer films upon cross-linking by CuAAC. The silica (SiO2) particle templates were removed yielding hollow monodisperse capsules, as demonstrated by fluorescence and scanning electron microscopy. Cellular uptake studies using flow cytometry revealed the preferential uptake of the capsules by DCs when compared to MACs or MDSCs. Mannosylated capsules showed a cytokine independent cis-upregulation of CD80 specifically on DCs and a trans-downregulation of PDL-1 on MDSCs. Thus, the glycopolymer capsules may have potential as vaccine carriers, as they are able to upregulate costimulatory molecules for immune cell stimulation on DCs and at the same time downregulate immune inhibitory receptors on suppressor APC such as MDSCs.
Collapse
Affiliation(s)
- Kristian Kempe
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, Monash Institute of Pharmaceutical Sciences, Monash University , Parkville, Victoria 3052, Australia
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology and the Department of Chemical and Biomolecular Engineering, The University of Melbourne , Parkville, Victoria 3010, Australia
- Department of Chemistry, University of Warwick , Coventry CV4 7AL, United Kingdom
| | - Sue D Xiang
- Department of Immunology and Pathology, Central Clinical School, Faculty of Medicine, Nursing and Health Sciences, Monash University , Melbourne, Victoria 3052, Australia
| | - Paul Wilson
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, Monash Institute of Pharmaceutical Sciences, Monash University , Parkville, Victoria 3052, Australia
- Department of Chemistry, University of Warwick , Coventry CV4 7AL, United Kingdom
| | - Md Arifur Rahim
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology and the Department of Chemical and Biomolecular Engineering, The University of Melbourne , Parkville, Victoria 3010, Australia
| | - Yi Ju
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology and the Department of Chemical and Biomolecular Engineering, The University of Melbourne , Parkville, Victoria 3010, Australia
| | - Michael R Whittaker
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, Monash Institute of Pharmaceutical Sciences, Monash University , Parkville, Victoria 3052, Australia
| | - David M Haddleton
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, Monash Institute of Pharmaceutical Sciences, Monash University , Parkville, Victoria 3052, Australia
- Department of Chemistry, University of Warwick , Coventry CV4 7AL, United Kingdom
| | - Magdalena Plebanski
- Department of Immunology and Pathology, Central Clinical School, Faculty of Medicine, Nursing and Health Sciences, Monash University , Melbourne, Victoria 3052, Australia
| | - Frank Caruso
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology and the Department of Chemical and Biomolecular Engineering, The University of Melbourne , Parkville, Victoria 3010, Australia
| | - Thomas P Davis
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, Monash Institute of Pharmaceutical Sciences, Monash University , Parkville, Victoria 3052, Australia
- Department of Chemistry, University of Warwick , Coventry CV4 7AL, United Kingdom
| |
Collapse
|
22
|
Ting SRS, Min EH, Lau BKF, Hutvagner G. Acetyl-α-d-mannopyranose-based cationic polymer via RAFT polymerization for lectin and nucleic acid bindings. J Appl Polym Sci 2017. [DOI: 10.1002/app.44947] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Affiliation(s)
- S. R. Simon Ting
- Centre for Health Technologies (CHT); Faculty of Engineering and Information Technology, University of Technology Sydney (UTS); Ultimo NSW 2007 Australia
| | - Eun Hee Min
- Centre for Health Technologies (CHT); Faculty of Engineering and Information Technology, University of Technology Sydney (UTS); Ultimo NSW 2007 Australia
| | - Benjamin K. F. Lau
- Centre for Health Technologies (CHT); Faculty of Engineering and Information Technology, University of Technology Sydney (UTS); Ultimo NSW 2007 Australia
| | - Gyorgy Hutvagner
- Centre for Health Technologies (CHT); Faculty of Engineering and Information Technology, University of Technology Sydney (UTS); Ultimo NSW 2007 Australia
| |
Collapse
|
23
|
Xue H, Peng L, Dong Y, Zheng Y, Luan Y, Hu X, Chen G, Chen H. Synthesis of star-glycopolymers by Cu(0)-mediated radical polymerisation in the absence and presence of oxygen. RSC Adv 2017. [DOI: 10.1039/c6ra28763h] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Star glycopolymers were synthesized in the absence and presence of oxygen, and show strong binding to specific lectins.
Collapse
Affiliation(s)
- Hui Xue
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials
- College of Chemistry
- Chemical Engineering and Materials Science
- Soochow University
- Suzhou 215123
| | - Lun Peng
- Center for Soft Condensed Matter Physics and Interdisciplinary Research
- Soochow University
- Suzhou 215006
- P. R. China
| | - Yishi Dong
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials
- College of Chemistry
- Chemical Engineering and Materials Science
- Soochow University
- Suzhou 215123
| | - Yuqing Zheng
- Center for Soft Condensed Matter Physics and Interdisciplinary Research
- Soochow University
- Suzhou 215006
- P. R. China
| | - Yafei Luan
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials
- College of Chemistry
- Chemical Engineering and Materials Science
- Soochow University
- Suzhou 215123
| | - Xiang Hu
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials
- College of Chemistry
- Chemical Engineering and Materials Science
- Soochow University
- Suzhou 215123
| | - Gaojian Chen
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials
- College of Chemistry
- Chemical Engineering and Materials Science
- Soochow University
- Suzhou 215123
| | - Hong Chen
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials
- College of Chemistry
- Chemical Engineering and Materials Science
- Soochow University
- Suzhou 215123
| |
Collapse
|
24
|
Abstract
Stimuli-responsive polymers respond to a variety of external stimuli, which include optical, electrical, thermal, mechanical, redox, pH, chemical, environmental and biological signals. This paper is concerned with the process of forming such polymers by RAFT polymerization.
Collapse
|
25
|
de Almeida P, Loiola LMD, Petzhold CL, Felisberti MI. Sucrose Methacrylate-Based Amphiphilic Block Copolymers. MACROMOL CHEM PHYS 2016. [DOI: 10.1002/macp.201600452] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Affiliation(s)
- Paula de Almeida
- Institute of Chemistry; University of Campinas; P.O. Box 6154 Campinas SP 13.083-970 Brazil
| | | | - Cesar Liberato Petzhold
- Institute of Chemistry; Universidade Federal do Rio Grande do Sul; Porto Alegre 91501-970 Brazil
| | | |
Collapse
|
26
|
Peng L, Li Z, Li X, Xue H, Zhang W, Chen G. Integrating Sugar and Dopamine into One Polymer: Controlled Synthesis and Robust Surface Modification. Macromol Rapid Commun 2016; 38. [DOI: 10.1002/marc.201600548] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2016] [Revised: 10/25/2016] [Indexed: 11/07/2022]
Affiliation(s)
- Lun Peng
- Center for Soft Condensed Matter Physics and Interdisciplinary Research; Soochow University; Suzhou 215006 P. R. China
| | - Zhiyun Li
- Center for Soft Condensed Matter Physics and Interdisciplinary Research; Soochow University; Suzhou 215006 P. R. China
| | - Xiaohui Li
- Center for Soft Condensed Matter Physics and Interdisciplinary Research; Soochow University; Suzhou 215006 P. R. China
| | - Hui Xue
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials; College of Chemistry; Chemical Engineering and Materials Science of Soochow University; Soochow University; Suzhou 215123 P. R. China
| | - Weidong Zhang
- Center for Soft Condensed Matter Physics and Interdisciplinary Research; Soochow University; Suzhou 215006 P. R. China
| | - Gaojian Chen
- Center for Soft Condensed Matter Physics and Interdisciplinary Research; Soochow University; Suzhou 215006 P. R. China
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials; College of Chemistry; Chemical Engineering and Materials Science of Soochow University; Soochow University; Suzhou 215123 P. R. China
| |
Collapse
|
27
|
Terada Y, Seto H, Hoshino Y, Murakami T, Shinohara S, Tamada K, Miura Y. SPR study for analysis of a water-soluble glycopolymer interface and molecular recognition properties. Polym J 2016. [DOI: 10.1038/pj.2016.99] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
28
|
Tengdelius M, Kardeby C, Fälker K, Griffith M, Påhlsson P, Konradsson P, Grenegård M. Fucoidan-Mimetic Glycopolymers as Tools for Studying Molecular and Cellular Responses in Human Blood Platelets. Macromol Biosci 2016; 17. [DOI: 10.1002/mabi.201600257] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2016] [Revised: 08/15/2016] [Indexed: 11/09/2022]
Affiliation(s)
- Mattias Tengdelius
- Division of Organic Chemistry; Department of Physics; Biology and Chemistry (IFM); Linköping University; SE-581 83 Linköping Sweden
| | - Caroline Kardeby
- Cardiovascular Research Centre; School of Medical Sciences; Örebro University; SE-701 82 Örebro Sweden
| | - Knut Fälker
- Cardiovascular Research Centre; School of Medical Sciences; Örebro University; SE-701 82 Örebro Sweden
| | - May Griffith
- Division of Cell Biology; Department of Clinical and Experimental Medicine (IKE); Linköping University; SE-581 83 Linköping Sweden
| | - Peter Påhlsson
- Division of Cell Biology; Department of Clinical and Experimental Medicine (IKE); Linköping University; SE-581 83 Linköping Sweden
| | - Peter Konradsson
- Division of Organic Chemistry; Department of Physics; Biology and Chemistry (IFM); Linköping University; SE-581 83 Linköping Sweden
| | - Magnus Grenegård
- Cardiovascular Research Centre; School of Medical Sciences; Örebro University; SE-701 82 Örebro Sweden
| |
Collapse
|
29
|
|
30
|
Albertin L. Protecting-Group-Free Synthesis of Well-Defined Glycopolymers Featuring Negatively Charged Oligosaccharides. Methods Mol Biol 2016; 1367:13-28. [PMID: 26537461 DOI: 10.1007/978-1-4939-3130-9_2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Control of the macromolecular architecture is essential to enable sophisticated functions for glycopolymers and to allow a precise correlation between these functions and the polymer structure. A number of biologically important ligands are negatively charged oligosaccharides that are difficult to manipulate in organic solvent and that are hardly amenable to protection/deprotection strategies. RAFT polymerization is a simple and robust technique that enables the synthesis of well-defined glycopolymers directly in aqueous solution and starting from unprotected vinyl glycomonomers. Here I describe how RAFT polymerization can be combined with reductive amination to transform negatively charged oligosaccharides having 5-20 monosaccharide units into well-defined glycopolymers directly in water and without the need to resort to protecting-group chemistry.
Collapse
Affiliation(s)
- Luca Albertin
- Laboratoire de Chimie et Biologie des Métaux, UMR 5249-Université Grenoble Alpes, CEA, CNRS, 17 rue des Martyrs, 38054, Grenoble, France.
| |
Collapse
|
31
|
Wang Z, Luo T, Sheng R, Li H, Sun J, Cao A. Amphiphilic Diblock Terpolymer PMAgala-b-P(MAA-co-MAChol)s with Attached Galactose and Cholesterol Grafts and Their Intracellular pH-Responsive Doxorubicin Delivery. Biomacromolecules 2015; 17:98-110. [DOI: 10.1021/acs.biomac.5b01227] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Affiliation(s)
- Zhao Wang
- CAS Key Laboratory of Synthetic
and Self-Assembly Chemistry for Organic Functional Molecules, Shanghai
Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China
| | - Ting Luo
- CAS Key Laboratory of Synthetic
and Self-Assembly Chemistry for Organic Functional Molecules, Shanghai
Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China
| | - Ruilong Sheng
- CAS Key Laboratory of Synthetic
and Self-Assembly Chemistry for Organic Functional Molecules, Shanghai
Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China
| | - Hui Li
- CAS Key Laboratory of Synthetic
and Self-Assembly Chemistry for Organic Functional Molecules, Shanghai
Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China
| | - Jingjing Sun
- CAS Key Laboratory of Synthetic
and Self-Assembly Chemistry for Organic Functional Molecules, Shanghai
Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China
| | - Amin Cao
- CAS Key Laboratory of Synthetic
and Self-Assembly Chemistry for Organic Functional Molecules, Shanghai
Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China
| |
Collapse
|
32
|
von der Ehe C, Rinkenauer A, Weber C, Szamosvari D, Gottschaldt M, Schubert US. Selective Uptake of a Fructose Glycopolymer Prepared by RAFT Polymerization into Human Breast Cancer Cells. Macromol Biosci 2015; 16:508-21. [DOI: 10.1002/mabi.201500346] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2015] [Revised: 11/04/2015] [Indexed: 01/17/2023]
Affiliation(s)
- Christian von der Ehe
- Laboratory of Organic and Macromolecular Chemistry (IOMC); Friedrich Schiller University Jena; Humboldtstraße 10 07743 Jena Germany
- Jena Center for Soft Matter (JCSM); Friedrich Schiller University Jena; Philosophenweg 7 07743 Jena Germany
| | - Alexandra Rinkenauer
- Laboratory of Organic and Macromolecular Chemistry (IOMC); Friedrich Schiller University Jena; Humboldtstraße 10 07743 Jena Germany
- Jena Center for Soft Matter (JCSM); Friedrich Schiller University Jena; Philosophenweg 7 07743 Jena Germany
| | - Christine Weber
- Laboratory of Organic and Macromolecular Chemistry (IOMC); Friedrich Schiller University Jena; Humboldtstraße 10 07743 Jena Germany
- Jena Center for Soft Matter (JCSM); Friedrich Schiller University Jena; Philosophenweg 7 07743 Jena Germany
| | - David Szamosvari
- Laboratory of Organic and Macromolecular Chemistry (IOMC); Friedrich Schiller University Jena; Humboldtstraße 10 07743 Jena Germany
| | - Michael Gottschaldt
- Laboratory of Organic and Macromolecular Chemistry (IOMC); Friedrich Schiller University Jena; Humboldtstraße 10 07743 Jena Germany
- Jena Center for Soft Matter (JCSM); Friedrich Schiller University Jena; Philosophenweg 7 07743 Jena Germany
| | - Ulrich S. Schubert
- Laboratory of Organic and Macromolecular Chemistry (IOMC); Friedrich Schiller University Jena; Humboldtstraße 10 07743 Jena Germany
- Jena Center for Soft Matter (JCSM); Friedrich Schiller University Jena; Philosophenweg 7 07743 Jena Germany
- Dutch Polymer Institute (DPI); P.O. Box 902 5600 AX Eindhoven The Netherlands
| |
Collapse
|
33
|
Affiliation(s)
- Yoshiko Miura
- Department of Chemical Engineering, Graduate
School of Engineering, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
| | - Yu Hoshino
- Department of Chemical Engineering, Graduate
School of Engineering, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
| | - Hirokazu Seto
- Department of Chemical Engineering, Graduate
School of Engineering, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
| |
Collapse
|
34
|
Trinadh M, Govindaraj K, Santosh V, Dhayal M, Sainath AVS. Synthesis of PEO-based di-block glycopolymers at various pendant spacer lengths of glucose moiety and their in-vitrobiocompatibility with MC3T3 osteoblast cells. Des Monomers Polym 2015. [DOI: 10.1080/15685551.2015.1092009] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
|
35
|
Chibac AL, Buruiana T, Melinte V, Mangalagiu I, Epurescu G, Buruiana EC. Synthesis of new photoactive urethane carbohydrates and their behavior in UV or femtosecond laser-induced two-photon polymerization. Des Monomers Polym 2015. [DOI: 10.1080/15685551.2015.1092008] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
|
36
|
|
37
|
A facile approach to prepare hybrid nanoparticles with morphology controlled by the thickness of glyco-shell. CHINESE CHEM LETT 2015. [DOI: 10.1016/j.cclet.2015.05.022] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
|
38
|
Worm-Like Micelles and Vesicles: Adjusting the Morphology of Self-Assembled Fructose Based Block Copolymers by Fine-Tuning the Processing Parameters. ACTA ACUST UNITED AC 2015. [DOI: 10.1021/bk-2015-1188.ch007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
|
39
|
Tyagi M, Kartha KPR. Synthesis of glycotriazololipids and observations on their self-assembly properties. Carbohydr Res 2015; 413:85-92. [PMID: 26114887 DOI: 10.1016/j.carres.2015.04.008] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2015] [Revised: 03/30/2015] [Accepted: 04/08/2015] [Indexed: 11/28/2022]
Abstract
Various carbohydrate-anchored triazole-linked lipids prepared by solvent-free mechanochemical azide-alkyne click reaction, on analysis by TEM, have been found to spontaneously self-assemble in solvents leading to structures of interesting physicochemical attributes. Interestingly, analogous compounds based on different sugars (e.g., d-glucose, and d-galactose, as also d-lactose) assemble in patterns distinctly different from each other thus reiterating the fact that the structure of the sugar as well as that of the lipid are important factors that determine the size and shape of the supramolecular assembly formed. Besides, the molecular self-assembly was also found to be solvent-as well as temperature-dependent.
Collapse
Affiliation(s)
- Mohit Tyagi
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research, Punjab, India
| | - K P Ravindranathan Kartha
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research, Punjab, India.
| |
Collapse
|
40
|
Tyagi M, Taxak N, Bharatam PV, Nandanwar H, Kartha KR. Mechanochemical click reaction as a tool for making carbohydrate-based triazole-linked self-assembling materials (CTSAMs). Carbohydr Res 2015; 407:137-47. [DOI: 10.1016/j.carres.2015.01.022] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2014] [Revised: 01/14/2015] [Accepted: 01/31/2015] [Indexed: 10/24/2022]
|
41
|
Islam M, Shaikh AY, Hotha S. Transition Metals for the Synthesis of Glycopolymers and Glycopolypeptides. Isr J Chem 2015. [DOI: 10.1002/ijch.201400202] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
42
|
Petrova KT, Dey SS, Barros MT. Formation of spherical and core-shell polymeric microparticles from glycopolymers. Carbohydr Polym 2015; 125:281-7. [PMID: 25857985 DOI: 10.1016/j.carbpol.2015.02.052] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2014] [Revised: 02/12/2015] [Accepted: 02/16/2015] [Indexed: 01/17/2023]
Abstract
6-O-methacryloyl-α-d-glucoside 2 and 4-bromophenyl-6-O-methacryloyl-d-glucothioside 7, obtained by enzyme-catalyzed synthesis, have been homo-polymerized and copolymerized with styrene by a free radical process, yielding polymer materials with sugar moieties, attached to the polymer backbone via ester linkages. The results demonstrated that modifying the structural features of the monomers greatly affected the thermal and rheological properties of the polymers. The polymer materials obtained have been characterized by NMR, MALDI-MS, DSC, AFM, and EWC (equilibrium water content). The AFM images indicated the formation of spherical and core-shell polymeric microparticles.
Collapse
Affiliation(s)
- Krasimira T Petrova
- LAQV, REQUIMTE, Departamento de Química, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, 2829-516 Caparica, Portugal.
| | - Suvendu S Dey
- LAQV, REQUIMTE, Departamento de Química, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, 2829-516 Caparica, Portugal
| | - M Teresa Barros
- LAQV, REQUIMTE, Departamento de Química, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, 2829-516 Caparica, Portugal
| |
Collapse
|
43
|
Pei D, Li Y, Huang Q, Ren Q, Li F, Shi T. Quantum dots encapsulated glycopolymer vesicles: Synthesis, lectin recognition and photoluminescent properties. Colloids Surf B Biointerfaces 2015; 127:130-6. [DOI: 10.1016/j.colsurfb.2015.01.032] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2014] [Revised: 01/12/2015] [Accepted: 01/20/2015] [Indexed: 11/24/2022]
|
44
|
Góis JR, Popov AV, Guliashvili T, Serra AC, Coelho JFJ. Synthesis of functionalized poly(vinyl acetate) mediated by alkyne-terminated RAFT agents. RSC Adv 2015. [DOI: 10.1039/c5ra15580k] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Two new xanthates with alkyne functionalities were synthesized for the reversible addition fragmentation chain transfer (RAFT) polymerization of vinyl acetate (VAc).
Collapse
Affiliation(s)
- Joana. R. Góis
- Department of Chemical Engineering
- University of Coimbra
- 3030-790 Coimbra
- Portugal
| | | | - Tamaz Guliashvili
- Department of Chemical Engineering
- University of Coimbra
- 3030-790 Coimbra
- Portugal
| | - Arménio C. Serra
- Department of Chemical Engineering
- University of Coimbra
- 3030-790 Coimbra
- Portugal
| | - Jorge F. J. Coelho
- Department of Chemical Engineering
- University of Coimbra
- 3030-790 Coimbra
- Portugal
| |
Collapse
|
45
|
Valtola L, Rahikkala A, Raula J, Kauppinen EI, Tenhu H, Hietala S. Synthesis and lectin recognition of glycosylated amphiphilic nanoparticles. Eur Polym J 2014. [DOI: 10.1016/j.eurpolymj.2014.07.031] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
46
|
Fed-Batch Control and Visualization of Monomer Sequences of Individual ICAR ATRP Gradient Copolymer Chains. Polymers (Basel) 2014. [DOI: 10.3390/polym6041074] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
|
47
|
Chen Y, Espeel P, Reinicke S, Du Prez FE, Stenzel MH. Control of Glycopolymer Nanoparticle Morphology by a One-Pot, Double Modification Procedure Using Thiolactones. Macromol Rapid Commun 2014; 35:1128-34. [DOI: 10.1002/marc.201400110] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2014] [Revised: 03/16/2014] [Indexed: 12/31/2022]
Affiliation(s)
- Yong Chen
- Centre for Advanced Macromolecular Design, School of Chemistry; The University of New South Wales; Sydney NSW 2052 Australia
| | - Pieter Espeel
- Polymer Chemistry Research Group, Department of Organic Chemistry; Ghent University; Krijgslaan 281 S4-bis B-9000 Ghent Belgium
| | - Stefan Reinicke
- Polymer Chemistry Research Group, Department of Organic Chemistry; Ghent University; Krijgslaan 281 S4-bis B-9000 Ghent Belgium
| | - Filip E. Du Prez
- Polymer Chemistry Research Group, Department of Organic Chemistry; Ghent University; Krijgslaan 281 S4-bis B-9000 Ghent Belgium
| | - Martina H. Stenzel
- Centre for Advanced Macromolecular Design, School of Chemistry; The University of New South Wales; Sydney NSW 2052 Australia
| |
Collapse
|
48
|
Sunasee R, Adokoh CK, Darkwa J, Narain R. Therapeutic potential of carbohydrate-based polymeric and nanoparticle systems. Expert Opin Drug Deliv 2014; 11:867-84. [DOI: 10.1517/17425247.2014.902048] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
49
|
Takara M, Toyoshima M, Seto H, Hoshino Y, Miura Y. Polymer-modified gold nanoparticles via RAFT polymerization: a detailed study for a biosensing application. Polym Chem 2014. [DOI: 10.1039/c3py01001e] [Citation(s) in RCA: 65] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
50
|
Affinity separation of lectins using porous membranes immobilized with glycopolymer brushes containing mannose or N-acetyl-d-glucosamine. MEMBRANES 2013; 3:169-81. [PMID: 24956944 PMCID: PMC4021937 DOI: 10.3390/membranes3030169] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/16/2013] [Revised: 07/19/2013] [Accepted: 07/23/2013] [Indexed: 11/16/2022]
Abstract
Porous membranes with glycopolymer brushes were prepared as biomaterials for affinity separation. Glycopolymer brushes contained acrylic acid and D-mannose or N-acetyl-D-glucosamine, and were formed on substrates by surface-initiated atom transfer radical polymerization. The presence of glycopolymer brush was confirmed by X-ray photoelectron spectroscopy, contact angle, and ellipsometry measurements. The interaction between lectin and the glycopolymer immobilized on glass slides was confirmed using fluorescent-labeled proteins. Glycopolymer-immobilized surfaces exhibited specific adsorption of the corresponding lectin, compared with bovine serum albumin. Lectins were continuously rejected by the glycopolymer-immobilized membranes. When the protein solution was permeated through the glycopolymer-immobilized membrane, bovine serum albumin was not adsorbed on the membrane surface. In contrast, concanavalin A and wheat germ agglutinin were rejected by membranes incorporating D-mannose or N-acetyl-D-glucosamine, respectively. The amounts of adsorbed concanavalin A and wheat germ agglutinin was increased five- and two-fold that of adsorbed bovine serum albumin, respectively.
Collapse
|