1
|
Zheng F, Chen R, Ding Z, Liu Y, Zhang Z, Yang Q, Yang Y, Ren Q, Bao Z. Interlayer Symmetry Control in Flexible-Robust Layered Metal-Organic Frameworks for Highly Efficient C 2H 2/CO 2 Separation. J Am Chem Soc 2023; 145:19903-19911. [PMID: 37661421 DOI: 10.1021/jacs.3c06138] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/05/2023]
Abstract
Removal of the CO2 impurities from C2H2/CO2 mixtures is an essential process to produce high-purity C2H2. Fabricating an adsorbent capable of discriminating these species, which have close kinetic diameters, is critical for developing advanced adsorption processes. Herein, we demonstrate a strategy to exploit the tunability of interlayer and intralayer spaces of two-dimensional (2D) layered metal-organic frameworks to achieve high performance for C2H2/CO2 separation. This indicates that interlayer symmetrical control can achieve more efficient packing of C2H2 into Ni(4-DPDS)2CrO4, with a high C2H2 capacity of 45.7 cm3·g-1 at 0.01 bar and a selectivity of 67.7 (298 K, 1 bar), which strikes a good balance between working capacity and separation selectivity compared to other isostructural Ni(4-DPDS)2MO4 (M = Mo, W). Crystallographic studies and DFT-D calculations reveal that such a C2H2-selective adsorbent possesses strong binding interactions due to the tailored pore confinement provided by the angular anions and rich electronic environment. Experimental breakthrough results comprehensively demonstrate the efficient C2H2/CO2 separation performance of this unique material.
Collapse
Affiliation(s)
- Fang Zheng
- Key Laboratory of Biomass Chemical Engineering of the Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058, P. R. China
- Institute of Zhejiang University-Quzhou, 99 Zheda Road, Quzhou, Zhejiang Province 32400, P. R. China
| | - Rundao Chen
- Key Laboratory of Biomass Chemical Engineering of the Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058, P. R. China
| | - Zexiang Ding
- Key Laboratory of Biomass Chemical Engineering of the Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058, P. R. China
- Institute of Zhejiang University-Quzhou, 99 Zheda Road, Quzhou, Zhejiang Province 32400, P. R. China
| | - Ying Liu
- Key Laboratory of Biomass Chemical Engineering of the Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058, P. R. China
| | - Zhiguo Zhang
- Key Laboratory of Biomass Chemical Engineering of the Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058, P. R. China
- Institute of Zhejiang University-Quzhou, 99 Zheda Road, Quzhou, Zhejiang Province 32400, P. R. China
| | - Qiwei Yang
- Key Laboratory of Biomass Chemical Engineering of the Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058, P. R. China
- Institute of Zhejiang University-Quzhou, 99 Zheda Road, Quzhou, Zhejiang Province 32400, P. R. China
| | - Yiwen Yang
- Key Laboratory of Biomass Chemical Engineering of the Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058, P. R. China
- Institute of Zhejiang University-Quzhou, 99 Zheda Road, Quzhou, Zhejiang Province 32400, P. R. China
| | - Qilong Ren
- Key Laboratory of Biomass Chemical Engineering of the Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058, P. R. China
- Institute of Zhejiang University-Quzhou, 99 Zheda Road, Quzhou, Zhejiang Province 32400, P. R. China
| | - Zongbi Bao
- Key Laboratory of Biomass Chemical Engineering of the Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058, P. R. China
- Institute of Zhejiang University-Quzhou, 99 Zheda Road, Quzhou, Zhejiang Province 32400, P. R. China
| |
Collapse
|
2
|
Zheng F, Chen R, Liu Y, Yang Q, Zhang Z, Yang Y, Ren Q, Bao Z. Strengthening Intraframework Interaction within Flexible MOFs Demonstrates Simultaneous Sieving Acetylene from Ethylene and Carbon Dioxide. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2207127. [PMID: 36703621 PMCID: PMC10037686 DOI: 10.1002/advs.202207127] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/03/2022] [Revised: 01/04/2023] [Indexed: 06/18/2023]
Abstract
Efficient separation of acetylene (C2 H2 )/ethylene (C2 H4 ) and acetylene/carbon dioxide (CO2 ) by adsorption is an industrially promising process, but adsorbents capable of simultaneously capturing trace acetylene from ethylene and carbon dioxide are scarce. Herein, a gate-opening effect on three isomorphous flexible metal-organic frameworks (MOFs) named Co(4-DPDS)2 MO4 (M = Cr, Mo, W; 4-DPDS = 4,4-dipyridyldisulfide) is modulated by anion pillars substitution. The shortest CrO4 2- strengthens intraframework hydrogen bonding and thus blocks structural transformation after activation, striking a good balance among working capacity, separation selectivity, and trace impurity removal of flexible MOFs out of nearly C2 H2 /C2 H4 and C2 H2 /CO2 molecular sieving. The exceptional separation performance of Co(4-DPDS)2 CrO4 is confirmed by dynamic breakthrough experiments. It reveals the specific threshold pressures control in anion-pillared flexible materials enabled elimination of the impurity leakage to realize high purity products through precise control of the intraframework interaction. The adsorption mechanism and multimode structural transformation property are revealed by both calculations and crystallography studies. This work demonstrates the feasibility of modulating flexibility for controlling gate-opening effect, especially for some cases of significant aperture shrinkage after activation.
Collapse
Affiliation(s)
- Fang Zheng
- Key Laboratory of Biomass Chemical Engineering of the Ministry of EducationCollege of Chemical and Biological EngineeringZhejiang University38 Zheda RoadHangzhou310027P. R. China
- Institute of Zhejiang University‐Quzhou99 Zheda RoadQuzhouZhejiang Province324000China
| | - Rundao Chen
- Key Laboratory of Biomass Chemical Engineering of the Ministry of EducationCollege of Chemical and Biological EngineeringZhejiang University38 Zheda RoadHangzhou310027P. R. China
| | - Ying Liu
- Key Laboratory of Biomass Chemical Engineering of the Ministry of EducationCollege of Chemical and Biological EngineeringZhejiang University38 Zheda RoadHangzhou310027P. R. China
| | - Qiwei Yang
- Key Laboratory of Biomass Chemical Engineering of the Ministry of EducationCollege of Chemical and Biological EngineeringZhejiang University38 Zheda RoadHangzhou310027P. R. China
- Institute of Zhejiang University‐Quzhou99 Zheda RoadQuzhouZhejiang Province324000China
| | - Zhiguo Zhang
- Key Laboratory of Biomass Chemical Engineering of the Ministry of EducationCollege of Chemical and Biological EngineeringZhejiang University38 Zheda RoadHangzhou310027P. R. China
- Institute of Zhejiang University‐Quzhou99 Zheda RoadQuzhouZhejiang Province324000China
| | - Yiwen Yang
- Key Laboratory of Biomass Chemical Engineering of the Ministry of EducationCollege of Chemical and Biological EngineeringZhejiang University38 Zheda RoadHangzhou310027P. R. China
- Institute of Zhejiang University‐Quzhou99 Zheda RoadQuzhouZhejiang Province324000China
| | - Qilong Ren
- Key Laboratory of Biomass Chemical Engineering of the Ministry of EducationCollege of Chemical and Biological EngineeringZhejiang University38 Zheda RoadHangzhou310027P. R. China
- Institute of Zhejiang University‐Quzhou99 Zheda RoadQuzhouZhejiang Province324000China
| | - Zongbi Bao
- Key Laboratory of Biomass Chemical Engineering of the Ministry of EducationCollege of Chemical and Biological EngineeringZhejiang University38 Zheda RoadHangzhou310027P. R. China
- Institute of Zhejiang University‐Quzhou99 Zheda RoadQuzhouZhejiang Province324000China
| |
Collapse
|
3
|
Zheng F, Guo L, Chen R, Chen L, Zhang Z, Yang Q, Yang Y, Su B, Ren Q, Bao Z. Shell-like Xenon Nano-Traps within Angular Anion-Pillared Layered Porous Materials for Boosting Xe/Kr Separation. Angew Chem Int Ed Engl 2022; 61:e202116686. [PMID: 34997694 DOI: 10.1002/anie.202116686] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Indexed: 01/12/2023]
Abstract
Adsorptive separation of xenon (Xe) and krypton (Kr) is a promising technique but remains a daunting challenge since they are atomic gases without dipole or quadruple moments. Herein we report a strategy for fabricating angular anion-pillared materials featuring shell-like Xe nano-traps, which provide a cooperative effect conferred by the pore confinement and multiple specific interactions. The perfect permanent pore channel (4-5 Å) of Ni(4-DPDS)2 MO4 (M=Cr, Mo, W) can host Xe atoms efficiently even at ultra-low concentration (400 ppm Xe), showing the second-highest selectivity of 30.2 in Ni(4-DPDS)2 WO4 and excellent Xe adsorption capacity in Ni(4-DPDS)2 CrO4 (15.0 mmol kg-1 ). Crystallography studies and DFT-D calculations revealed the energy favorable binding sites and angular anions enable the synergism between optimal pore size and polar porosity for boosting Xe affinity. Dynamic breakthrough experiments demonstrated three MOFs as efficient adsorbents for Xe/Kr separation.
Collapse
Affiliation(s)
- Fang Zheng
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, 38 Zheda Road, Hangzhou, 310027, P. R. China
| | - Lidong Guo
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, 38 Zheda Road, Hangzhou, 310027, P. R. China
| | - Rundao Chen
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, 38 Zheda Road, Hangzhou, 310027, P. R. China
| | - Lihang Chen
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, 38 Zheda Road, Hangzhou, 310027, P. R. China
| | - Zhiguo Zhang
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, 38 Zheda Road, Hangzhou, 310027, P. R. China.,Institute of Zhejiang University-Quzhou, 78 Jiuhua Boulevad North, Quzhou, 32400, P. R. China
| | - Qiwei Yang
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, 38 Zheda Road, Hangzhou, 310027, P. R. China.,Institute of Zhejiang University-Quzhou, 78 Jiuhua Boulevad North, Quzhou, 32400, P. R. China
| | - Yiwen Yang
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, 38 Zheda Road, Hangzhou, 310027, P. R. China.,Institute of Zhejiang University-Quzhou, 78 Jiuhua Boulevad North, Quzhou, 32400, P. R. China
| | - Baogen Su
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, 38 Zheda Road, Hangzhou, 310027, P. R. China
| | - Qilong Ren
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, 38 Zheda Road, Hangzhou, 310027, P. R. China.,Institute of Zhejiang University-Quzhou, 78 Jiuhua Boulevad North, Quzhou, 32400, P. R. China
| | - Zongbi Bao
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, 38 Zheda Road, Hangzhou, 310027, P. R. China.,Institute of Zhejiang University-Quzhou, 78 Jiuhua Boulevad North, Quzhou, 32400, P. R. China
| |
Collapse
|
4
|
Zheng F, Guo L, Chen R, Chen L, Zhang Z, Yang Q, Yang Y, Su B, Ren Q, Bao Z. Shell‐like Xenon Nano‐Traps within Angular Anion‐Pillared Layered Porous Materials for Boosting Xe/Kr Separation. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202116686] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Fang Zheng
- Zhejiang University College of Chemical and Biological Engineering CHINA
| | - Lidong Guo
- Zhejiang University College of Chemical and Biological Engineering CHINA
| | - Rundao Chen
- Zhejiang University College of Chemical and Biological Engineering CHINA
| | - Lihang Chen
- Zhejiang University College of Chemical and Biological Engineering CHINA
| | - Zhiguo Zhang
- Zhejiang University College of Chemical and Biological Engineering CHINA
| | - Qiwei Yang
- Zhejiang University College of Chemical and Biological Engineering CHINA
| | - Yiwen Yang
- Zhejiang University College of Chemical and Biological Engineering CHINA
| | - Baogen Su
- Zhejiang University College of Chemical and Biological Engineering CHINA
| | - Qilong Ren
- Zhejiang University College of Chemical and Biological Engineering CHINA
| | - Zongbi Bao
- Zhejiang University Key Laboratory of Biomass Chemical Engineering of the Ministry of Education, College of Chemical and Biological Engineering 38 Zheda Road, Xihu District, hangzhou City 310027 Hangzhou CHINA
| |
Collapse
|
5
|
Zheng F, Chen L, Chen R, Zhang Z, Yang Q, Yang Y, Su B, Ren Q, Bao Z. A robust two–dimensional layered metal–organic framework for efficient separation of methane from nitrogen. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2021.119911] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
6
|
Seidel RW, Oppel IM. Crystal structure of catena-poly[[di-iodidomer-cury(II)]-μ-2,2'-di-thio-bis-(pyridine N-oxide)-κ 2O: O']. Acta Crystallogr E Crystallogr Commun 2018; 74:433-435. [PMID: 29765739 PMCID: PMC5946961 DOI: 10.1107/s2056989018003055] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2018] [Accepted: 02/22/2018] [Indexed: 11/10/2022]
Abstract
The title compound, [HgI2(C10H8N2O2S2)] n , a one-dimensional coordination polymer with HgI2 units and 2,2'-di-thio-bis-(pyridine N-oxide) spacer ligands in an alternating fashion, forms helical chains running along the b axis in the crystal. Within a single coordination polymer strand, the axially chiral 2,2'-di-thio-bis-(pyridine N-oxide) ligands are homochiral, but the enanti-omeric conformation is present in adjacent strands. Within a coordination polymer strand, the iodido ligands point towards the centroids of the aromatic rings of the pyridine N-oxide moieties in the coordination sphere of HgII. Moreover, intra-strand C-H⋯O and C-H⋯I inter-actions, and inter-strand short S⋯I and S⋯O contacts are observed.
Collapse
Affiliation(s)
- Rüdiger W. Seidel
- Lehrstuhl für Analytische Chemie, Ruhr-Universität Bochum, Universitätstrasse 150, 44780 Bochum, Germany
| | - Iris M. Oppel
- Institut für Anorganische Chemie, Rheinisch-Westfälische Technische Hochschule Aachen, Landoltweg 1, 52074 Aachen, Germany
| |
Collapse
|
7
|
Seidel RW, Schulze AC, Oppel IM. 1D Coordination Polymers from Zinc(II) and Cadmium(II) Halides and 2,2′-Dithiobis(pyridine N-oxide): Isostructurality and Structural Diversity. Z Anorg Allg Chem 2017. [DOI: 10.1002/zaac.201600417] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Rüdiger W. Seidel
- Lehrstuhl für Analytische Chemie; Ruhr-Universität Bochum; Universitätsstraße 150 44780 Bochum Germany
| | - A. Carina Schulze
- Institut für Anorganische Chemie; Rheinisch-Westfälische Technische Hochschule Aachen; Landoltweg 1 52074 Aachen Germany
| | - Iris M. Oppel
- Institut für Anorganische Chemie; Rheinisch-Westfälische Technische Hochschule Aachen; Landoltweg 1 52074 Aachen Germany
| |
Collapse
|
8
|
Kim JG, Cho Y, Lee H, Lee YA, Jung OS. o-, m-, and p-Pyridyl isomer effects on construction of 1D loop-and-chains: Silver(I) coordination polymers with Y-type tridentate ligands. J Mol Struct 2016. [DOI: 10.1016/j.molstruc.2016.05.102] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
9
|
Zhu HB, Wei YZ, Liang L. Ni(II)/Cu(I) based coordination polymers with heterofunctional ligands integrating pyridine and pyrimidinethione structural motifs. Polyhedron 2016. [DOI: 10.1016/j.poly.2016.01.051] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
10
|
Cook TR, Stang PJ. Recent Developments in the Preparation and Chemistry of Metallacycles and Metallacages via Coordination. Chem Rev 2015; 115:7001-45. [DOI: 10.1021/cr5005666] [Citation(s) in RCA: 1299] [Impact Index Per Article: 129.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Affiliation(s)
- Timothy R. Cook
- Department
of Chemistry, University at Buffalo, State University of New York, 359 Natural Sciences Complex, Buffalo, New York 14260, United States
| | - Peter J. Stang
- Department
of Chemistry, University of Utah, 315 S. 1400 E. Room 2020, Salt Lake City, Utah 84112, United States
| |
Collapse
|
11
|
Zhu HB, Wu YF, Shan RY, Chen YD, Lou YB. Two 1D Coordination Polymers with Bis[4-(pyridin-4-yl)pyrimidinyl]disulfide (4-ppds) as Bridging Ligand. Z Anorg Allg Chem 2014. [DOI: 10.1002/zaac.201300685] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
12
|
Seidel RW, Dietz C, Breidung J, Goddard R, Oppel IM. (Hexafluorosilicato-κ(2)F,F')bis(1,10-phenanthroline-κ(2)N,N')zinc(II) methanol monosolvate. Acta Crystallogr C 2013; 69:1112-5. [PMID: 24096496 DOI: 10.1107/s0108270113023007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2013] [Accepted: 08/15/2013] [Indexed: 11/10/2022] Open
Abstract
The title compound, [Zn(SiF6)(C12H8N2)2]·CH3OH, contains a neutral heteroleptic tris-chelate Zn(II) complex, viz. [Zn(SiF6)(phen)2] (phen is 1,10-phenanthroline), exhibiting approximate molecular C2 point-group symmetry. The Zn(II) cation adopts a severely distorted octahedral coordination. As far as can be ascertained, the title complex represents the first structurally characterized example of a Zn(II) complex bearing a bidentate-bound hexafluorosilicate ligand. A density functional theory study of the isolated [Zn(SiF6)(phen)2] complex was undertaken to reveal the influence of crystal packing on the molecular structure of the complex. In the crystal structure, the methanol solvent molecule forms a hydrogen bond to one F atom of the hexafluorosilicate ligand. The hydrogen-bonded assemblies so formed are tightly packed in the crystal, as indicated by a high packing coefficient (74.1%).
Collapse
Affiliation(s)
- Rüdiger W Seidel
- Lehrstuhl für Analytische Chemie, Ruhr-Universität Bochum, Universitätsstrasse 150, 44780 Bochum, Germany
| | | | | | | | | |
Collapse
|