1
|
Ilhami FB, Birhan YS, Cheng CC. Hydrogen-Bonding Interactions from Nucleobase-Decorated Supramolecular Polymer: Synthesis, Self-Assembly and Biomedical Applications. ACS Biomater Sci Eng 2024; 10:234-254. [PMID: 38103183 DOI: 10.1021/acsbiomaterials.3c01097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2023]
Abstract
The fabrication of supramolecular materials for biomedical applications such as drug delivery, bioimaging, wound-dressing, adhesion materials, photodynamic/photothermal therapy, infection control (as antibacterial), etc. has grown tremendously, due to their unique properties, especially the formation of hydrogen bonding. Nevertheless, void space in the integration process, lack of feasibility in the construction of supramolecular materials of natural origin in living biological systems, potential toxicity, the need for complex synthesis protocols, and costly production process limits the actual application of nanomaterials for advanced biomedical applications. On the other hand, hydrogen bonding from nucleobases is one of the strategies that shed light on the blurred deployment of nanomaterials in medical applications, given the increasing reports of supramolecular polymers that promote advanced technologies. Herein, we review the extensive body of literature about supramolecular functional biomaterials based on nucleobase hydrogen bonding pertinent to different biomedical applications. It focuses on the fundamental understanding about the synthesis, nucleobase-decorated supramolecular architecture, and novel properties with special emphasis on the recent developments in the assembly of nanostructures via hydrogen-bonding interactions of nucleobase. Moreover, the challenges, plausible solutions, and prospects of the so-called hydrogen bonding interaction from nucleobase for the fabrication of functional biomaterials are outlined.
Collapse
Affiliation(s)
- Fasih Bintang Ilhami
- Department of Natural Science, Faculty of Mathematics and Natural Science, Universitas Negeri Surabaya, Surabaya 60231, Indonesia
| | - Yihenew Simegniew Birhan
- Department of Chemistry, College of Natural and Computational Sciences, Debre Markos University, P.O. Box 269, Debre Markos 00000, Ethiopia
| | - Chih-Chia Cheng
- Graduate Institute of Applied Science and Technology, National Taiwan University of Science and Technology, Taipei 10607, Taiwan
| |
Collapse
|
2
|
Taheri-Ledari R, Zarei-Shokat S, Qazi FS, Ghafori-Gorab M, Ganjali F, Kashtiaray A, Mahdavi M, Safavi M, Maleki A. A Mesoporous Magnetic Fe 3O 4/BioMOF-13 with a Core/Shell Nanostructure for Targeted Delivery of Doxorubicin to Breast Cancer Cells. ACS APPLIED MATERIALS & INTERFACES 2023. [PMID: 38147586 DOI: 10.1021/acsami.3c14363] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2023]
Abstract
In the current project, magnetic Bio-MOF-13 was used as an efficient carrier for the targeted delivery and controlled release of doxorubicin (DOX) to MDA-MB-231 cells. Magnetic Bio-MOF-13 was prepared by two strategies and compared to determine the optimal state of the structure. In the first path, Bio-MOF-13 was grown in situ on the surface of Fe3O4 nanoparticles (core/shell structure), while in the second method, the two presynthesized materials were mixed together (surface composite). Core/shell structure, among prepared nanocomposites, was chosen for biological evaluation due to its favorable structural features like a high accessible surface area and pore volume. Also, it is highly advantageous for drug release due to its ability to selectively release DOX in the acidic pH of breast cancer cells, while preventing any premature release in the neutral pH of the blood. Drug release from the carrier structure is precisely controlled not only by pH but also by an external magnetic field, guaranteeing accurate drug delivery at the intended location. Confocal microscopy and flow cytometry assay clearly confirms the increase in drug concentration in the MDA-MB-231 cell line after external magnet applying. This point, along with the low toxicity of the carrier components, makes it a suitable candidate for injectable medicine. According to MTT results, the percentage of viable MDA-MB-231 cells after treatment with 10 μL of DOX@Fe3O4/Bio-MOF-13 core/shell composite in different concentrations, in the presence and absence of magnetic field is 0.87 ± 0.25 and 2.07 ± 0.15, respectively. As a result, the DOX@Fe3O4/Bio-MOF-13 core/shell composite was performed and approved for targeted drug delivery and magnetic field-assisted controlled release of DOX to the MDA-MB-231 cell line.
Collapse
Affiliation(s)
- Reza Taheri-Ledari
- Catalysts and Organic Synthesis Research Laboratory, Department of Chemistry, Iran University of Science and Technology, Tehran 16846-13114, Iran
| | - Simindokht Zarei-Shokat
- Catalysts and Organic Synthesis Research Laboratory, Department of Chemistry, Iran University of Science and Technology, Tehran 16846-13114, Iran
| | - Fateme Sadat Qazi
- Catalysts and Organic Synthesis Research Laboratory, Department of Chemistry, Iran University of Science and Technology, Tehran 16846-13114, Iran
| | - Mostafa Ghafori-Gorab
- Catalysts and Organic Synthesis Research Laboratory, Department of Chemistry, Iran University of Science and Technology, Tehran 16846-13114, Iran
| | - Fatemeh Ganjali
- Catalysts and Organic Synthesis Research Laboratory, Department of Chemistry, Iran University of Science and Technology, Tehran 16846-13114, Iran
| | - Amir Kashtiaray
- Catalysts and Organic Synthesis Research Laboratory, Department of Chemistry, Iran University of Science and Technology, Tehran 16846-13114, Iran
| | - Mohammad Mahdavi
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran 14166-34793, Iran
| | - Maliheh Safavi
- Department of Biotechnology, Iranian Research Organization for Science and Technology (IROST), P.O. Box 3353-5111, Tehran 33531-36846,, Iran
| | - Ali Maleki
- Catalysts and Organic Synthesis Research Laboratory, Department of Chemistry, Iran University of Science and Technology, Tehran 16846-13114, Iran
| |
Collapse
|
3
|
Ahmed LR, Chuang CH, Lüder J, Yang HW, EL-Mahdy AFM. Direct Metal-Free Synthesis of Uracil- and Pentaazaphenalene-Functionalized Porous Organic Polymers via Quadruple Mannich Cyclization and Their Nucleobase Recognition Activities. Macromolecules 2022. [DOI: 10.1021/acs.macromol.2c01627] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Lamiaa Reda Ahmed
- Department of Materials and Optoelectronic Science, National Sun Yat-Sen University, Kaohsiung 80424, Taiwan
- Institute of Medical Science and Technology, National Sun Yat-Sen University, Kaohsiung 80424, Taiwan
| | - Cheng-Hsin Chuang
- Institute of Medical Science and Technology, National Sun Yat-Sen University, Kaohsiung 80424, Taiwan
| | - Johann Lüder
- Department of Materials and Optoelectronic Science, National Sun Yat-Sen University, Kaohsiung 80424, Taiwan
- Center for Theoretical and computational Physics, National Sun Yat-Sen University, Kaohsiung 80424, Taiwan
| | - Hung-Wei Yang
- Institute of Medical Science and Technology, National Sun Yat-Sen University, Kaohsiung 80424, Taiwan
| | - Ahmed F. M. EL-Mahdy
- Department of Materials and Optoelectronic Science, National Sun Yat-Sen University, Kaohsiung 80424, Taiwan
| |
Collapse
|
4
|
Sikder A, Esen C, O'Reilly RK. Nucleobase-Interaction-Directed Biomimetic Supramolecular Self-Assembly. Acc Chem Res 2022; 55:1609-1619. [PMID: 35671460 PMCID: PMC9219111 DOI: 10.1021/acs.accounts.2c00135] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
ConspectusThe design and fabrication of synthetic self-assembled systems that can mimic some biological features require exquisitely sophisticated components that make use of supramolecular interactions to attain enhanced structural and functional complexity. In nature, nucleobase interactions play a key role in biological functions in living organisms, including transcription and translation processes. Inspired by nature, scientists are progressively exploring nucleobase synthons to create a diverse range of functional systems with a plethora of nanostructures by virtue of molecular-recognition-directed assembly and flexible programmability of the base-pairing interactions. To that end, nucleobase-functionalized molecules and macromolecules are attracting great attention because of their versatile structures with smart and adaptive material properties such as stimuli responsiveness, interaction with external agents, and ability to repair structural defects. In this regard, a range of nucleobase-interaction-mediated hierarchical self-assembled systems have been developed to obtain biomimetic materials with unique properties. For example, a new "grafting to" strategy utilizing complementary nucleobase interactions has been demonstrated to temporarily control the functional group display on micellar surfaces. In a different approach, complementary nucleobase interactions have been explored to enable morphological transitions in functionalized diblock copolymer assembly. It has been demonstrated that complementary nucleobase interactions can drive the morphological transformation to produce highly anisotropic nanoparticles by controlling the assembly processes at multiple length scales. Furthermore, nucleobase-functionalized bottle brush polymers have been employed to generate stimuli-responsive hierarchical assembly. Finally, such interactions have been exploited to induce biomimetic segregation in polymer self-assembly, which has been employed as a template to synthesize polymers with narrow polydispersity. It is evident from these examples that the optimal design of molecular building blocks and precise positioning of the nucleobase functionality are essential for fabrication of complex supramolecular assemblies. While a considerable amount of research remains to be explored, our studies have demonstrated the potential of nucleobase-interaction-mediated supramolecular assembly to be a promising field of research enabling the development of biomimetic materials.This Account summarizes recent examples that employ nucleobase interactions to generate functional biomaterials by judicious design of the building blocks. We begin by discussing the molecular recognition properties of different nucleobases, followed by different strategies to employ nucleobase interactions in polymeric systems in order to achieve self-assembled nanomaterials with versatile properties. Moreover, some of their prospective biological/material applications such as enhanced drug encapsulation, superior adhesion, and fast self-healing properties facilitated by complementary nucleobase interactions are emphasized. Finally, we identify issues and challenges that are faced by this class of materials and propose future directions for the exploration of functional materials with the aim of promoting the development of nucleobase-functionalized systems to design the next generation of biomaterials.
Collapse
Affiliation(s)
- Amrita Sikder
- School of Chemistry, University of Birmingham, Edgbaston, Birmingham B15 2TT, U.K
| | - Cem Esen
- Department of Chemistry, Faculty of Arts and Sciences, Aydın Adnan Menderes University, 09010 Aydın, Turkey
| | - Rachel K O'Reilly
- School of Chemistry, University of Birmingham, Edgbaston, Birmingham B15 2TT, U.K
| |
Collapse
|
5
|
Rocha DHA, Machado CM, Sousa V, Sousa CFV, Silva VLM, Silva AMS, Borges J, Mano JF. Customizable and Regioselective One‐Pot N−H Functionalization of DNA Nucleobases to Create a Library of Nucleobase Derivatives for Biomedical Applications. European J Org Chem 2021. [DOI: 10.1002/ejoc.202100786] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Djenisa H. A. Rocha
- CICECO – Aveiro Institute of Materials Department of Chemistry University of Aveiro Campus Universitário de Santiago 3810-193 Aveiro Portugal
| | - Carmen M. Machado
- CICECO – Aveiro Institute of Materials Department of Chemistry University of Aveiro Campus Universitário de Santiago 3810-193 Aveiro Portugal
| | - Vera Sousa
- CICECO – Aveiro Institute of Materials Department of Chemistry University of Aveiro Campus Universitário de Santiago 3810-193 Aveiro Portugal
| | - Cristiana F. V. Sousa
- CICECO – Aveiro Institute of Materials Department of Chemistry University of Aveiro Campus Universitário de Santiago 3810-193 Aveiro Portugal
| | - Vera L. M. Silva
- LAQV-REQUIMTE Department of Chemistry University of Aveiro Campus Universitário de Santiago 3810-193 Aveiro Portugal
| | - Artur M. S. Silva
- LAQV-REQUIMTE Department of Chemistry University of Aveiro Campus Universitário de Santiago 3810-193 Aveiro Portugal
| | - João Borges
- CICECO – Aveiro Institute of Materials Department of Chemistry University of Aveiro Campus Universitário de Santiago 3810-193 Aveiro Portugal
| | - João F. Mano
- CICECO – Aveiro Institute of Materials Department of Chemistry University of Aveiro Campus Universitário de Santiago 3810-193 Aveiro Portugal
| |
Collapse
|
6
|
Change of Characterization and Film Morphology Based on Acrylic Pressure Sensitive Adhesives by Hydrophilic Derivative Ratio. Polymers (Basel) 2020; 12:polym12071504. [PMID: 32645817 PMCID: PMC7408043 DOI: 10.3390/polym12071504] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Revised: 07/02/2020] [Accepted: 07/03/2020] [Indexed: 11/29/2022] Open
Abstract
Hydrophilic acrylic pressure-sensitive adhesives (PSAs) were synthesized by controlling the contents of 2-ethylhexyl acrylate (EHA), isobornyl acrylate (IBOA), and 2-hydroxyethyl acrylate (HEA); especially, the characteristic change of the HEA content was analyzed. Surface contact angle of acrylic PSA film decreased from 77.87° to 70.23° in the case of Acryl-2 to Acryl-8 (below HEA 10 wt %). However, the surface contact angle of Acryl-10 to Acryl-40 (HEA 10 wt % to 40 wt %) increased up to 92.29°, indicating hydrophobicity. All acrylic PSA films showed high adhesive force above 1800 gf/25 mm. According to X-ray diffraction (XRD) measurement, hydrophilic acrylic PSAs exhibited amorphous property and it was confirmed that the morphology of acrylic PSA film was significantly affected by the flexibility of the polymer chain and the strength of hydrogen bonding. The affinity with hydrophilic materials for acrylic PSA films was evaluated by T-type peel test, confirming that the affinity with hydrophilic materials is determined by the hydrophilicity of the acrylic PSA film. The synthesized acrylic PSA film is non-toxic regardless of the hydrophilicity.
Collapse
|
7
|
|
8
|
del Prado A, González‐Rodríguez D, Wu Y. Functional Systems Derived from Nucleobase Self-assembly. ChemistryOpen 2020; 9:409-430. [PMID: 32257750 PMCID: PMC7110180 DOI: 10.1002/open.201900363] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Revised: 03/05/2020] [Indexed: 12/12/2022] Open
Abstract
Dynamic and reversible non-covalent interactions endow synthetic systems and materials with smart adaptive functions that allow them to response to diverse stimuli, interact with external agents, or repair structural defects. Inspired by the outstanding performance and selectivity of DNA in living systems, scientists are increasingly employing Watson-Crick nucleobase pairing to control the structure and properties of self-assembled materials. Two sets of complementary purine-pyrimidine pairs (guanine:cytosine and adenine:thymine(uracil)) are available that provide selective and directional H-bonding interactions, present multiple metal-coordination sites, and exhibit rich redox chemistry. In this review, we highlight several recent examples that profit from these features and employ nucleobase interactions in functional systems and materials, covering the fields of energy/electron transfer, charge transport, adaptive nanoparticles, porous materials, macromolecule self-assembly, or polymeric materials with adhesive or self-healing ability.
Collapse
Affiliation(s)
- Anselmo del Prado
- Departamento de Química OrgánicaFacultad de CienciasUniversidad Autónoma de Madrid28049MadridSpain
| | - David González‐Rodríguez
- Departamento de Química OrgánicaFacultad de CienciasUniversidad Autónoma de Madrid28049MadridSpain
- Institute for Advanced Research in Chemical Sciences (IAdChem)Universidad Autónoma de Madrid28049MadridSpain
| | - Yi‐Lin Wu
- School of ChemistryCardiff UniversityPark PlaceCardiffCF10 3ATUK
| |
Collapse
|
9
|
Li J, Wang Z, Hua Z, Tang C. Supramolecular nucleobase-functionalized polymers: synthesis and potential biological applications. J Mater Chem B 2020; 8:1576-1588. [DOI: 10.1039/c9tb02393c] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
This Perspective article summarizes the synthesis of nucleobase functionalized polymers and highlights issues and challenges following their potential biological applications.
Collapse
Affiliation(s)
- Jianjun Li
- Biomass Molecular Engineering Center
- Anhui Agricultural University
- Hefei
- China
| | - Zhongkai Wang
- Biomass Molecular Engineering Center
- Anhui Agricultural University
- Hefei
- China
- Department of Materials Science and Engineering
| | - Zan Hua
- Biomass Molecular Engineering Center
- Anhui Agricultural University
- Hefei
- China
- Department of Materials Science and Engineering
| | - Chuanbing Tang
- Department of Chemistry and Biochemistry
- University of South Carolina
- USA
| |
Collapse
|
10
|
Mao BH, EL-Mahdy AFM, Kuo SW. Bio-inspired multiple complementary hydrogen bonds enhance the miscibility of conjugated polymers blended with polystyrene derivatives. JOURNAL OF POLYMER RESEARCH 2019. [DOI: 10.1007/s10965-019-1875-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|
11
|
Wang L, Wang M, Guo LX, Sun Y, Zhang XQ, Lin BP, Yang H. Oligodeoxynucleosides with Olefin Bridges. Macromolecules 2018. [DOI: 10.1021/acs.macromol.8b02115] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Affiliation(s)
- Li Wang
- School of Chemistry and Chemical Engineering, Jiangsu Province Hi-Tech Key Laboratory for Bio-medical Research, Jiangsu Key Laboratory for Science and Application of Molecular Ferroelectrics, Southeast University, Nanjing, Jiangsu Province 211189, China
| | - Meng Wang
- School of Chemistry and Chemical Engineering, Jiangsu Province Hi-Tech Key Laboratory for Bio-medical Research, Jiangsu Key Laboratory for Science and Application of Molecular Ferroelectrics, Southeast University, Nanjing, Jiangsu Province 211189, China
| | - Ling-Xiang Guo
- School of Chemistry and Chemical Engineering, Jiangsu Province Hi-Tech Key Laboratory for Bio-medical Research, Jiangsu Key Laboratory for Science and Application of Molecular Ferroelectrics, Southeast University, Nanjing, Jiangsu Province 211189, China
| | - Ying Sun
- School of Chemistry and Chemical Engineering, Jiangsu Province Hi-Tech Key Laboratory for Bio-medical Research, Jiangsu Key Laboratory for Science and Application of Molecular Ferroelectrics, Southeast University, Nanjing, Jiangsu Province 211189, China
| | - Xue-Qin Zhang
- School of Chemistry and Chemical Engineering, Jiangsu Province Hi-Tech Key Laboratory for Bio-medical Research, Jiangsu Key Laboratory for Science and Application of Molecular Ferroelectrics, Southeast University, Nanjing, Jiangsu Province 211189, China
| | - Bao-Ping Lin
- School of Chemistry and Chemical Engineering, Jiangsu Province Hi-Tech Key Laboratory for Bio-medical Research, Jiangsu Key Laboratory for Science and Application of Molecular Ferroelectrics, Southeast University, Nanjing, Jiangsu Province 211189, China
| | - Hong Yang
- School of Chemistry and Chemical Engineering, Jiangsu Province Hi-Tech Key Laboratory for Bio-medical Research, Jiangsu Key Laboratory for Science and Application of Molecular Ferroelectrics, Southeast University, Nanjing, Jiangsu Province 211189, China
| |
Collapse
|
12
|
Alghamdi AA, Alsolami A, Saeed WS, Al-Odayni ABM, Semlali A, Aouak T. Miscibility of poly(acrylic acid)/poly(methyl vinyl ketone) blend and in vitro application as drug carrier system. Des Monomers Polym 2018; 21:145-162. [PMID: 30275803 PMCID: PMC6161612 DOI: 10.1080/15685551.2018.1521563] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2018] [Accepted: 08/31/2018] [Indexed: 11/04/2022] Open
Abstract
A series of poly(acrylic acid)/poly(methyl vinyl ketone) (PAA/PMVK) blends with different compositions were prepared by the solvent casting method. The miscibility of this pair of polymers was investigated by differential scanning calorimetry(DSC), Fourier transform infra-red (FTIR) and X-Ray diffraction (XRD) techniques. An in-vitro cytotoxicity test of the drug-carrier system via MTT (3-(4,5-demethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) assay revealed no significant cytotoxic effects at concentrations up to 100 µg· ml−1. The STX/PAA-50 drug carrier systems were also prepared by solvent casting of solutions containing the sulfamethoxazole (STX) used as drug model and PAA/PMVK blend in N.N-dimethylformamide then crosslinked with acidified ethylene glycol. The release dynamic of STX from the prepared hydrogels was investigated in which the diffusion through the polymer matrix, the enhancement of the water solubility of STX, the influence of the initial drug concentration, the pH of the medium, and the effect of the degree of swelling of the polymer matrix on the release dynamic was evaluated. According to the total gastrointestinal transit time estimated by Belzer, the estimate distribution of STX released in the different organs indicated that the performance is obtained with the drug – carrier-system containing equal ratios of polymer and 10 wt% of STX (STX-10/PAA-50).
Collapse
Affiliation(s)
| | - Abdulellah Alsolami
- Chemistry Department, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Waseem Sharaf Saeed
- Chemistry Department, College of Science, King Saud University, Riyadh, Saudi Arabia
| | | | - Abdelhabib Semlali
- Biochemistry department, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Taieb Aouak
- Chemistry Department, College of Science, King Saud University, Riyadh, Saudi Arabia
| |
Collapse
|
13
|
Self-Assembled Structures of Diblock Copolymer/Homopolymer Blends through Multiple Complementary Hydrogen Bonds. CRYSTALS 2018. [DOI: 10.3390/cryst8080330] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
A poly(styrene-b-vinylbenzyl triazolylmethyl methyladenine) (PS-b-PVBA) diblock copolymer and a poly(vinylbenzyl triazolylmethyl methylthymine) (PVBT) homopolymer were prepared through a combination of nitroxide-mediated radical polymerizations and click reactions. Strong multiple hydrogen bonding interactions of the A···T binary pairs occurred in the PVBA/PVBT miscible domain of the PS-b-PVBA/PVPT diblock copolymer/homopolymer blend, as evidenced in Fourier transform infrared and 1H nuclear magnetic resonance spectra. The self-assembled lamellar structure of the pure PS-b-PVBA diblock copolymer after thermal annealing was transformed to a cylinder structure after blending with PVBT at lower concentrations and then to a disordered micelle or macrophase structure at higher PVBT concentrations, as revealed by small-angle X-ray scattering and transmission electron microscopy.
Collapse
|
14
|
|
15
|
Yang H, Xi W. Nucleobase-Containing Polymers: Structure, Synthesis, and Applications. Polymers (Basel) 2017; 9:E666. [PMID: 30965964 PMCID: PMC6418729 DOI: 10.3390/polym9120666] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2017] [Revised: 11/25/2017] [Accepted: 11/27/2017] [Indexed: 01/07/2023] Open
Abstract
Nucleobase interactions play a fundamental role in biological functions, including transcription and translation. Natural nucleic acids like DNA are also widely implemented in material realm such as DNA guided self-assembly of nanomaterials. Inspired by that, polymer chemists have contributed phenomenal endeavors to mimic both the structures and functions of natural nucleic acids in synthetic polymers. Similar sequence-dependent responses were observed and employed in the self-assembly of these nucleobase-containing polymers. Here, the structures, synthetic approaches, and applications of nucleobase-containing polymers are highlighted and a brief look is taken at the future development of these polymers.
Collapse
Affiliation(s)
- Haitao Yang
- School of Materials Science and Engineering, Nanchang Hangkong University, Nanchang 330063, China.
| | - Weixian Xi
- Department of Chemical and Biomolecular Engineering, University of California Los Angeles, Los Angeles, CA 90095, USA.
- Department of Orthopedic Surgery, University of California Los Angeles, Los Angeles, CA 90095, USA.
| |
Collapse
|
16
|
Wu YC, Lu YS, Prasad Bastakoti B, Li Y, Pramanik M, Shahriar Hossain M, Yanmaz E, Kuo SW. Mesoporous TiO2Thin Film Formed From a Bioinspired Supramolecular Assembly. ChemistrySelect 2016. [DOI: 10.1002/slct.201601164] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Yi-Chen Wu
- Materials and Optoelectronic Science; National Sun Yat-Sen University; Center for Nanoscience and Nanotechnology; Kaohsiung 804 Taiwan
- World Premier International (WPI) Research Center for Materials Nanoarchitectonics (MANA); National Institute for Materials Science (NIMS); 1-1 Namiki Tsukuba, Ibaraki 305-0044 Japan
| | - Y. S. Lu
- Materials and Optoelectronic Science; National Sun Yat-Sen University; Center for Nanoscience and Nanotechnology; Kaohsiung 804 Taiwan
| | - Bishnu Prasad Bastakoti
- World Premier International (WPI) Research Center for Materials Nanoarchitectonics (MANA); National Institute for Materials Science (NIMS); 1-1 Namiki Tsukuba, Ibaraki 305-0044 Japan
| | - Yunqi Li
- World Premier International (WPI) Research Center for Materials Nanoarchitectonics (MANA); National Institute for Materials Science (NIMS); 1-1 Namiki Tsukuba, Ibaraki 305-0044 Japan
| | - Malay Pramanik
- World Premier International (WPI) Research Center for Materials Nanoarchitectonics (MANA); National Institute for Materials Science (NIMS); 1-1 Namiki Tsukuba, Ibaraki 305-0044 Japan
| | - M. Shahriar Hossain
- Australian Institute for Innovative Materials (AIIM); University of Wollongong; Squires Way North Wollongong, NSW 2500 Australia
| | - Ekrem Yanmaz
- Department of Mechatronics, Faculty of Engineering and Architecture; Gelisim University; Istanbul 34315 Turkey
| | - Shiao-Wei Kuo
- Materials and Optoelectronic Science; National Sun Yat-Sen University; Center for Nanoscience and Nanotechnology; Kaohsiung 804 Taiwan
| |
Collapse
|
17
|
Shih HK, Hsieh CC, Mohamed MG, Zhu CY, Kuo SW. Ternary polybenzoxazine/POSS/SWCNT hybrid nanocomposites stabilized through supramolecular interactions. SOFT MATTER 2016; 12:1847-1858. [PMID: 26685885 DOI: 10.1039/c5sm02569a] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
In this study we linked zero-dimensional polyhedral oligomeric silsesquioxane (POSS) with one-dimensional single-walled carbon nanotubes (SWCNTs) as dual-dimensional nanohybrid complexes within polybenzoxazine matrices, stabilized through noncovalent supramolecular interactions. First, we synthesized a new bifunctionalized benzoxazine (Py-Bz-T), presenting thymine (T) and pyrene (Py) units, that displayed excellent thermal properties after thermal curing, because its T moieties increased the physical cross-linking density. Second, we prepared Py-Bz-T/OBA-POSS [octuply adenine (A)-functionalized POSS] nanocomposites and investigated, using nuclear magnetic resonance and Fourier transform infrared spectroscopies, the multiple hydrogen bonding AT interactions between Py-Bz-T and OBA-POSS. Finally, we prepared Py-Bz-T/OBA-POSS/SWCNT ternary hybrid complexes dispersed in THF, stabilized through both multiple hydrogen bonding and π-π stacking interactions. Transmission electron microscopy revealed that the SWCNTs were highly dispersed and covered by the Py-Bz-T/OBA-POSS nanocomposites; these ternary hybrid complexes were stabilized through π-π interactions between Py-Bz-T/OBA-POSS and the SWCNTs, as evidenced using fluorescence spectroscopy.
Collapse
Affiliation(s)
- Hsi-Kang Shih
- Institute of Applied Chemistry, National Chiao Tung University, HsinChu, 300 Taiwan.
| | | | | | | | | |
Collapse
|
18
|
Miscibility and Hydrogen Bonding in Blends of Poly(4-vinylphenol)/Poly(vinyl methyl ketone). Polymers (Basel) 2014. [DOI: 10.3390/polym6112752] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
|