1
|
Magi MS, Lopez-Vidal L, Rega P, Ibarra M, Palma SD, Jimenez Kairuz A, Real JP. 3D printed benznidazole tablets based on an interpolyelectrolyte complex by melting solidification printing process (MESO-PP): An innovative strategy for personalized treatment of Chagas disease. Int J Pharm 2024; 662:124476. [PMID: 39029635 DOI: 10.1016/j.ijpharm.2024.124476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 07/12/2024] [Accepted: 07/13/2024] [Indexed: 07/21/2024]
Abstract
3D printing technology is revolutionizing pharmaceuticals, offering tailored solutions for solid dosage forms. This innovation is particularly significant for conditions like Chagas disease, which require weight-dependent treatments. In this work, a formulation of benznidazole (BNZ), the primary treatment for this infection, was developed to be utilized with the Melting Solidification Printing Process (MESO-PP) 3D printing technique. Considering the limited aqueous solubility of BNZ, an interpolyelectrolyte complex (IPEC), composed of chitosan and pectin, was integrated to improve its dissolution profile. The formulations, also called inks in this context, with and without IPEC were integrally characterized and compared. The printing process was studied, the release of BNZ from 3D-prints (3DP) was exhaustively analyzed and a physiologically based pharmacokinetic model (PKPB) was developed to forecast their pharmacokinetic performance. 3DP were successfully achieved loading 25, 50 and 100 mg of BNZ. The presence of the IPEC in the ink caused a decrease in the crystalline domain of BNZ and facilitated the printing process, reaching a print success rate of 83.3 %. Interestingly, 3DP-IPEC showed accelerated release dissolution profiles, releasing over 85 % of BNZ in 90 min, while 3DP took up to 48 h for doses above 25 mg. The PBPK model demonstrated that 3DP-IPEC tablets would present high bioavailability (0.92), higher than 3DP (0.36) and similar to the commercial product. This breakthrough holds immense potential for improving treatment outcomes for neglected diseases.
Collapse
Affiliation(s)
- María Sol Magi
- Universidad Nacional de Córdoba, Facultad de Ciencias Químicas, Departamento de Ciencias Farmacéuticas, Córdoba, Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas, CONICET, Unidad de Investigación y Desarrollo en Tecnología Farmacéutica, UNITEFA, Córdoba, Argentina
| | - Lucía Lopez-Vidal
- Universidad Nacional de Córdoba, Facultad de Ciencias Químicas, Departamento de Ciencias Farmacéuticas, Córdoba, Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas, CONICET, Unidad de Investigación y Desarrollo en Tecnología Farmacéutica, UNITEFA, Córdoba, Argentina
| | - Patricia Rega
- Centro de Evaluación de Biodisponibilidad y Bioequivalencia de Medicamentos (CEBIOBE), Departamento de Ciencias Farmacéuticas, Facultad de Química, Universidad de la República, Montevideo, Uruguay
| | - Manuel Ibarra
- Centro de Evaluación de Biodisponibilidad y Bioequivalencia de Medicamentos (CEBIOBE), Departamento de Ciencias Farmacéuticas, Facultad de Química, Universidad de la República, Montevideo, Uruguay
| | - Santiago Daniel Palma
- Universidad Nacional de Córdoba, Facultad de Ciencias Químicas, Departamento de Ciencias Farmacéuticas, Córdoba, Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas, CONICET, Unidad de Investigación y Desarrollo en Tecnología Farmacéutica, UNITEFA, Córdoba, Argentina
| | - Alvaro Jimenez Kairuz
- Universidad Nacional de Córdoba, Facultad de Ciencias Químicas, Departamento de Ciencias Farmacéuticas, Córdoba, Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas, CONICET, Unidad de Investigación y Desarrollo en Tecnología Farmacéutica, UNITEFA, Córdoba, Argentina.
| | - Juan Pablo Real
- Universidad Nacional de Córdoba, Facultad de Ciencias Químicas, Departamento de Ciencias Farmacéuticas, Córdoba, Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas, CONICET, Unidad de Investigación y Desarrollo en Tecnología Farmacéutica, UNITEFA, Córdoba, Argentina.
| |
Collapse
|
2
|
Mittal A, Singh A, Buatong J, Saetang J, Benjakul S. Chitooligosaccharide and Its Derivatives: Potential Candidates as Food Additives and Bioactive Components. Foods 2023; 12:3854. [PMID: 37893747 PMCID: PMC10606384 DOI: 10.3390/foods12203854] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 10/17/2023] [Accepted: 10/19/2023] [Indexed: 10/29/2023] Open
Abstract
Chitooligosaccharide (CHOS), a depolymerized chitosan, can be prepared via physical, chemical, and enzymatic hydrolysis, or a combination of these techniques. The superior properties of CHOS have attracted attention as alternative additives or bioactive compounds for various food and biomedical applications. To increase the bioactivities of a CHOS, its derivatives have been prepared via different methods and were characterized using various analytical methods including FTIR and NMR spectroscopy. CHOS derivatives such as carboxylated CHOS, quaternized CHOS, and others showed their potential as potent anti-inflammatory, anti-obesity, neuroprotective, and anti-cancer agents, which could further be used for human health benefits. Moreover, enhanced antibacterial and antioxidant bioactivities, especially for a CHOS-polyphenol conjugate, could play a profound role in shelf-life extension and the safety assurance of perishable foods via the inhibition of spoilage microorganisms and pathogens and lipid oxidation. Also, the effectiveness of CHOS derivatives for shelf-life extension can be augmented when used in combination with other preservative technologies. Therefore, this review provides an overview of the production of a CHOS and its derivatives, as well as their potential applications in food as either additives or nutraceuticals. Furthermore, it revisits recent advancements in translational research and in vivo studies on CHOS and its derivatives in the medical-related field.
Collapse
Affiliation(s)
- Ajay Mittal
- International Center of Excellence in Seafood Science and Innovation, Faculty of Agro-Industry, Prince of Songkla University, Hat Yai 90110, Songkhla, Thailand; (A.M.); (A.S.); (J.B.); (J.S.)
| | - Avtar Singh
- International Center of Excellence in Seafood Science and Innovation, Faculty of Agro-Industry, Prince of Songkla University, Hat Yai 90110, Songkhla, Thailand; (A.M.); (A.S.); (J.B.); (J.S.)
| | - Jirayu Buatong
- International Center of Excellence in Seafood Science and Innovation, Faculty of Agro-Industry, Prince of Songkla University, Hat Yai 90110, Songkhla, Thailand; (A.M.); (A.S.); (J.B.); (J.S.)
| | - Jirakrit Saetang
- International Center of Excellence in Seafood Science and Innovation, Faculty of Agro-Industry, Prince of Songkla University, Hat Yai 90110, Songkhla, Thailand; (A.M.); (A.S.); (J.B.); (J.S.)
| | - Soottawat Benjakul
- International Center of Excellence in Seafood Science and Innovation, Faculty of Agro-Industry, Prince of Songkla University, Hat Yai 90110, Songkhla, Thailand; (A.M.); (A.S.); (J.B.); (J.S.)
- Department of Food and Nutrition, Kyung Hee University, Seoul 02447, Republic of Korea
| |
Collapse
|
3
|
Shebis Y, Vanegas A, Tish N, Fallik E, Rodov V, Poverenov E. Facile method for preparation of oligo-carboxymethyl cellulose and other oligosaccharides: Physicochemical properties and bioactivity. Food Hydrocoll 2022. [DOI: 10.1016/j.foodhyd.2022.107530] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
4
|
Singh A, Mittal A, Benjakul S. Chitosan, Chitooligosaccharides and Their Polyphenol Conjugates: Preparation, Bioactivities, Functionalities and Applications in Food Systems. FOOD REVIEWS INTERNATIONAL 2021. [DOI: 10.1080/87559129.2021.1950176] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Avtar Singh
- International Center of Excellence in Seafood Science and Innovation (ICE-SSI), Faculty of Agro-Industry, Prince of Songkla University, Hat Yai, Songkhla, Thailand
| | - Ajay Mittal
- International Center of Excellence in Seafood Science and Innovation (ICE-SSI), Faculty of Agro-Industry, Prince of Songkla University, Hat Yai, Songkhla, Thailand
| | - Soottawat Benjakul
- International Center of Excellence in Seafood Science and Innovation (ICE-SSI), Faculty of Agro-Industry, Prince of Songkla University, Hat Yai, Songkhla, Thailand
| |
Collapse
|
5
|
Zhou J, Wen B, Xie H, Zhang C, Bai Y, Cao H, Che Q, Guo J, Su Z. Advances in the preparation and assessment of the biological activities of chitosan oligosaccharides with different structural characteristics. Food Funct 2021; 12:926-951. [PMID: 33434251 DOI: 10.1039/d0fo02768e] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Chitosan oligosaccharides (COSs) are widely used biopolymers that have been studied in relation to a variety of abnormal biological activities in the food and biomedical fields. Since different COS preparation technologies produce COS compounds with different structural characteristics, it has not yet been possible to determine whether one or more chito-oligomers are primarily responsible for the bioactivity of COSs. The inherent biocompatibility, mucosal adhesion and nontoxic nature of COSs are well documented, as is the fact that they are readily absorbed from the intestinal tract, but their structure-activity relationship requires further investigation. This review summarizes the methods used for COS preparation, and the research findings with regard to the antioxidant, anti-inflammatory, anti-obesity, bacteriostatic and antitumour activity of COSs with different structural characteristics. The correlation between the molecular structure and bioactivities of COSs is described, and new insights into their structure-activity relationship are provided.
Collapse
Affiliation(s)
- Jingwen Zhou
- Guangdong Engineering Research Center of Natural Products and New Drugs, Guangdong Provincial University Engineering Technology Research Center of Natural Products and Drugs, Guangdong Pharmaceutical University, Guangzhou (510006), China. and Guangdong Metabolic Diseases Research Centre of Integrated Chinese and Western Medicine, Guangdong Pharmaceutical University, Guangzhou (510006), China.
| | - Bingjian Wen
- Guangdong Engineering Research Center of Natural Products and New Drugs, Guangdong Provincial University Engineering Technology Research Center of Natural Products and Drugs, Guangdong Pharmaceutical University, Guangzhou (510006), China. and Guangdong Metabolic Diseases Research Centre of Integrated Chinese and Western Medicine, Guangdong Pharmaceutical University, Guangzhou (510006), China.
| | - Hongyi Xie
- Guangdong Engineering Research Center of Natural Products and New Drugs, Guangdong Provincial University Engineering Technology Research Center of Natural Products and Drugs, Guangdong Pharmaceutical University, Guangzhou (510006), China. and Guangdong Metabolic Diseases Research Centre of Integrated Chinese and Western Medicine, Guangdong Pharmaceutical University, Guangzhou (510006), China.
| | - Chengcheng Zhang
- Guangdong Engineering Research Center of Natural Products and New Drugs, Guangdong Provincial University Engineering Technology Research Center of Natural Products and Drugs, Guangdong Pharmaceutical University, Guangzhou (510006), China. and Guangdong Metabolic Diseases Research Centre of Integrated Chinese and Western Medicine, Guangdong Pharmaceutical University, Guangzhou (510006), China.
| | - Yan Bai
- School of Public Health, Guangdong Pharmaceutical University, Guangzhou (510310), China
| | - Hua Cao
- School of Chemistry and Chemical Engineering, Guangdong Pharmaceutical University, Zhongshan (528458), China
| | - Qishi Che
- Guangzhou Rainhome Pharm & Tech Co., Ltd, Science City, Guangzhou (510663), China
| | - Jiao Guo
- Guangdong Metabolic Diseases Research Centre of Integrated Chinese and Western Medicine, Guangdong Pharmaceutical University, Guangzhou (510006), China.
| | - Zhengquan Su
- Guangdong Engineering Research Center of Natural Products and New Drugs, Guangdong Provincial University Engineering Technology Research Center of Natural Products and Drugs, Guangdong Pharmaceutical University, Guangzhou (510006), China.
| |
Collapse
|
6
|
Nonspecific enzymatic hydrolysis of a highly ordered chitopolysaccharide substrate. Carbohydr Res 2020; 498:108191. [PMID: 33157460 DOI: 10.1016/j.carres.2020.108191] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Revised: 10/26/2020] [Accepted: 10/29/2020] [Indexed: 11/21/2022]
Abstract
Chitin and chitosan can undergo nonspecific enzymatic hydrolysis by several different hydrolases. This susceptibility to nonspecific enzymes opens up many opportunities for producing chitooligosaccharides and low molecular weight chitopolysaccharides, since specific chitinases and chitosanases are rare and not commercially available. In this study, chitosan and chitin were hydrolyzed using several commercially available hydrolases. Among them, cellulases with the highest specific activity demonstrated the best activity, as indicated by the rapid decrease in viscosity of a chitosan solution. The hydrolysis of chitosan by nonspecific enzymes generated a sugar release that corresponded to the decrease in the degree of polymerization. This decrease reached a maximum of 3.3-fold upon hydrolysis of 10% of the sample. Cellulases were better than lysozyme or amylases at hydrolyzing chitosan and chitin. Analysis of 13C CP-MAS NMR and FTIR spectra of chitin after cellulase treatment revealed changes in the chitin crystal structure related to rearrangement of inter- and intramolecular H-bonds. The structural changes and decreases in crystallinity allowed dissolution of chitin molecules of high molecular weight and enhanced the solubility of chitin in alkali by 10-12% compared to untreated chitin.
Collapse
|
7
|
Akhil Kumar MM, Biju VM. A cost-effective chitosan–oxine based thin film for a volatile acid vapour sensing application. NEW J CHEM 2020. [DOI: 10.1039/d0nj01757d] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A polymer film based chemosensor was developed through the immobilization of chitosan and oxine, for the detection of TFA vapors.
Collapse
Affiliation(s)
- M. M. Akhil Kumar
- Department of Chemistry
- National Institute of Technology
- Tiruchirappalli 620015
- India
| | - V. M. Biju
- Department of Chemistry
- National Institute of Technology
- Tiruchirappalli 620015
- India
| |
Collapse
|
8
|
Singh A, Benjakul S, Prodpran T. Chitooligosaccharides from squid pen prepared using different enzymes: characteristics and the effect on quality of surimi gel during refrigerated storage. FOOD PRODUCTION, PROCESSING AND NUTRITION 2019. [DOI: 10.1186/s43014-019-0005-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Abstract
Chitooligosaccharides (COS) from squid pen produced using amylase, lipase and pepsin were characterized. COS produced by 8% (w/w) lipase (COS-L) showed the maximum FRAP and ABTS radical scavenging activity than those prepared using other two enzymes. COS-L had the average molecular weight (MW) of 79 kDa, intrinsic viscosity of 0.41 dL/g and water solubility of 49%. DPPH, ABTS radical scavenging activities, FRAP and ORAC of COS-L were 5.68, 322.68, 5.66 and 42.20 μmol TE/g sample, respectively. Metal chelating activity was 2.58 μmol EE/g sample. For antibacterial activity, minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) of COS-L against the targeted bacteria were in the range of 0.31–4.91 mg/mL and 0.62–4.91 mg/mL, respectively. Sardine surimi gel added with 1% (w/w) COS-L showed the lower PV, TBARS and microbial growth during 10 days of storage at 4 °C. COS-L from squid pen could inhibit lipid oxidation and extend the shelf-life of refrigerated sardine surimi gel.
Graphical abstract
Collapse
|
9
|
Synthesis and surface modification of chitosan built nanohydrogel with antiviral and antimicrobial agent for controlled drug delivery. BIOINTERFACE RESEARCH IN APPLIED CHEMISTRY 2019. [DOI: 10.33263/briac96.439445] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
As hydrophobic drug carriers, chitosan (CS) and Starch (SR) were copolymerized as biodegradable nanohydrogel and were functionalized with pthalic-anhydride and hexamethylenetetramine via 1-ethyl-3-(3-dimethylaminopropyl) carbodiimide catalyzed coupling, respectively. The structure, morphology, physicochemical and drug loading performance of native and functioned hydrogel were investigated by using several characterization techniques. With the successive functionalization the significant properties like porosity increases and crosslinking density decreases due to the formation of hydrophilic contacts with aqueous solutions. The FESEM analysis revealed the hydrogel matrices with uniform particle size, porosity and deep pores with high internal surface area for extreme swelling and interacting with the drug and biomolecules for efficient drug administration. The effect of induced functionalities on the physicochemical performance and release of hydrophobic- anionic model drug (Bromocresol green) were studied at physiological conditions. The drug release capability of the synthesized nanohydrogel was increased from 65% to 80% and 85% by successive functionalization. The drug administration in selective hydrogel was not significant, presumably due to stronger H-bonding and entanglement within the system which was finely tuned by the induced hydrophilic, flexible and biocompatible functionalities in term of extended interfaces for the drug solutions. The physicochemical and electrokinetic performances suggested the selective hydrogel as promising carriers for the hydrophobic- anionic drugs at physiological conditions.
Collapse
|
10
|
Ismail SA. Microbial valorization of shrimp byproducts via the production of thermostable chitosanase and antioxidant chitooligosaccharides. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2019. [DOI: 10.1016/j.bcab.2019.101269] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
11
|
Stabilization of chitosan based electrospun nanofibers through a simple and safe method. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2019; 98:369-380. [DOI: 10.1016/j.msec.2018.12.133] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2018] [Revised: 11/25/2018] [Accepted: 12/28/2018] [Indexed: 12/15/2022]
|
12
|
Poshina DN, Raik SV, Poshin AN, Skorik YA. Accessibility of chitin and chitosan in enzymatic hydrolysis: A review. Polym Degrad Stab 2018. [DOI: 10.1016/j.polymdegradstab.2018.09.005] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
13
|
Essel TYA, Koomson A, Seniagya MPO, Cobbold GP, Kwofie SK, Asimeng BO, Arthur PK, Awandare G, Tiburu EK. Chitosan Composites Synthesized Using Acetic Acid and Tetraethylorthosilicate Respond Differently to Methylene Blue Adsorption. Polymers (Basel) 2018; 10:E466. [PMID: 30966500 PMCID: PMC6415437 DOI: 10.3390/polym10050466] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2018] [Revised: 03/22/2018] [Accepted: 04/11/2018] [Indexed: 02/05/2023] Open
Abstract
The sol-gel and cross-linking processes have been used by researchers to synthesize silica-based nanostructures and optimize their size and morphology by changing either the material or the synthesis conditions. However, the influence of the silica nanostructures on the overall physicochemical and mechanistic properties of organic biopolymers such as chitosan has received limited attention. The present study used a one-step synthetic method to obtain chitosan composites to monitor the uptake and release of a basic cationic dye (methylene blue) at two different pH values. Firstly, the composites were synthesized and characterized by Fourier Transform Infrared Spectroscopy (FTIR) and X-ray Diffraction (XRD) to ascertain their chemical identity. Adsorption studies were conducted suing methylene blue and these studies revealed that Acetic Acid-Chitosan (AA-CHI), Tetraethylorthosilicate-Chitosan (TEOS-CHI), Acetic Acid-Tetraethylorthosilicate-Chitosan (AA-TEOS-CHI), and Acetic Acid-Chitosan-Tetraethylorthosilicate (AA-CHI-TEOS) had comparatively lower percentage adsorbances in acidic media after 40 h, with AA-CHI adsorbing most of the methylene blue dye. In contrast, these materials recorded higher percentage adsorbances of methylene blue in the basic media. The release profiles of these composites were fitted with an exponential model. The R-squared values obtained indicated that the AA-CHI at pH ~ 2.6 and AA-TEOS-CHI at pH ~ 7.2 of methylene blue had steady and consistent release profiles. The release mechanisms were analyzed using Korsmeyer-Peppas and Hixson-Crowell models. It was deduced that the release profiles of the majority of the synthesized chitosan beads were influenced by the conformational or surface area changes of the methylene blue. This was justified by the higher correlation coefficient or Pearson's R values (R ≥ 0.5) computed from the Hixson-Crowell model. The results from this study showed that two of the novel materials comprising acetic acid-chitosan and a combination of equimolar ratios of acetic acid-TEOS-chitosan could be useful pH-sensitive probes for various biomedical applications, whereas the other materials involving the two-step synthesis could be found useful in environmental remediation of toxic materials.
Collapse
Affiliation(s)
- Thomas Y A Essel
- Department of Biomedical Engineering, University of Ghana, P.O. Box LG 25, Legon, Ghana.
| | - Albert Koomson
- Department of Biomedical Engineering, University of Ghana, P.O. Box LG 25, Legon, Ghana.
| | - Marie-Pearl O Seniagya
- Department of Biomedical Engineering, University of Ghana, P.O. Box LG 25, Legon, Ghana.
| | - Grace P Cobbold
- Department of Biomedical Engineering, University of Ghana, P.O. Box LG 25, Legon, Ghana.
| | - Samuel K Kwofie
- Department of Biomedical Engineering, University of Ghana, P.O. Box LG 25, Legon, Ghana.
- West Africa Center for Cell Biology of Infectious Pathogens (WACCBIP), University of Ghana, P.O. Box LG 25, Legon, Ghana.
| | - Bernard O Asimeng
- Department of Biomedical Engineering, University of Ghana, P.O. Box LG 25, Legon, Ghana.
| | - Patrick K Arthur
- Department of Biochemistry, Cell and Molecular Biology, University of Ghana, P.O. Box LG 25, Legon, Ghana.
- West Africa Center for Cell Biology of Infectious Pathogens (WACCBIP), University of Ghana, P.O. Box LG 25, Legon, Ghana.
| | - Gordon Awandare
- Department of Biochemistry, Cell and Molecular Biology, University of Ghana, P.O. Box LG 25, Legon, Ghana.
- West Africa Center for Cell Biology of Infectious Pathogens (WACCBIP), University of Ghana, P.O. Box LG 25, Legon, Ghana.
| | - Elvis K Tiburu
- Department of Biomedical Engineering, University of Ghana, P.O. Box LG 25, Legon, Ghana.
- West Africa Center for Cell Biology of Infectious Pathogens (WACCBIP), University of Ghana, P.O. Box LG 25, Legon, Ghana.
| |
Collapse
|