1
|
Wang S, Neufurth M, Schepler H, Tan R, She Z, Al-Nawas B, Wang X, Schröder HC, Müller WEG. Acceleration of Wound Healing through Amorphous Calcium Carbonate, Stabilized with High-Energy Polyphosphate. Pharmaceutics 2023; 15:pharmaceutics15020494. [PMID: 36839816 PMCID: PMC9961744 DOI: 10.3390/pharmaceutics15020494] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 01/28/2023] [Accepted: 01/29/2023] [Indexed: 02/05/2023] Open
Abstract
Amorphous calcium carbonate (ACC), precipitated in the presence of inorganic polyphosphate (polyP), has shown promise as a material for bone regeneration due to its morphogenetic and metabolic energy (ATP)-delivering properties. The latter activity of the polyP-stabilized ACC ("ACC∙PP") particles is associated with the enzymatic degradation of polyP, resulting in the transformation of ACC into crystalline polymorphs. In a novel approach, stimulated by these results, it was examined whether "ACC∙PP" also promotes the healing of skin injuries, especially chronic wounds. In in vitro experiments, "ACC∙PP" significantly stimulated the migration of endothelial cells, both in tube formation and scratch assays (by 2- to 3-fold). Support came from ex vivo experiments showing increased cell outgrowth in human skin explants. The transformation of ACC into insoluble calcite was suppressed by protein/serum being present in wound fluid. The results were confirmed in vivo in studies on normal (C57BL/6) and diabetic (db/db) mice. Topical administration of "ACC∙PP" significantly accelerated the rate of re-epithelialization, particularly in delayed healing wounds in diabetic mice (day 7: 1.5-fold; and day 13: 1.9-fold), in parallel with increased formation/maturation of granulation tissue. The results suggest that administration of "ACC∙PP" opens a new strategy to improve ATP-dependent wound healing, particularly in chronic wounds.
Collapse
Affiliation(s)
- Shunfeng Wang
- ERC Advanced Investigator Grant Research Group at the Institute for Physiological Chemistry, University Medical Center of the Johannes Gutenberg University, Duesbergweg 6, D-55128 Mainz, Germany
| | - Meik Neufurth
- ERC Advanced Investigator Grant Research Group at the Institute for Physiological Chemistry, University Medical Center of the Johannes Gutenberg University, Duesbergweg 6, D-55128 Mainz, Germany
| | - Hadrian Schepler
- Department of Dermatology, University Clinic Mainz, Langenbeckstr. 1, D-55131 Mainz, Germany
| | - Rongwei Tan
- Shenzhen Lando Biomaterials Co., Ltd., Building B3, Unit 2B-C, China Merchants Guangming Science Park, Guangming District, Shenzhen 518107, China
| | - Zhending She
- Shenzhen Lando Biomaterials Co., Ltd., Building B3, Unit 2B-C, China Merchants Guangming Science Park, Guangming District, Shenzhen 518107, China
| | - Bilal Al-Nawas
- Clinic for Oral and Maxillofacial Surgery and Plastic Surgery, University Medical Center of the Johannes Gutenberg University, Augustusplatz 2, D-55131 Mainz, Germany
| | - Xiaohong Wang
- ERC Advanced Investigator Grant Research Group at the Institute for Physiological Chemistry, University Medical Center of the Johannes Gutenberg University, Duesbergweg 6, D-55128 Mainz, Germany
| | - Heinz C. Schröder
- ERC Advanced Investigator Grant Research Group at the Institute for Physiological Chemistry, University Medical Center of the Johannes Gutenberg University, Duesbergweg 6, D-55128 Mainz, Germany
- Correspondence: (H.C.S.); (W.E.G.M.)
| | - Werner E. G. Müller
- ERC Advanced Investigator Grant Research Group at the Institute for Physiological Chemistry, University Medical Center of the Johannes Gutenberg University, Duesbergweg 6, D-55128 Mainz, Germany
- Correspondence: (H.C.S.); (W.E.G.M.)
| |
Collapse
|
2
|
Herre C, Nshdejan A, Klopfleisch R, Corte GM, Bahramsoltani M. Expression of vimentin, TPI and MAT2A in human dermal microvascular endothelial cells during angiogenesis in vitro. PLoS One 2022; 17:e0266774. [PMID: 35482724 PMCID: PMC9049311 DOI: 10.1371/journal.pone.0266774] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Accepted: 03/27/2022] [Indexed: 11/19/2022] Open
Abstract
Introduction
In vitro assays of angiogenesis face immense problems considering their reproducibility based on the inhomogeneous characters of endothelial cells (ECs). It is necessary to detect influencing factors, which affect the angiogenic potency of ECs.
Objective
This study aimed to analyse expression profiles of vimentin (VIM), triosephosphate isomerase (TPI) and adenosylmethionine synthetase isoform type–2 (MAT2A) during the whole angiogenic cascade in vitro. Furthermore, the impact of knocking down vimentin (VIM) on angiogenesis in vitro was evaluated, while monitoring TPI and MAT2A expression.
Methods
A long–term cultivation and angiogenic stimulation of human dermal microvascular ECs was performed. Cells were characterized via VEGFR–1 and VEGFR–2 expression and a shRNA–mediated knockdown of VIM was performed. The process of angiogenesis in vitro was quantified via morphological staging and mRNA–and protein–levels of all proteins were analysed.
Results
While native cells ran through the angiogenic cascade chronologically, knockdown cells only entered beginning stages of angiogenesis and died eventually. Cell cultures showing a higher VEGFR–1 expression survived exclusively and displayed an upregulation of MAT2A and TPI expression. Native cells highly expressed VIM in early stages, MAT2A mainly in the beginning and TPI during the course of angiogenesis in vitro.
Conclusion
VIM knockdown led to a deceleration of angiogenesis in vitro and knockdown cells displayed expressional changes in TPI and MAT2A. Cell populations with a higher number of stalk cells emerged as being more stable against manipulations and native expression profiles provided an indication of VIM and MAT2A being relevant predominantly in beginning stages and TPI during the whole angiogenic cascade in vitro.
Collapse
Affiliation(s)
- Christina Herre
- Department of Veterinary Medicine, Institute of Veterinary Anatomy, Freie Universität Berlin, Berlin, Germany
- * E-mail:
| | - Arpenik Nshdejan
- Department of Veterinary Medicine, Institute of Veterinary Anatomy, Freie Universität Berlin, Berlin, Germany
| | - Robert Klopfleisch
- Department of Veterinary Medicine, Institute of Veterinary Pathology, Freie Universität Berlin, Berlin, Germany
| | - Giuliano Mario Corte
- Department of Veterinary Medicine, Institute of Veterinary Anatomy, Freie Universität Berlin, Berlin, Germany
| | - Mahtab Bahramsoltani
- Department of Veterinary Medicine, Institute of Veterinary Anatomy, Freie Universität Berlin, Berlin, Germany
| |
Collapse
|
3
|
Wang X, Schepler H, Neufurth M, Wang S, Schröder HC, Müller WEG. Polyphosphate in Chronic Wound Healing: Restoration of Impaired Metabolic Energy State. PROGRESS IN MOLECULAR AND SUBCELLULAR BIOLOGY 2022; 61:51-82. [PMID: 35697937 DOI: 10.1007/978-3-031-01237-2_4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Many pathological conditions are characterized by a deficiency of metabolic energy. A prominent example is nonhealing or difficult-to-heal chronic wounds. Because of their unique ability to serve as a source of metabolic energy, inorganic polyphosphates (polyP) offer the opportunity to develop novel strategies to treat such wounds. The basis is the generation of ATP from the polymer through the joint action of two extracellular or plasma membrane-bound enzymes alkaline phosphatase and adenylate kinase, which enable the transfer of energy-rich phosphate from polyP to AMP with the formation of ADP and finally ATP. Building on these findings, it was possible to develop novel regeneratively active materials for wound therapy, which have already been successfully evaluated in first studies on patients.
Collapse
Affiliation(s)
- Xiaohong Wang
- ERC Advanced Investigator Group, Institute for Physiological Chemistry, University Medical Center of the Johannes Gutenberg University, Mainz, Germany
| | - Hadrian Schepler
- Department of Dermatology, University Clinic Mainz, Mainz, Germany
| | - Meik Neufurth
- ERC Advanced Investigator Group, Institute for Physiological Chemistry, University Medical Center of the Johannes Gutenberg University, Mainz, Germany
| | - Shunfeng Wang
- ERC Advanced Investigator Group, Institute for Physiological Chemistry, University Medical Center of the Johannes Gutenberg University, Mainz, Germany
| | - Heinz C Schröder
- ERC Advanced Investigator Group, Institute for Physiological Chemistry, University Medical Center of the Johannes Gutenberg University, Mainz, Germany
| | - Werner E G Müller
- ERC Advanced Investigator Group, Institute for Physiological Chemistry, University Medical Center of the Johannes Gutenberg University, Mainz, Germany.
| |
Collapse
|
4
|
Schröder HC, Wang X, Neufurth M, Wang S, Müller WEG. Biomimetic Polyphosphate Materials: Toward Application in Regenerative Medicine. PROGRESS IN MOLECULAR AND SUBCELLULAR BIOLOGY 2022; 61:83-130. [PMID: 35697938 DOI: 10.1007/978-3-031-01237-2_5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
In recent years, inorganic polyphosphate (polyP) has attracted increasing attention as a biomedical polymer or biomaterial with a great potential for application in regenerative medicine, in particular in the fields of tissue engineering and repair. The interest in polyP is based on two properties of this physiological polymer that make polyP stand out from other polymers: polyP has morphogenetic activity by inducing cell differentiation through specific gene expression, and it functions as an energy store and donor of metabolic energy, especially in the extracellular matrix or in the extracellular space. No other biopolymer applicable in tissue regeneration/repair is known that is endowed with this combination of properties. In addition, polyP can be fabricated both in the form of a biologically active coacervate and as biomimetic amorphous polyP nano/microparticles, which are stable and are activated by transformation into the coacervate phase after contact with protein/body fluids. PolyP can be used in the form of various metal salts and in combination with various hydrogel-forming polymers, whereby (even printable) hybrid materials with defined porosities and mechanical and biological properties can be produced, which can even be loaded with cells for 3D cell printing or with drugs and support the growth and differentiation of (stem) cells as well as cell migration/microvascularization. Potential applications in therapy of bone, cartilage and eye disorders/injuries and wound healing are summarized and possible mechanisms are discussed.
Collapse
Affiliation(s)
- Heinz C Schröder
- ERC Advanced Investigator Group, Institute for Physiological Chemistry, University Medical Center of the Johannes Gutenberg University, Mainz, Germany
| | - Xiaohong Wang
- ERC Advanced Investigator Group, Institute for Physiological Chemistry, University Medical Center of the Johannes Gutenberg University, Mainz, Germany
| | - Meik Neufurth
- ERC Advanced Investigator Group, Institute for Physiological Chemistry, University Medical Center of the Johannes Gutenberg University, Mainz, Germany
| | - Shunfeng Wang
- ERC Advanced Investigator Group, Institute for Physiological Chemistry, University Medical Center of the Johannes Gutenberg University, Mainz, Germany
| | - Werner E G Müller
- ERC Advanced Investigator Group, Institute for Physiological Chemistry, University Medical Center of the Johannes Gutenberg University, Mainz, Germany.
| |
Collapse
|
5
|
Inoue R, Nishiyama K, Li J, Miyashita D, Ono M, Terauchi Y, Shirakawa J. The Feasibility and Applicability of Stem Cell Therapy for the Cure of Type 1 Diabetes. Cells 2021; 10:cells10071589. [PMID: 34202521 PMCID: PMC8304653 DOI: 10.3390/cells10071589] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Revised: 06/18/2021] [Accepted: 06/22/2021] [Indexed: 12/25/2022] Open
Abstract
Stem cell therapy using islet-like insulin-producing cells derived from human pluripotent stem cells has the potential to allow patients with type 1 diabetes to withdraw from insulin therapy. However, several issues exist regarding the use of stem cell therapy to treat type 1 diabetes. In this review, we will focus on the following topics: (1) autoimmune responses during the autologous transplantation of stem cell-derived islet cells, (2) a comparison of stem cell therapy with insulin injection therapy, (3) the impact of the islet microenvironment on stem cell-derived islet cells, and (4) the cost-effectiveness of stem cell-derived islet cell transplantation. Based on these various viewpoints, we will discuss what is required to perform stem cell therapy for patients with type 1 diabetes.
Collapse
Affiliation(s)
- Ryota Inoue
- Laboratory of Diabetes and Metabolic Disorders, Institute for Molecular and Cellular Regulation (IMCR), Gunma University, Maebashi 371-8512, Japan; (R.I.); (K.N.); (J.L.)
| | - Kuniyuki Nishiyama
- Laboratory of Diabetes and Metabolic Disorders, Institute for Molecular and Cellular Regulation (IMCR), Gunma University, Maebashi 371-8512, Japan; (R.I.); (K.N.); (J.L.)
| | - Jinghe Li
- Laboratory of Diabetes and Metabolic Disorders, Institute for Molecular and Cellular Regulation (IMCR), Gunma University, Maebashi 371-8512, Japan; (R.I.); (K.N.); (J.L.)
| | - Daisuke Miyashita
- Department of Endocrinology and Metabolism, Graduate School of Medicine, Yokohama City University, Yokohama 236-0004, Japan; (D.M.); (M.O.); (Y.T.)
| | - Masato Ono
- Department of Endocrinology and Metabolism, Graduate School of Medicine, Yokohama City University, Yokohama 236-0004, Japan; (D.M.); (M.O.); (Y.T.)
| | - Yasuo Terauchi
- Department of Endocrinology and Metabolism, Graduate School of Medicine, Yokohama City University, Yokohama 236-0004, Japan; (D.M.); (M.O.); (Y.T.)
| | - Jun Shirakawa
- Laboratory of Diabetes and Metabolic Disorders, Institute for Molecular and Cellular Regulation (IMCR), Gunma University, Maebashi 371-8512, Japan; (R.I.); (K.N.); (J.L.)
- Correspondence: ; Tel.: +81-27-220-8850
| |
Collapse
|
6
|
Clough DW, King JL, Li F, Shea LD. Integration of Islet/Beta-Cell Transplants with Host Tissue Using Biomaterial Platforms. Endocrinology 2020; 161:bqaa156. [PMID: 32894299 PMCID: PMC8253249 DOI: 10.1210/endocr/bqaa156] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Accepted: 08/27/2020] [Indexed: 12/30/2022]
Abstract
Cell-based therapies are emerging for type I diabetes mellitus (T1D), an autoimmune disease characterized by the destruction of insulin-producing pancreatic β-cells, as a means to provide long-term restoration of glycemic control. Biomaterial scaffolds provide an opportunity to enhance the manufacturing and transplantation of islets or stem cell-derived β-cells. In contrast to encapsulation strategies that prevent host contact with the graft, recent approaches aim to integrate the transplant with the host to facilitate glucose sensing and insulin distribution, while also needing to modulate the immune response. Scaffolds can provide a supportive niche for cells either during the manufacturing process or following transplantation at extrahepatic sites. Scaffolds are being functionalized to deliver oxygen, angiogenic, anti-inflammatory, or trophic factors, and may facilitate cotransplantation of cells that can enhance engraftment or modulate immune responses. This local engineering of the transplant environment can complement systemic approaches for maximizing β-cell function or modulating immune responses leading to rejection. This review discusses the various scaffold platforms and design parameters that have been identified for the manufacture of human pluripotent stem cell-derived β-cells, and the transplantation of islets/β-cells to maintain normal blood glucose levels.
Collapse
Affiliation(s)
- Daniel W Clough
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, Michigan
| | - Jessica L King
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, Michigan
| | - Feiran Li
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, Michigan
| | - Lonnie D Shea
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, Michigan
| |
Collapse
|
7
|
Müller WEG, Schepler H, Tolba E, Wang S, Ackermann M, Muñoz-Espí R, Xiao S, Tan R, She Z, Neufurth M, Schröder HC, Wang X. A physiologically active interpenetrating collagen network that supports growth and migration of epidermal keratinocytes: zinc-polyP nanoparticles integrated into compressed collagen. J Mater Chem B 2020; 8:5892-5902. [DOI: 10.1039/d0tb01240h] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
It is demonstrated that polyphosphate, as a component in wound healing mats together with Zn2+, is essential for growth and migration of skin keratinocytes.
Collapse
|
8
|
Abdollahi Govar A, Törő G, Szaniszlo P, Pavlidou A, Bibli SI, Thanki K, Resto VA, Chao C, Hellmich MR, Szabo C, Papapetropoulos A, Módis K. 3-Mercaptopyruvate sulfurtransferase supports endothelial cell angiogenesis and bioenergetics. Br J Pharmacol 2019; 177:866-883. [PMID: 30644090 DOI: 10.1111/bph.14574] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2018] [Revised: 11/26/2018] [Accepted: 12/11/2018] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND AND PURPOSE During angiogenesis, quiescent endothelial cells (ECs) are activated by various stimuli to form new blood vessels from pre-existing ones in physiological and pathological conditions. Many research groups have shown that hydrogen sulfide (H2 S), the newest member of the gasotransmitter family, acts as a proangiogenic factor. To date, very little is known about the regulatory role of 3-mercaptopyruvate sulfurtransferase (3-MST), an important H2 S-producing enzyme in ECs. The aim of our study was to explore the potential role of 3-MST in human EC bioenergetics, metabolism, and angiogenesis. EXPERIMENTAL APPROACH To assess in vitro angiogenic responses, we used EA.hy926 human vascular ECs subjected to shRNA-mediated 3-MST attenuation and pharmacological inhibition of proliferation, migration, and tube-like network formation. To evaluate bioenergetic parameters, cell respiration, glycolysis, glucose uptake, and mitochondrial/glycolytic ATP production were measured. Finally, global metabolomic profiling was performed to determine the level of 669 metabolic compounds. KEY RESULTS 3-MST-attenuated ECs subjected to shRNA or pharmacological inhibition of 3-MST significantly reduced EC proliferation, migration, and tube-like network formation. 3-MST silencing also suppressed VEGF-induced EC migration. From bioenergetic and metabolic standpoints, 3-MST attenuation decreased mitochondrial respiration and mitochondrial ATP production, increased glucose uptake, and perturbed the entire EC metabolome. CONCLUSION AND IMPLICATIONS 3-MST regulates bioenergetics and morphological angiogenic functions in human ECs. The data presented in the current report support the view that 3-MST pathway may be a potential candidate for therapeutic modulation of angiogenesis. LINKED ARTICLES This article is part of a themed section on Hydrogen Sulfide in Biology & Medicine. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v177.4/issuetoc.
Collapse
Affiliation(s)
| | - Gábor Törő
- Department of Anesthesiology, University of Texas Medical Branch, Galveston, Texas, USA
| | - Peter Szaniszlo
- Department of Otolaryngology, University of Texas Medical Branch, Galveston, Texas, USA
| | - Athanasia Pavlidou
- Laboratory of Pharmacology, Faculty of Pharmacy, National and Kapodistrian University of Athens, Athens, Greece
| | - Sofia-Iris Bibli
- Institute for Vascular Signalling, Centre for Molecular Medicine, Goethe University, Frankfurt, Germany
| | - Ketan Thanki
- Department of Surgery, University of Texas Medical Branch, Galveston, Texas, USA
| | - Vicente A Resto
- Department of Otolaryngology, University of Texas Medical Branch, Galveston, Texas, USA
| | - Celia Chao
- Department of Surgery, University of Texas Medical Branch, Galveston, Texas, USA
| | - Mark R Hellmich
- Department of Surgery, University of Texas Medical Branch, Galveston, Texas, USA
| | - Csaba Szabo
- Department of Anesthesiology, University of Texas Medical Branch, Galveston, Texas, USA.,Chair of Pharmacology, Department of Science and Medicine, University of Fribourg, Fribourg, Switzerland
| | - Andreas Papapetropoulos
- Laboratory of Pharmacology, Faculty of Pharmacy, National and Kapodistrian University of Athens, Athens, Greece.,Clinical, Experimental Surgery and Translational Research Center, Biomedical Research Foundation of the Academy of Athens, Athens, Greece
| | - Katalin Módis
- Department of Anesthesiology, University of Texas Medical Branch, Galveston, Texas, USA.,Department of Surgery, University of Texas Medical Branch, Galveston, Texas, USA
| |
Collapse
|
9
|
Role of ATP during the initiation of microvascularization: acceleration of an autocrine sensing mechanism facilitating chemotaxis by inorganic polyphosphate. Biochem J 2018; 475:3255-3273. [PMID: 30242064 DOI: 10.1042/bcj20180535] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2018] [Revised: 09/18/2018] [Accepted: 09/18/2018] [Indexed: 12/21/2022]
Abstract
The in vitro tube formation assay with human umbilical vein endothelial cells (HUVEC) was applied to identify the extra- and intracellular sources of metabolic energy/ATP required for cell migration during the initial stage of microvascularization. Extracellularly, the physiological energy-rich polymer, inorganic polyphosphate (polyP), applied as biomimetic amorphous calcium polyP microparticles (Ca-polyP-MP), is functioning as a substrate for ATP generation most likely via the combined action of the alkaline phosphatase (ALP) and the adenylate kinase (AK). The linear Ca-polyP-MP with a size of 40 phosphate units, close to the polyP in the acidocalcisomes in the blood platelets, were found to increase endothelial cell tube formation, as well as the intracellular ATP levels. Depletion of extracellular ATP with apyrase suppressed tube formation during the initial incubation period. Inhibition experiments revealed that inhibitors (levamisole and Ap5A) of the enzymes involved in extracellular ATP generation strongly reduce the Ca-polyP-MP-induced tube formation. The stimulatory effect of Ca-polyP-MP was also diminished by the glycolysis inhibitor oxamate and trifluoperazine which blocks endocytosis, as well as by MRS2211, an antagonist of the P2Y13 receptor. Oligomycin, an inhibitor of the mitochondrial F0F1-ATP synthase, displayed no effect at lower concentrations on tube formation. Electron microscopic data revealed that after cellular uptake, the Ca-polyP-MP accumulate close to the cell membrane. We conclude that in HUVEC exposed to polyP, ATP is formed extracellularly via the coupled ALP-AK reaction, and intracellularly during glycolysis. The results suggest an autocrine signaling pathway of ATP with polyP as an extracellular store of metabolic energy for endothelial cell migration during the initial vascularization process.
Collapse
|