1
|
Bóna Á, Galambos I, Nemestóthy N. Progress towards Stable and High-Performance Polyelectrolyte Multilayer Nanofiltration Membranes for Future Wastewater Treatment Applications. MEMBRANES 2023; 13:368. [PMID: 37103795 PMCID: PMC10146247 DOI: 10.3390/membranes13040368] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 03/09/2023] [Accepted: 03/22/2023] [Indexed: 06/19/2023]
Abstract
The increasing demand for nanofiltration processes in drinking water treatment, industrial separation and wastewater treatment processes has highlighted several shortcomings of current state-of-the-art thin film composite (TFC NF) membranes, including limitations in chemical resistance, fouling resistance and selectivity. Polyelectrolyte multilayer (PEM) membranes provide a viable, industrially applicable alternative, providing significant improvements in these limitations. Laboratory experiments using artificial feedwaters have demonstrated selectivity an order of magnitude higher than polyamide NF, significantly higher fouling resistance and excellent chemical resistance (e.g., 200,000 ppmh chlorine resistance and stability over the 0-14 pH range). This review provides a brief overview of the various parameters that can be modified during the layer-by-layer procedure to determine and fine-tune the properties of the resulting NF membrane. The different parameters that can be adjusted during the layer-by-layer process are presented, which are used to optimize the properties of the resulting nanofiltration membrane. Substantial progress in PEM membrane development is presented, particularly selectivity improvements, of which the most promising route seems to be asymmetric PEM NF membranes, offering a breakthrough in active layer thickness and organic/salt selectivity: an average of 98% micropollutant rejection coupled with a NaCl rejection below 15%. Advantages for wastewater treatment are highlighted, including high selectivity, fouling resistance, chemical stability and a wide range of cleaning methods. Additionally, disadvantages of the current PEM NF membranes are also outlined; while these may impede their use in some industrial wastewater applications, they are largely not restrictive. The effect of realistic feeds (wastewaters and challenging surface waters) on PEM NF membrane performance is also presented: pilot studies conducted for up to 12 months show stable rejection values and no significant irreversible fouling. We close our review by identifying research areas where further studies are needed to facilitate the adoption of this notable technology.
Collapse
Affiliation(s)
- Áron Bóna
- Soós Ernő Research and Development Center, University of Pannonia, Vár u. 8., H-8800 Nagykanizsa, Hungary
| | - Ildikó Galambos
- Soós Ernő Research and Development Center, University of Pannonia, Vár u. 8., H-8800 Nagykanizsa, Hungary
| | - Nándor Nemestóthy
- Research Institute on Bioengineering, Membrane Technology and Energetics, University of Pannonia, Egyetem u. 10., H-8200 Veszprém, Hungary
| |
Collapse
|
2
|
Bóna Á, Varga Á, Galambos I, Nemestóthy N. Dealcoholization of Unfiltered and Filtered Lager Beer by Hollow Fiber Polyelectrolyte Multilayer Nanofiltration Membranes-The Effect of Ion Rejection. MEMBRANES 2023; 13:283. [PMID: 36984669 PMCID: PMC10058455 DOI: 10.3390/membranes13030283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 02/23/2023] [Accepted: 02/25/2023] [Indexed: 06/18/2023]
Abstract
Membrane-based beverage dealcoholization is a successful process for producing low- and non-alcoholic beer and represents a fast-growing industry. Polyamide NF and RO membranes are commonly applied for this process. Polyelectrolyte multilayer (PEM) NF membranes are emerging as industrially relevant species, and their unique properties (usually hollow fiber geometry, high and tunable selectivity, low fouling) underlines the importance of testing them in the food industry as well. To test PEM NF membranes for beer dealcoholization at a small pilot scale, we dealcoholized filtered and unfiltered lager beer with the tightest available commercial polyelectrolyte multilayer NF membrane (NX Filtration dNF40), which has a MWCO = 400 Da, which is quite high for these purposes. Dealcoholization is possible with a reasonable flux (10 L/m2h) at low pressures (5-8.6 bar) with a real extract loss of 15-18% and an alcohol passage of ~100%. Inorganic salt passage is high (which is typical for PEM NF membranes), which greatly affected beer flavor. During the dealcoholization process, the membrane underwent changes which substantially increased its salt rejection values (MgSO4 passage decreased fourfold) while permeance loss was minimal (less than 10%). According to our sensory evaluation, the process yielded an acceptable tasting beer which could be greatly enhanced by the addition of the lost salts and glycerol.
Collapse
Affiliation(s)
- Áron Bóna
- Soós Ernő Research and Development Center, University of Pannonia, Vár u. 8, H-8800 Nagykanizsa, Hungary
| | - Áron Varga
- Department of Research and Development, Pécsi Brewery, Alkotmány utca 94, H-7624 Pécs, Hungary
| | - Ildikó Galambos
- Soós Ernő Research and Development Center, University of Pannonia, Vár u. 8, H-8800 Nagykanizsa, Hungary
| | - Nándor Nemestóthy
- Research Institute on Bioengineering, Membrane Technology and Energetics, University of Pannonia, Egyetem u. 10, H-8200 Veszprém, Hungary
| |
Collapse
|
3
|
Jahn P, Zelner M, Freger V, Ulbricht M. Polystyrene Sulfonate Particles as Building Blocks for Nanofiltration Membranes. MEMBRANES 2022; 12:1138. [PMID: 36422130 PMCID: PMC9697654 DOI: 10.3390/membranes12111138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 11/07/2022] [Accepted: 11/09/2022] [Indexed: 06/16/2023]
Abstract
Today the standard treatment for wastewater is secondary treatment. This procedure cannot remove salinity or some organic micropollutants from water. In the future, a tertiary cleaning step may be required. An attractive solution is membrane processes, especially nanofiltration (NF). However, currently available NF membranes strongly reject multivalent ions, mainly due to the dielectric effect. In this work, we present a new method for preparing NF membranes, which contain negatively and positively charged domains, obtained by the combination of two polyelectrolytes with opposite charge. The negatively charged polyelectrolyte is provided in the form of particles (polystyrene sulfonate (PSSA), d ~300 nm). As a positively charged polyelectrolyte, polyethyleneimine (PEI) is used. Both buildings blocks and glycerol diglycidyl ether as crosslinker for PEI are applied to an UF membrane support in a simple one-step coating process. The membrane charge (zeta potential) and salt rejection can be adjusted using the particle concentration in the coating solution/dispersion that determine the selective layer composition. The approach reported here leads to NF membranes with a selectivity that may be controlled by a different mechanism compared to state-of-the-art membranes.
Collapse
Affiliation(s)
- Philipp Jahn
- Institute of Technical Chemistry II and Center for Water and Environmental Research, University of Duisburg-Essen, 45117 Essen, Germany
| | - Michael Zelner
- Wolfson Department of Chemical Engineering, Technion-Israel Institute of Technology, 3200003 Haifa, Israel
| | - Viatcheslav Freger
- Wolfson Department of Chemical Engineering, Technion-Israel Institute of Technology, 3200003 Haifa, Israel
| | - Mathias Ulbricht
- Institute of Technical Chemistry II and Center for Water and Environmental Research, University of Duisburg-Essen, 45117 Essen, Germany
| |
Collapse
|
4
|
Nguyen HN, Ngo TLH, Iwasaki Y, Huang C. Biodegradable Phosphocholine Cross‐Linker With Ion‐Pair Design for Tough Zwitterionic Hydrogel. ADVANCED MATERIALS INTERFACES 2022; 9. [DOI: 10.1002/admi.202201002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Indexed: 01/06/2025]
Abstract
AbstractHydrogels have been widely used in various biomedical applications based on their ability to provide 3D frames with tissue‐like elasticity and high water content. However, the role of the cross‐linking agents in the hydrogels was undervalued in terms of biocompatibility, mechanical properties, degradability, and hydration of gels. In this study, an innovative zwitterionic dimethacrylate 2‐[2‐{2‐(Methacryloyloxy)ethyldimethylammonium}ethyl‐phosphate]ethyl disulfide (MPCSS) for the development of biodegradable and biocompatible hydrogels with entirely bio‐inspired PC structure is reported. The MPCSS cross‐linker includes the zwitterionic group providing nonfouling properties and a disulfide bond that can be degraded by reducing agents and enzymes. Moreover, MPCSS has an opposite arrangement of charged groups to that in the 2‐methacryloyloxyethyl phosphorylcholine (MPC) monomer. The hydrogels developed from MPCSS and MPC allow the stronger mechanical properties upon electrostatic interaction between the oppositely charged groups and the higher water content than the MPC gels with the conventional cross‐linker. The biocompatibility and fouling characteristics of MPC/MPCSS hydrogels are systematically investigated. Moreover, the degradation of MPCSS cross‐linked hydrogels is evaluated through their weight loss and rheological data. Ultimately, MPC/MPCSS hydrogel is demonstrated to in situ encapsulate NIH‐3T3 fibroblasts and provide an excellent 3D environment, facilitating cell remodeling and growth as a tissue scaffold.
Collapse
Affiliation(s)
- Hoang Nam Nguyen
- Department of Biomedical Sciences & Engineering National Central University Jhong‐Li Taoyuan 320 Taiwan
| | - Thi Lan Huong Ngo
- Department of Biomedical Sciences & Engineering National Central University Jhong‐Li Taoyuan 320 Taiwan
| | - Yasuhiko Iwasaki
- Department of Chemistry and Materials Engineering Faculty of Chemistry Materials and Bioengineering Kansai University 3‐3‐35 Yamate‐cho Suita‐shi Osaka 564–8680 Japan
| | - Chun‐Jen Huang
- Department of Chemical & Materials Engineering and NCU‐Covestro Research Center National Central University Jhong‐Li Taoyuan 320 Taiwan
- R&D Center for Membrane Technology Chung Yuan Christian University 200 Chung Pei Rd Chung‐Li City 32023 Taiwan
| |
Collapse
|
5
|
N-methylglucamine modified poly (vinyl chloride) support assists the construction of uniform dually charged nanofiltration membrane via interfacial polymerization. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.122674] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
6
|
Zhang K, Wu HH, Huo HQ, Ji YL, Zhou Y, Gao CJ. Recent advances in nanofiltration, reverse osmosis membranes and their applications in biomedical separation field. Chin J Chem Eng 2022. [DOI: 10.1016/j.cjche.2022.06.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
7
|
Ji YL, Yin MJ, An QF, Gao CJ. Recent developments in polymeric nano-based separation membranes. FUNDAMENTAL RESEARCH 2022; 2:254-267. [PMID: 38933154 PMCID: PMC11197816 DOI: 10.1016/j.fmre.2021.11.029] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Revised: 08/20/2021] [Accepted: 11/18/2021] [Indexed: 10/19/2022] Open
Abstract
Polymeric nanomaterials, which have tuneable chemical structures, versatile functionalities, and good compatibility with polymeric matrices, have attracted increasing interest from researchers for the construction of polymeric nano-based separation membranes. With their distinctive nanofeatures, polymeric nano-based membranes show great promise in overcoming bottlenecks in polymer membranes, namely, the trade-off between permeability and selectivity, low stability, and fouling issues. Accordingly, recent studies have focused on tuning the structures and tailoring the surface properties of polymeric nano-based membranes via exploitation of membrane fabrication techniques and surface modification strategies, with the objective of pushing the performance of polymeric nano-based membranes to a new level. In this review, first, the approaches for fabricating polymeric nano-based mixed matrix membranes and homogeneous membranes are summarized, such as surface coating, phase inversion, interfacial polymerization, and self-assembly methods. Next, the manipulation strategies of membrane surface properties, namely, the hydrophilicity/hydrophobicity, charge characteristics, and surface roughness, and interior microstructural properties, namely, the pore size and content, channel construction and regulation, are comprehensively discussed. Subsequently, the separation performances of liquid ions/molecules and gas molecules through polymeric nano-based membranes are systematically reported. Finally, we conclude this review with an overview of various unsolved scientific and technical challenges that are associated with new opportunities in the development of advanced polymeric nano-based membranes.
Collapse
Affiliation(s)
- Yan-Li Ji
- Center for Membrane and Water Science & Technology, Zhejiang University of Technology, Hangzhou 310014, China
| | - Ming-Jie Yin
- Beijing Key Laboratory for Green Catalysis and Separation, Department of Environmental and Chemical Engineering, Beijing University of Technology, Beijing 100124, China
| | - Quan-Fu An
- Beijing Key Laboratory for Green Catalysis and Separation, Department of Environmental and Chemical Engineering, Beijing University of Technology, Beijing 100124, China
| | - Cong-Jie Gao
- Center for Membrane and Water Science & Technology, Zhejiang University of Technology, Hangzhou 310014, China
| |
Collapse
|
8
|
Qian X, Ravindran T, Lounder SJ, Asatekin A, McCutcheon JR. Printing zwitterionic self-assembled thin film composite membranes: Tuning thickness leads to remarkable permeability for nanofiltration. J Memb Sci 2021. [DOI: 10.1016/j.memsci.2021.119428] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
9
|
A mixed-charge polyelectrolyte complex nanofiltration membrane: Preparation, performance and stability. J Memb Sci 2021. [DOI: 10.1016/j.memsci.2021.119579] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
10
|
Shafi QI, Ihsan H, Hao Y, Wu X, Ullah N, Younas M, He B, Rezakazemi M. Multi-ionic electrolytes and E.coli removal from wastewater using chitosan-based in-situ mediated thin film composite nanofiltration membrane. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2021; 294:112996. [PMID: 34126538 DOI: 10.1016/j.jenvman.2021.112996] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2021] [Revised: 06/01/2021] [Accepted: 06/01/2021] [Indexed: 06/12/2023]
Abstract
This work presents the experimental investigation of flat sheet composite nanofiltration membrane synthesized with chitosan nanoparticles through interfacial polymerization of piperazine with trimesoyl chloride on polyethersulfone/sulfonated polysulfone substrates. The synthesized membrane was tested in wastewater treatment containing inorganic salts and E.Coli. Single binary electrolyte solution of KCl, MgCl2, MgSO4, and Na2SO4, ternary electrolyte solution, containing a combination of MgCl2 and MgSO4, KCl and MgCl2 and quaternary electrolyte solution of KCl, MgCl2, and MgSO4 as feed were treated in crossflow membrane cell for the water flux and species rejection in the permeate under operating pressure up to 0.5 MPa. The rejection of Na1+, K1+, Mg2+, Cl1-, and SO42- was observed to be 81, 28, 87, 96, and 98%, respectively with an average water flux up to 214 ± 10 L m⁻2.hr⁻1 in the permeate for the binary electrolyte solution. Similarly, the rejection for K1+, Mg2+, Cl1- and SO42- was noted to be 33, 94, 97, and 99%, respectively, for ternary electrolyte solution with an average water flux up to 211 ± 10 L m-2.hr-1. The quaternary ion system in the feed resulted in an average water flux up to 198 ± 12 L m⁻2.hr⁻1 with the rejection of K+, Mg+2, Cl- and SO4-2 as 35, 87, 96, and 99%, respectively. The model feed solution of E. coli after passing through the membrane achieved an E. coli rejection (99%) with water flux up to 220 L m-2.hr-1.
Collapse
Affiliation(s)
- Qazi Iqra Shafi
- Department of Chemical Engineering, University of Engineering and Technology, Peshawar, 25120, Pakistan
| | - Haseena Ihsan
- Department of Chemistry, Sharhad University of Information Technology, Peshawar, Pakistan
| | - Yufan Hao
- State Key Laboratory of Separation Membranes and Membrane Processes, School of Materials Science and Engineering, Tiangong University, Tianjin, 300387, China
| | - Xin Wu
- State Key Laboratory of Separation Membranes and Membrane Processes, School of Materials Science and Engineering, Tiangong University, Tianjin, 300387, China
| | - Nehar Ullah
- Department of Chemical Engineering, University of Engineering and Technology, Peshawar, 25120, Pakistan
| | - Mohammad Younas
- Department of Chemical Engineering, University of Engineering and Technology, Peshawar, 25120, Pakistan.
| | - Benqiao He
- State Key Laboratory of Separation Membranes and Membrane Processes, School of Materials Science and Engineering, Tiangong University, Tianjin, 300387, China.
| | - Mashallah Rezakazemi
- Faculty of Chemical and Materials Engineering, Shahrood University of Technology, Shahrood, Iran.
| |
Collapse
|
11
|
High-Performance Polyacrylic Acid-Grafted PVDF Nanofiltration Membrane with Good Antifouling Property for the Textile Industry. Polymers (Basel) 2020; 12:polym12112443. [PMID: 33105765 PMCID: PMC7690592 DOI: 10.3390/polym12112443] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Revised: 10/20/2020] [Accepted: 10/21/2020] [Indexed: 02/02/2023] Open
Abstract
In the textile industry, a high-efficiency dye removal and low-retention of salt is demanded for recycling wastewater. In this study, polyvinylidene fluoride (PVDF) ultrafiltration membrane was transformed to a negatively charged loose nanofiltration (NF) membrane through UV-grafting of acrylic acid. At the optimal exposure of PVDF membrane in UV light for 5 min, the membrane had a high dye recovery above 99% (Congo red and Eriochrome® Black T) and a low sodium chloride (NaCl) rejection of less than 15% along with pure water flux of 26 L∙m−2∙h−1∙bar−1. Its antifouling and oleophobicity surface properties were verified using fluorescent- bovine serum albumin (BSA) and underwater mineral oil contact angle, respectively. According to the fluorescent microscopic images, the modified membrane had ten times lower adhesion of protein on the surface than the unmodified membrane. The underwater oil contact angle was raised from 110° to 155°. Moreover, the salt rejection followed this sequence: Na2SO4 > MgSO4 > NaCl > MgCl2, which agreed with the typical negatively charged NF membrane. In addition, the physicochemical characterization of membranes was further investigated to understand and link to the membrane performance, such as surface functional group, surface elements analysis, surface roughness/morphology, and surface hydrophilicity.
Collapse
|
12
|
Bóna Á, Bakonyi P, Galambos I, Bélafi-Bakó K, Nemestóthy N. Separation of Volatile Fatty Acids from Model Anaerobic Effluents Using Various Membrane Technologies. MEMBRANES 2020; 10:E252. [PMID: 32987682 PMCID: PMC7598613 DOI: 10.3390/membranes10100252] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Revised: 09/18/2020] [Accepted: 09/20/2020] [Indexed: 11/22/2022]
Abstract
Effluents of anaerobic processes still contain valuable components, among which volatile fatty acids (VFAs) can be regarded and should be recovered and/or used further in applications such as microbial electrochemical technology to generate energy/energy carriers. To accomplish the separation of VFAs from waste liquors, various membrane-based solutions applying different transport mechanisms and traits are available, including pressure-driven nanofiltration (NF) and reverse osmosis (RO) which are capable to clarify, fractionate and concentrate salts and organics. Besides, emerging techniques using a membrane such as forward osmosis (FO) and supported liquid membrane (SILM) technology can be taken into consideration for VFA separation. In this work, we evaluate these four various downstream methods (NF, RO, FO and SILM) to determine the best one, comparatively, for enriching VFAs from pH-varied model solutions composed of acetic, butyric and propionic acids in different concentrations. The assessment of the separation experiments was supported by statistical examination to draw more solid conclusions. Accordingly, it turned out that all methods can separate VFAs from the model solution. The highest average retention was achieved by RO (84% at the applied transmembrane pressure of 6 bar), while NF provided the highest permeance (6.5 L/m2hbar) and a high selectivity between different VFAs.
Collapse
Affiliation(s)
- Áron Bóna
- Research Institute on Bioengineering, Membrane Technology and Energetics, University of Pannonia, 8200 Veszprém, Hungary; (Á.B.); (P.B.); (K.B.-B.)
- Soós Ernő Research and Development Center, University of Pannonia, 8200 Nagykanizsa, Hungary;
| | - Péter Bakonyi
- Research Institute on Bioengineering, Membrane Technology and Energetics, University of Pannonia, 8200 Veszprém, Hungary; (Á.B.); (P.B.); (K.B.-B.)
| | - Ildikó Galambos
- Soós Ernő Research and Development Center, University of Pannonia, 8200 Nagykanizsa, Hungary;
| | - Katalin Bélafi-Bakó
- Research Institute on Bioengineering, Membrane Technology and Energetics, University of Pannonia, 8200 Veszprém, Hungary; (Á.B.); (P.B.); (K.B.-B.)
| | - Nándor Nemestóthy
- Research Institute on Bioengineering, Membrane Technology and Energetics, University of Pannonia, 8200 Veszprém, Hungary; (Á.B.); (P.B.); (K.B.-B.)
| |
Collapse
|
13
|
Ji M, Li X, Omidvarkordshouli M, Sigurdardóttir SB, Woodley JM, Daugaard AE, Luo J, Pinelo M. Charge exclusion as a strategy to control retention of small proteins in polyelectrolyte-modified ultrafiltration membranes. Sep Purif Technol 2020. [DOI: 10.1016/j.seppur.2020.116936] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
14
|
Huang BQ, Tang YJ, Zeng ZX, Xue SM, Ji CH, Xu ZL. High-Performance Zwitterionic Nanofiltration Membranes Fabricated via Microwave-Assisted Grafting of Betaine. ACS APPLIED MATERIALS & INTERFACES 2020; 12:35523-35531. [PMID: 32667769 DOI: 10.1021/acsami.0c12704] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
The thin-film composite (TFC) nanofiltration (NF) membrane is a very important method in solving the water crisis. However, the fabrication and industrialization of high-performance NF membranes still remains challenging. In this work, zwitterionic NF membranes via microwave-assisted grafting of betaine was first proposed. The resulting polyamide layer showed leaflike nanostructures after modification. Because of the enlarged permeation area and enhanced hydrophilicity derived from the unique leaflike structure, the optimal membrane permeability reached 40.8 L m-1 h-1 bar-1. This water permeance was 2.2 times as high as the original polypiperazine-amide membrane, with a Na2SO4 rejection maintained at 97.0%. More importantly, the membrane demonstrated excellent selectivity to monovalent and divalent anions. This zwitterionic membrane fabricated by microwave-assisted grafting of betaine provides new insight for industrial scalable NF membranes with great potentials.
Collapse
Affiliation(s)
- Ben-Qing Huang
- State Key Laboratory of Chemical Engineering, Membrane Science and Engineering R&D Lab, Chemical Engineering Research Center, East China University of Science and Technology, Shanghai 200237, China
| | - Yong-Jian Tang
- State Key Laboratory of Chemical Engineering, Membrane Science and Engineering R&D Lab, Chemical Engineering Research Center, East China University of Science and Technology, Shanghai 200237, China
| | - Zuo-Xiang Zeng
- State Key Laboratory of Chemical Engineering, Membrane Science and Engineering R&D Lab, Chemical Engineering Research Center, East China University of Science and Technology, Shanghai 200237, China
| | - Shuang-Mei Xue
- State Key Laboratory of Chemical Engineering, Membrane Science and Engineering R&D Lab, Chemical Engineering Research Center, East China University of Science and Technology, Shanghai 200237, China
| | - Chen-Hao Ji
- State Key Laboratory of Chemical Engineering, Membrane Science and Engineering R&D Lab, Chemical Engineering Research Center, East China University of Science and Technology, Shanghai 200237, China
| | - Zhen-Liang Xu
- State Key Laboratory of Chemical Engineering, Membrane Science and Engineering R&D Lab, Chemical Engineering Research Center, East China University of Science and Technology, Shanghai 200237, China
| |
Collapse
|
15
|
Fultz BA, Terlier T, Dunoyer de Segonzac B, Verduzco R, Kennemur JG. Nanostructured Films of Oppositely Charged Domains from Self-Assembled Block Copolymers. Macromolecules 2020. [DOI: 10.1021/acs.macromol.0c00707] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Affiliation(s)
- Brandon A. Fultz
- Department of Chemistry & Biochemistry, Florida State University, Tallahassee, Florida 32306-4390, United States
| | - Tanguy Terlier
- SIMS Laboratory, Shared Equipment Authority, Rice University, MS 126, 6100 Main Street, Houston, Texas 77005, United States
| | - Beatriz Dunoyer de Segonzac
- Department of Chemistry & Biochemistry, Florida State University, Tallahassee, Florida 32306-4390, United States
| | - Rafael Verduzco
- Department of Chemical and Biomolecular Engineering, Rice University, MS 362, 6100 Main Street, Houston, Texas 77005, United States
| | - Justin G. Kennemur
- Department of Chemistry & Biochemistry, Florida State University, Tallahassee, Florida 32306-4390, United States
| |
Collapse
|
16
|
Chauke NM, Moutloali RM, Ramontja J. Development of ZSM-22/Polyethersulfone Membrane for Effective Salt Rejection. Polymers (Basel) 2020; 12:polym12071446. [PMID: 32605204 PMCID: PMC7408022 DOI: 10.3390/polym12071446] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Revised: 05/29/2020] [Accepted: 06/01/2020] [Indexed: 11/16/2022] Open
Abstract
ZSM-22/polyethersulfone membranes were prepared for salt rejection using modelled brackish water. The membranes were fabricated via direct ZSM-22 incorporation into a polymer matrix, thereby inducing the water permeability, hydrophilicity and fouling resistance of the pristine polyethersulfone (PES) membrane. A ZSM-22 zeolite material with a 60 Si/Al ratio, high crystallinity and needle-like morphologies was produced and effectively used as a nanoadditive in the development of ZSM-22/PES membranes with nominal loadings of 0–0.75 wt.%. The characterisation and membrane performance evaluation of the resulting materials with XRD, BET, FTIR, TEM, SEM and contact angle as well as dead-end cell, respectively, showed improved water permeability in comparison with the pristine PES membrane. These ZSM-22/PES membranes were found to be more effective and superior in the processing of modelled brackish water. The salt rejection of the prepared membranes for NaCl and MgCl2 was effective, while they exhibited quite improved water flux and flux recovery ratios in the membrane permeability and anti-fouling test. This indicates that different amounts of ZSM-22 nanoadditives produce widely divergent influences on the performance of the pristine PES membrane. As such, over 55% of salt rejection is observed, which means that the obtained membranes are effective in salt removal from water.
Collapse
Affiliation(s)
- Nyiko M. Chauke
- Department of Chemical Sciences, Faculty of Science, University of Johannesburg, Doornfontein 2028, Johannesburg, South Africa;
- DSI/MINTEK Nanotechnology Innovation Centre-Water Research Node, University of Johannesburg, Doornfontein 2028, Johannesburg, South Africa
| | - Richard M. Moutloali
- Department of Chemical Sciences, Faculty of Science, University of Johannesburg, Doornfontein 2028, Johannesburg, South Africa;
- DSI/MINTEK Nanotechnology Innovation Centre-Water Research Node, University of Johannesburg, Doornfontein 2028, Johannesburg, South Africa
- Correspondence: (R.M.M.); (J.R.); Tel.: +27-(0)-11-559-6885 (R.M.M.); +27-(0)-11-559-6754 (J.R.)
| | - James Ramontja
- Department of Chemical Sciences, Faculty of Science, University of Johannesburg, Doornfontein 2028, Johannesburg, South Africa;
- Correspondence: (R.M.M.); (J.R.); Tel.: +27-(0)-11-559-6885 (R.M.M.); +27-(0)-11-559-6754 (J.R.)
| |
Collapse
|
17
|
Chiao YH, Patra T, Belle Marie Yap Ang M, Chen ST, Almodovar J, Qian X, Wickramasinghe SR, Hung WS, Huang SH, Chang Y, Lai JY. Zwitterion Co-Polymer PEI-SBMA Nanofiltration Membrane Modified by Fast Second Interfacial Polymerization. Polymers (Basel) 2020; 12:polym12020269. [PMID: 32012761 PMCID: PMC7077497 DOI: 10.3390/polym12020269] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2020] [Revised: 01/19/2020] [Accepted: 01/23/2020] [Indexed: 12/11/2022] Open
Abstract
Nanofiltration membranes have evolved as a promising solution to tackle the clean water scarcity and wastewater treatment processes with their low energy requirement and environment friendly operating conditions. Thin film composite nanofiltration membranes with high permeability, and excellent antifouling and antibacterial properties are important component for wastewater treatment and clean drinking water production units. In the scope of this study, thin film composite nanofiltration membranes were fabricated using polyacrylonitrile (PAN) support and fast second interfacial polymerization modification methods by grafting polyethylene amine and zwitterionic sulfobutane methacrylate moieties. Chemical and physical alteration in structure of the membranes were characterized using methods like ATR-FTIR spectroscopy, XPS analysis, FESEM and AFM imaging. The effects of second interfacial polymerization to incorporate polyamide layer and ‘ion pair’ characteristics, in terms of water contact angle and surface charge analysis was investigated in correlation with nanofiltration performance. Furthermore, the membrane characteristics in terms of antifouling properties were evaluated using model protein foulants like bovine serum albumin and lysozyme. Antibacterial properties of the modified membranes were investigated using E. coli as model biofoulant. Overall, the effect of second interfacial polymerization without affecting the selectivity layer of nanofiltration membrane for their potential large-scale application was investigated in detail.
Collapse
Affiliation(s)
- Yu-Hsuan Chiao
- Graduate Institute of Applied Science and Technology, National Taiwan University of Science and Technology, Taipei 10607, Taiwan; (Y.-H.C.); (J.-Y.L.)
- Ralph E. Martin Department of Chemical Engineering, University of Arkansas, Fayetteville, AR 72701, USA; (S.-T.C.); (J.A.)
- R&D Center for Membrane Technology and Department of Chemical Engineering, Chung Yuan University, Chung Li 32023, Taiwan; (M.B.M.Y.A.); (S.-H.H.); (Y.C.)
| | - Tanmoy Patra
- Department of Biomedical Engineering, University of Arkansas, Fayetteville, AR 72701, USA; (T.P.); (X.Q.)
| | - Micah Belle Marie Yap Ang
- R&D Center for Membrane Technology and Department of Chemical Engineering, Chung Yuan University, Chung Li 32023, Taiwan; (M.B.M.Y.A.); (S.-H.H.); (Y.C.)
| | - Shu-Ting Chen
- Ralph E. Martin Department of Chemical Engineering, University of Arkansas, Fayetteville, AR 72701, USA; (S.-T.C.); (J.A.)
| | - Jorge Almodovar
- Ralph E. Martin Department of Chemical Engineering, University of Arkansas, Fayetteville, AR 72701, USA; (S.-T.C.); (J.A.)
| | - Xianghong Qian
- Department of Biomedical Engineering, University of Arkansas, Fayetteville, AR 72701, USA; (T.P.); (X.Q.)
| | - S. Ranil Wickramasinghe
- Ralph E. Martin Department of Chemical Engineering, University of Arkansas, Fayetteville, AR 72701, USA; (S.-T.C.); (J.A.)
- Correspondence: (S.R.W.); (W.-S.H.)
| | - Wei-Song Hung
- Graduate Institute of Applied Science and Technology, National Taiwan University of Science and Technology, Taipei 10607, Taiwan; (Y.-H.C.); (J.-Y.L.)
- R&D Center for Membrane Technology and Department of Chemical Engineering, Chung Yuan University, Chung Li 32023, Taiwan; (M.B.M.Y.A.); (S.-H.H.); (Y.C.)
- Correspondence: (S.R.W.); (W.-S.H.)
| | - Shu-Hsien Huang
- R&D Center for Membrane Technology and Department of Chemical Engineering, Chung Yuan University, Chung Li 32023, Taiwan; (M.B.M.Y.A.); (S.-H.H.); (Y.C.)
- Department of Chemical and Materials Engineering, National Ilan University, Yi-Lan 26047, Taiwan
| | - Yung Chang
- R&D Center for Membrane Technology and Department of Chemical Engineering, Chung Yuan University, Chung Li 32023, Taiwan; (M.B.M.Y.A.); (S.-H.H.); (Y.C.)
| | - Juin-Yih Lai
- Graduate Institute of Applied Science and Technology, National Taiwan University of Science and Technology, Taipei 10607, Taiwan; (Y.-H.C.); (J.-Y.L.)
| |
Collapse
|
18
|
Potaufeux JE, Odent J, Notta-Cuvier D, Lauro F, Raquez JM. A comprehensive review of the structures and properties of ionic polymeric materials. Polym Chem 2020. [DOI: 10.1039/d0py00770f] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
This review focuses on the mechanistic approach, the structure–property relationship and applications of ionic polymeric materials.
Collapse
Affiliation(s)
- Jean-Emile Potaufeux
- Laboratory of Polymeric and Composite Materials (LPCM)
- Center of Innovation and Research in Materials and Polymers (CIRMAP)
- University of Mons (UMONS)
- Mons
- Belgium
| | - Jérémy Odent
- Laboratory of Polymeric and Composite Materials (LPCM)
- Center of Innovation and Research in Materials and Polymers (CIRMAP)
- University of Mons (UMONS)
- Mons
- Belgium
| | - Delphine Notta-Cuvier
- Laboratory of Industrial and Human Automatic Control and Mechanical Engineering (LAMIH)
- UMR CNRS 8201
- University Polytechnique Hauts-De-France (UPHF)
- Le Mont Houy
- France
| | - Franck Lauro
- Laboratory of Industrial and Human Automatic Control and Mechanical Engineering (LAMIH)
- UMR CNRS 8201
- University Polytechnique Hauts-De-France (UPHF)
- Le Mont Houy
- France
| | - Jean-Marie Raquez
- Laboratory of Polymeric and Composite Materials (LPCM)
- Center of Innovation and Research in Materials and Polymers (CIRMAP)
- University of Mons (UMONS)
- Mons
- Belgium
| |
Collapse
|
19
|
Pramanik BK, Hai FI, Ansari AJ, Roddick FA. Mining phosphorus from anaerobically treated dairy manure by forward osmosis membrane. J IND ENG CHEM 2019. [DOI: 10.1016/j.jiec.2019.05.025] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
20
|
Moradi MR, Pihlajamäki A, Hesampour M, Ahlgren J, Mänttäri M. End-of-life RO membranes recycling: Reuse as NF membranes by polyelectrolyte layer-by-layer deposition. J Memb Sci 2019. [DOI: 10.1016/j.memsci.2019.04.060] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
21
|
Ang MBMY, Ji YL, Huang SH, Lee KR, Lai JY. A facile and versatile strategy for fabricating thin-film nanocomposite membranes with polydopamine-piperazine nanoparticles generated in situ. J Memb Sci 2019. [DOI: 10.1016/j.memsci.2019.02.064] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
22
|
Mussel-inspired zwitterionic dopamine nanoparticles as building blocks for constructing salt selective nanocomposite membranes. J Memb Sci 2019. [DOI: 10.1016/j.memsci.2018.11.019] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
23
|
Guo YS, Mi YF, Zhao FY, Ji YL, An QF, Gao CJ. Zwitterions functionalized multi-walled carbon nanotubes/polyamide hybrid nanofiltration membranes for monovalent/divalent salts separation. Sep Purif Technol 2018. [DOI: 10.1016/j.seppur.2018.05.048] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
24
|
Ji YL, Qian WJ, An QF, Lee KR, Gao CJ. Polyelectrolyte nanoparticles based thin-film nanocomposite (TFN) membranes for amino acids separation. J IND ENG CHEM 2018. [DOI: 10.1016/j.jiec.2018.05.032] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/16/2022]
|
25
|
Rydzek G, Pakdel A, Witecka A, Awang Shri DN, Gaudière F, Nicolosi V, Mokarian-Tabari P, Schaaf P, Boulmedais F, Ariga K. pH-Responsive Saloplastics Based on Weak Polyelectrolytes: From Molecular Processes to Material Scale Properties. Macromolecules 2018. [DOI: 10.1021/acs.macromol.8b00609] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Gaulthier Rydzek
- World Premier International Center for Materials Nanoarchitectonics (MANA), National Institute for Materials Science (NIMS), Tsukuba, Japan
- Centre for Research on Adaptive Nanostructures and Nanodevices (CRANN) and Advanced Materials Bio-Engineering Research Centre (AMBER), School of Chemistry, Trinity College Dublin, Dublin, Ireland
| | - Amir Pakdel
- Centre for Research on Adaptive Nanostructures and Nanodevices (CRANN) and Advanced Materials Bio-Engineering Research Centre (AMBER), School of Chemistry, Trinity College Dublin, Dublin, Ireland
| | - Agnieszka Witecka
- Institute of Fundamental Technological Research, Polish Academy of Sciences, Warsaw, Poland
| | | | - Fabien Gaudière
- CNRS, Institut Charles Sadron UPR 22, Université de Strasbourg, F-67000 Strasbourg, France
| | - Valeria Nicolosi
- Centre for Research on Adaptive Nanostructures and Nanodevices (CRANN) and Advanced Materials Bio-Engineering Research Centre (AMBER), School of Chemistry, Trinity College Dublin, Dublin, Ireland
| | - Parvaneh Mokarian-Tabari
- Centre for Research on Adaptive Nanostructures and Nanodevices (CRANN) and Advanced Materials Bio-Engineering Research Centre (AMBER), School of Chemistry, Trinity College Dublin, Dublin, Ireland
| | - Pierre Schaaf
- UMR-S 1121, Biomatériaux et Bioingénierie, Institut National de la Santé et de la Recherche Médicale, 11 rue Humann, Cedex 67085 Strasbourg, France
| | - Fouzia Boulmedais
- CNRS, Institut Charles Sadron UPR 22, Université de Strasbourg, F-67000 Strasbourg, France
| | - Katsuhiko Ariga
- World Premier International Center for Materials Nanoarchitectonics (MANA), National Institute for Materials Science (NIMS), Tsukuba, Japan
- Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa 277-0827, Japan
| |
Collapse
|
26
|
Bogdanowicz KA, Pirone D, Prats-Reig J, Ambrogi V, Reina JA, Giamberini M. In Situ Raman Spectroscopy as a Tool for Structural Insight into Cation Non-Ionomeric Polymer Interactions during Ion Transport. Polymers (Basel) 2018; 10:E416. [PMID: 30966451 PMCID: PMC6415221 DOI: 10.3390/polym10040416] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2018] [Revised: 03/30/2018] [Accepted: 04/06/2018] [Indexed: 11/17/2022] Open
Abstract
Low-modified liquid-crystalline polyether (CP36), as a model compound, was synthesised with the purpose of preparing a membrane with columnar ionic channels. A free-standing cation permselective biomimetic membrane was successfully prepared and found to have channels made of polymeric columns homeotropically oriented, which was confirmed in X-ray diffraction (XRD) analysis. A first insight into a real-time interaction between two selected cations: H⁺ and Na⁺, and polyether during transport through the polymeric membrane was demonstrated using joined chronoamperometry and Raman spectroscopy techniques. Raman studies unveiled the possibility for smaller protons to bypass the usual ionic pathway via polyetheric chain and use outer part of ionic channel for conduction thanks to ester bonds.
Collapse
Affiliation(s)
- Krzysztof Artur Bogdanowicz
- Departament d'Enginyeria Química, Universitat Rovira i Virgili, Av. Països Catalans 26, Campus Sescelades, 43007 Tarragona, Spain.
- Military Institute of Engineer Technology, 136 Obornicka Street, 50-961 Wroclaw, Poland.
| | - Domenico Pirone
- Departament d'Enginyeria Química, Universitat Rovira i Virgili, Av. Països Catalans 26, Campus Sescelades, 43007 Tarragona, Spain.
- Dipartimento di Ingegneria dei Materiali e della Produzione, Università di Napoli 'Federico II', Piazzale Tecchio 80, 80125 Napoli, Italy.
| | - Judit Prats-Reig
- Departament d'Enginyeria Química, Universitat Rovira i Virgili, Av. Països Catalans 26, Campus Sescelades, 43007 Tarragona, Spain.
| | - Veronica Ambrogi
- Dipartimento di Ingegneria dei Materiali e della Produzione, Università di Napoli 'Federico II', Piazzale Tecchio 80, 80125 Napoli, Italy.
| | - José Antonio Reina
- Departament de Química Analítica i Química Orgànica, Universitat Rovira i Virgili, Carrer Marcel·lí Domingo s/n, Campus Sescelades, 43007 Tarragona, Spain.
| | - Marta Giamberini
- Departament d'Enginyeria Química, Universitat Rovira i Virgili, Av. Països Catalans 26, Campus Sescelades, 43007 Tarragona, Spain.
| |
Collapse
|