1
|
Caliskan E, Shishatskiy S, Abetz V, Filiz V. Pioneering the preparation of porous PIM-1 membranes for enhanced water vapor flow. RSC Adv 2024; 14:9631-9645. [PMID: 38525056 PMCID: PMC10958458 DOI: 10.1039/d3ra08398e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Accepted: 03/13/2024] [Indexed: 03/26/2024] Open
Abstract
In this study, porous polymers of intrinsic microporosity (PIM-1) membranes were prepared by non-solvent induced phase inversion (NIPS) and investigated for water vapor transport in view of their application in membrane distillation (MD). Due to the lack of high boiling point solvents for PIM-1 that are also water miscible, the mixture of tetrahydrofuran (THF) and N-methyl-2-pyrrolidone (NMP) was found to be optimal for the formation of a membrane with a developed porous system both on the membrane surface and in the bulk. PIM-1 was synthesized by using low and high temperature methods to observe how molecular weight effects the membrane structure. Low molecular weight PIM-1 was produced at low temperatures, while high molecular weight PIM-1 was obtained at high temperatures. Several membranes were prepared, including PM-6, PM-9, and PM-11 from low molecular weight PIM-1, and PM-13 from high molecular weight PIM-1. Scanning electron microscopy (SEM) was used to image the surface and cross-section of different porous PIM-1 membranes. Among all the PIM-1 membranes (PM) obtained, PM-6, PM-9, PM-11 and PM-13 showed the most developed porous structure, while PM-13 showed large voids in the bulk of the membrane. Contact angle measurements showed that all PIM-1 porous membranes are highly hydrophobic. Liquid water flux measurements showed that PM-6, PM-9 and PM-11 showed minimal water fluxes due to small surface pore size, while PM-13 showed a high water flux due to a large surface pore size. Water vapor transport measurements showed high permeance values for all membranes, demonstrating the applicability of the developed membranes for MD. In addition, a thin film composite (TFC) membrane with PIM-1 selective layer was prepared and investigated for water vapor transport to compare with porous PIM-1 membranes. The TFC membrane showed an approximately 4-fold lower vapor permeance than porous membranes. Based on these results, we postulated that the use of porous PIM-1 membranes could be promising for MD due to their hydrophobic nature and the fact that the porous membranes allow vapor permeability through the membrane but not liquid water. The TFC membrane can be used in cases where the transfer of water-soluble contaminants must be absolutely avoided.
Collapse
Affiliation(s)
- Esra Caliskan
- Institute of Membrane Research, Helmholtz-Zentrum Hereon Max-Planck-Str. 1 Geesthacht 21502 Germany +49-41-5287-2425
| | - Sergey Shishatskiy
- Institute of Membrane Research, Helmholtz-Zentrum Hereon Max-Planck-Str. 1 Geesthacht 21502 Germany +49-41-5287-2425
| | - Volker Abetz
- Institute of Membrane Research, Helmholtz-Zentrum Hereon Max-Planck-Str. 1 Geesthacht 21502 Germany +49-41-5287-2425
- Institute of Physical Chemistry, University of Hamburg Martin-Luther-King-Platz 6 Hamburg 20146 Germany
| | - Volkan Filiz
- Institute of Membrane Research, Helmholtz-Zentrum Hereon Max-Planck-Str. 1 Geesthacht 21502 Germany +49-41-5287-2425
| |
Collapse
|
2
|
Kamaraj P, Vardhan Sridhar V, Vijaykumar Tharumasivam S, Parthasarathy S, Bupesh G, Kumar Raju N, Kumar Sahoo U, Nanda A, Saravanan KM. Carbon nanoparticles fabricated microfilm: A potent filter for microplastics debased water. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 336:122502. [PMID: 37666462 DOI: 10.1016/j.envpol.2023.122502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 08/15/2023] [Accepted: 09/01/2023] [Indexed: 09/06/2023]
Abstract
Microplastics were found to be the major pollutant across the globe. Plastic microbeads, like 0.5 mm, are very small and mainly used for exfoliation. The marine species cannot distinguish between their usual food and these microbeads. Microbeads have the potential to transfer up the food chain, which may lead to consumption by humans in the end. Activated carbon from inexpensive sources has greatly interested separation systems, especially in water treatment. In that view, carbon nanoparticles were produced, combined with polyvinylidene fluoride (PVDF) polymer, and used as a membrane to trap the microplastic particles. UV-Vis, FTIR, TEM, and powder X-ray diffraction (XRD) analysis confirmed the produced carbon nanoparticles. FT-RAMAN Spectroscopy studies, microbial viable cell count, and turbidity analysis followed the membrane preparation and post-treatment. The carbon nanoparticle fabricated nanofilm effectively eliminates the microbial count and microplastics and reduces the turbidity (0.13 NTU). This study confirms that the membrane effectively filters microplastics and other contaminants. Nowadays, nanofiltration technologies have been considered beneficial for eliminating microplastics to an efficiency of 95%. Further research is needed to determine a feasible low-cost, ecologically suitable, and effective solution to remove the microplastics in water.
Collapse
Affiliation(s)
- Prabhu Kamaraj
- PG & Research Department of Biotechnology, Srimad Andavan Arts Science College(Autonomous), Tiruvanaikoil, Tiruchirappalli, 620005, Tamil Nadu, India
| | - Vishnu Vardhan Sridhar
- PG & Research Department of Biotechnology, Srimad Andavan Arts Science College(Autonomous), Tiruvanaikoil, Tiruchirappalli, 620005, Tamil Nadu, India
| | - Siva Vijaykumar Tharumasivam
- Department of Biotechnology Engineering, Dhanalakshmi Srinivasan University, Samayapuram, Tiruchirappalli, 621112, Tamil Nadu, India
| | | | - Giridharan Bupesh
- Department of Forestry, Nagaland University (Central), Lumami, Nagaland, 798627, India.
| | - Nirmal Kumar Raju
- PG & Research Department of Physics, Srimad Andavan Arts & Science College (Autonomous), Tiruvanaikoil, Tiruchirappalli, 620005, Tamil Nadu, India
| | | | - Anima Nanda
- Department of Biomedical Engineering, Sathyabama Institute of Science and Technology, Chennai, India
| | - Konda Mani Saravanan
- Department of Biotechnology, Bharath Institute of Higher Education and Research, Chennai, 600073, Tamil Nadu, India
| |
Collapse
|
3
|
Pochivalov KV, Basko AV, Lebedeva TN, Ilyasova AN, Shandryuk GA, Snegirev VV, Artemov VV, Ezhov AA, Kudryavtsev YV. A New Look at the Structure and Thermal Behavior of Polyvinylidene Fluoride-Camphor Mixtures. Polymers (Basel) 2022; 14:polym14235214. [PMID: 36501608 PMCID: PMC9735715 DOI: 10.3390/polym14235214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 11/28/2022] [Accepted: 11/28/2022] [Indexed: 12/05/2022] Open
Abstract
An experimental quasi-equilibrium phase diagram of the polyvinylidene fluoride (PVDF)-camphor mixture is constructed using an original optical method. For the first time, it contains a boundary curve that describes the dependence of camphor solubility in the amorphous regions of PVDF on temperature. It is argued that this diagram cannot be considered a full analogue of the eutectic phase diagrams of two low-molar-mass crystalline substances. The phase diagram is used to interpret the polarized light hot-stage microscopy data on cooling the above mixtures from a homogeneous state to room temperature and scanning electron microscopy data on the morphology of capillary-porous bodies formed upon camphor removal. Based on our calorimetry and X-ray studies, we put in doubt the possibility of incongruent crystalline complex formation between PVDF and camphor previously suggested by Dasgupta et al. (Macromolecules 2005, 38, 5602-5608). We also describe and discuss the high-temperature crystalline structure of racemic camphor, which is not available in the modern literature.
Collapse
Affiliation(s)
- Konstantin V. Pochivalov
- Krestov Institute of Solution Chemistry, Russian Academy of Sciences, Akademicheskaya ul. 1, Ivanovo 153045, Russia
- Institute of Macromolecular Compounds, Russian Academy of Sciences, Bolshoy pr. 31, St. Petersburg 199004, Russia
| | - Andrey V. Basko
- Krestov Institute of Solution Chemistry, Russian Academy of Sciences, Akademicheskaya ul. 1, Ivanovo 153045, Russia
| | - Tatyana N. Lebedeva
- Krestov Institute of Solution Chemistry, Russian Academy of Sciences, Akademicheskaya ul. 1, Ivanovo 153045, Russia
| | - Anna N. Ilyasova
- Krestov Institute of Solution Chemistry, Russian Academy of Sciences, Akademicheskaya ul. 1, Ivanovo 153045, Russia
| | - Georgiy A. Shandryuk
- Topchiev Institute of Petrochemical Synthesis, Russian Academy of Sciences, Leninskii pr. 29, Moscow 119991, Russia
| | - Vyacheslav V. Snegirev
- Faculty of Physics, Lomonosov Moscow State University, Leninskie Gory 1–2, Moscow 119991, Russia
| | - Vladimir V. Artemov
- Shubnikov Institute of Crystallography, Federal Scientific Research Center “Crystallography and Photonics”, Russian Academy of Sciences, Leninskii pr. 59, Moscow 119333, Russia
| | - Alexander A. Ezhov
- Topchiev Institute of Petrochemical Synthesis, Russian Academy of Sciences, Leninskii pr. 29, Moscow 119991, Russia
- Faculty of Physics, Lomonosov Moscow State University, Leninskie Gory 1–2, Moscow 119991, Russia
- Shubnikov Institute of Crystallography, Federal Scientific Research Center “Crystallography and Photonics”, Russian Academy of Sciences, Leninskii pr. 59, Moscow 119333, Russia
| | - Yaroslav V. Kudryavtsev
- Topchiev Institute of Petrochemical Synthesis, Russian Academy of Sciences, Leninskii pr. 29, Moscow 119991, Russia
- Frumkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of Sciences, Leninskii pr. 31, Moscow 119071, Russia
- Correspondence:
| |
Collapse
|
4
|
Zhang J, Jian Z, Jiang M, Peng B, Zhang Y, Wu Z, Zheng J. Influence of Dispersed TiO 2 Nanoparticles via Steric Interaction on the Antifouling Performance of PVDF/TiO 2 Composite Membranes. MEMBRANES 2022; 12:1118. [PMID: 36363673 PMCID: PMC9694972 DOI: 10.3390/membranes12111118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 11/06/2022] [Accepted: 11/07/2022] [Indexed: 06/16/2023]
Abstract
Herein, the influence of various contents of polyethylene glycol (PEG) on the dispersion of TiO2 nanoparticles and the comprehensive properties of PVDF/TiO2 composite membranes via the steric hindrance interaction was systematically explored. Hydrophilic PEG was employed as a dispersing surfactant of TiO2 nanoparticles in the pre-dispersion process and as a pore-forming additive in the following membrane preparation process. The slight overlap shown in the TEM image and low TSI value (<1) of the composite casting solution indicated the effective dispersion and stabilization under the steric interaction with a PEG content of 6 wt.%. Properties such as the surface pore size, the development of finger-like structures, permeability, hydrophilicity and Zeta potential were obviously enhanced. The improved antifouling performance between the membrane surface and foulants was corroborated by less negative free energy of adhesion (about −42.87 mJ/m2), a higher interaction energy barrier (0.65 KT) and low flux declination during the filtration process. The high critical flux and low fouling rate both in winter and summer as well as the long-term running operation in A/O-MBR firmly supported the elevated antifouling performance, which implies a promising application in the municipal sewage treatment field.
Collapse
Affiliation(s)
- Jie Zhang
- School of Chemistry and Materials Engineering, Huizhou University, 46 Yanda Road, Huizhou 516007, China
- College of Life and Environmental Science, Guilin University of Electronic Technology, 1 Jinji Road, Guilin 541004, China
- School of Environmental Science and Engineering, South University of Science and Technology of China, No. 1088 Xueyuan Avenue, Shenzhen 518055, China
- Department of Electrical Engineering, National Cheng Kung University, No. 1 Daxue Road, Tainan 701401, China
| | - Zicong Jian
- School of Chemistry and Materials Engineering, Huizhou University, 46 Yanda Road, Huizhou 516007, China
| | - Minmin Jiang
- College of Life and Environmental Science, Guilin University of Electronic Technology, 1 Jinji Road, Guilin 541004, China
| | - Bo Peng
- School of Chemistry and Materials Engineering, Huizhou University, 46 Yanda Road, Huizhou 516007, China
| | - Yuanyuan Zhang
- College of Life and Environmental Science, Guilin University of Electronic Technology, 1 Jinji Road, Guilin 541004, China
| | - Zhichao Wu
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai 200092, China
| | - Junjian Zheng
- College of Life and Environmental Science, Guilin University of Electronic Technology, 1 Jinji Road, Guilin 541004, China
| |
Collapse
|
5
|
Hu D, Chen M, Lu S, Li H. Polymorphism Texture Induced by Fractional Precipitation of Poly( l-lactic acid). Macromolecules 2022. [DOI: 10.1021/acs.macromol.2c00728] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Dapeng Hu
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, International Research Center for X Polymers, Shanxi-Zheda Institute of Advanced Materials and Chemical Engineering, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, P. R. China
| | - Min Chen
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, International Research Center for X Polymers, Shanxi-Zheda Institute of Advanced Materials and Chemical Engineering, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, P. R. China
| | - Songyan Lu
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, International Research Center for X Polymers, Shanxi-Zheda Institute of Advanced Materials and Chemical Engineering, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, P. R. China
| | - Hanying Li
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, International Research Center for X Polymers, Shanxi-Zheda Institute of Advanced Materials and Chemical Engineering, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, P. R. China
| |
Collapse
|
6
|
The Effect of Heat Sterilization on Key Filtration Performance Parameters of a Commercial Polymeric (PVDF) Hollow-Fiber Ultrafiltration Membrane. MEMBRANES 2022; 12:membranes12080725. [PMID: 35893443 PMCID: PMC9394269 DOI: 10.3390/membranes12080725] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 07/12/2022] [Accepted: 07/13/2022] [Indexed: 02/04/2023]
Abstract
Membrane processes can be integrated with fermentation for the selective separation of the products from the fermentation broth. Sterilization with saturated steam under pressure is the most widely used method; however, data concerning heat sterilization applicability to polymeric ultrafiltration (UF) membranes are scarcely available. In this study, the effect of the sterilization process on the filtration performance of a commercial polyvinylidene difluoride (PVDF) hollow fiber UF membrane was evaluated. Membrane modules were constructed and sterilized several times in an autoclave. Pure water flux tests were performed, to assess the effect of heat sterilization on the membrane’s pure water permeance. Dextran rejection tests were performed for the characterization of membrane typical pore size and its fouling propensity. Filtration performance was also assessed by conducting filtration tests with real fermentation broth. After repeated sterilization cycles, pure water permeance remained quite constant, varying between approx. 830 and 990 L·m−2·h−1·bar−1, while the molecular weight cut-off (MWCO) was estimated to be in the range of 31.5–98.0 kDa. Regarding fouling behavior, the trans-membrane pressure increase rate was stable and quite low (between 0.5 and 7.0 mbar/min). The results suggest that commercial PVDF UF membranes are a viable alternative to high-cost ceramic UF membranes for fermentation processes that require heat sterilization.
Collapse
|
7
|
Russo F, Tiecco M, Galiano F, Mancuso R, Gabriele B, Figoli A. Launching deep eutectic solvents (DESs) and natural deep eutectic solvents (NADESs), in combination with different harmless co-solvents, for the preparation of more sustainable membranes. J Memb Sci 2022. [DOI: 10.1016/j.memsci.2022.120387] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
8
|
Moon CH, Yasmeen S, Park K, Gaiji H, Chung C, Kim H, Moon HS, Choi JW, Lee HBR. Icephobic Coating through a Self-Formed Superhydrophobic Surface Using a Polymer and Microsized Particles. ACS APPLIED MATERIALS & INTERFACES 2022; 14:3334-3343. [PMID: 34981919 DOI: 10.1021/acsami.1c22404] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Icephobic coatings have been extensively studied for decades to overcome the potential damage associated with ice formation in various devices that are operated under harsh weather conditions. Superhydrophobic surface coatings have been applied for icephobic coating applications owing to their low surface energy. In this study, an icephobic coating of a self-formed superhydrophobic surface using polydimethylsiloxane (PDMS) and SiO2 powder was investigated. The effect of superhydrophobicity on icephobicity was determined by varying the experimental parameters. Polyvinylidene fluoride (PVDF) was added to the PDMS solution to improve the mechanical properties of the icephobic layer. The PDMS-PVDF solution also showed a self-formation behavior into a superhydrophobic surface. In addition, the icephobicity and mechanical properties of the PDMS-PVDF mixture coating improved because of the multilevel nanostructure formed by physical and chemical interactions between the mixture and SiO2 powder. We believe that the proposed approach will be a suitable candidate for various practical applications of icephobicity and a model system to understand the correlation between superhydrophobicity and icephobicity.
Collapse
Affiliation(s)
- Chan Hui Moon
- Department of Materials Science & Engineering, Incheon National University, Incheon 22012, South Korea
| | - Sumaira Yasmeen
- Department of Materials Science & Engineering, Incheon National University, Incheon 22012, South Korea
| | - Kiho Park
- School of Chemical and Biological Engineering, Seoul National University, Seoul 08826, South Korea
| | - Houda Gaiji
- Department of Materials Science & Engineering, Incheon National University, Incheon 22012, South Korea
| | - Changhyun Chung
- Office of Technology Development & Service, Korea Polar Research Institute, Incheon 21990, South Korea
| | - Hyoungkwon Kim
- Office of Technology Development & Service, Korea Polar Research Institute, Incheon 21990, South Korea
| | - Hyoung-Seok Moon
- Energy Plant R&D Group, Korea Institute of Industrial Technology, Busan 31056, South Korea
| | - Jang Wook Choi
- School of Chemical and Biological Engineering, Seoul National University, Seoul 08826, South Korea
| | - Han-Bo-Ram Lee
- Department of Materials Science & Engineering, Incheon National University, Incheon 22012, South Korea
| |
Collapse
|
9
|
Tarhouchi S, Louafy R, El Atmani EH, Hlaïbi M. Kinetic control concept for the diffusion processes of paracetamol active molecules across affinity polymer membranes from acidic solutions. BMC Chem 2022; 16:2. [PMID: 35027092 PMCID: PMC8759197 DOI: 10.1186/s13065-021-00794-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Accepted: 12/28/2021] [Indexed: 11/23/2022] Open
Abstract
Background Paracetamol compound remains the most used pharmaceutical as an analgesic and antipyretic for pain and fever, often identified in aquatic environments. The elimination of this compound from wastewater is one of the critical operations carried out by advanced industries. Our work objective was to assess studies based on membrane processes by using two membranes, polymer inclusion membrane and grafted polymer membrane containing gluconic acid as an extractive agent for extracting and recovering paracetamol compound from aqueous solutions. Result The elaborated membrane characterizations were assessed using Fourier-transform infrared spectroscopy (FTIR) and scanning electron microscopy (SEM). Kinetic and thermodynamic models have been applied to determine the values of macroscopic (P and J0), microscopic (D* and Kass), activation and thermodynamic parameters (Ea, ΔH#, ΔS#, ΔH#diss, and ΔH#th). All results showed that the PVA–GA was more performant than its counterpart GPM–GA, with apparent diffusion coefficient values (107D*) of 41.807 and 31.211 cm2 s−1 respectively, at T = 308 K. In addition, the extraction process for these membranes was more efficient at pH = 1. The relatively low values of activation energy (Ea), activation association enthalpy (ΔH≠ass), and activation dissociation enthalpy (ΔH≠diss) have indicated a kinetic control for the oriented processes studied across the adopted membranes much more than the energetic counterpart. Conclusion The results presented for the quantification of oriented membrane process ensured clean, sustainable, and environmentally friendly methods for the extraction and recovery of paracetamol molecule as a high-value substance. Supplementary Information The online version contains supplementary material available at 10.1186/s13065-021-00794-7.
Collapse
Affiliation(s)
- Sanae Tarhouchi
- Laboratoire Génie des Matériaux pour Environnement et Valorisation (GeMEV), Faculté des Sciences Ain Chock, Hasssan II University of Casablanca (UH2C), PB 5366, Maârif, Maroc.
| | - Rkia Louafy
- Laboratoire Génie des Matériaux pour Environnement et Valorisation (GeMEV), Faculté des Sciences Ain Chock, Hasssan II University of Casablanca (UH2C), PB 5366, Maârif, Maroc
| | - El Houssine El Atmani
- Laboratoire Génie des Matériaux pour Environnement et Valorisation (GeMEV), Faculté des Sciences Ain Chock, Hasssan II University of Casablanca (UH2C), PB 5366, Maârif, Maroc
| | - Miloudi Hlaïbi
- Laboratoire Génie des Matériaux pour Environnement et Valorisation (GeMEV), Faculté des Sciences Ain Chock, Hasssan II University of Casablanca (UH2C), PB 5366, Maârif, Maroc
| |
Collapse
|
10
|
Nascimben Santos E, Fazekas Á, Hodúr C, László Z, Beszédes S, Scheres Firak D, Gyulavári T, Hernádi K, Arthanareeswaran G, Veréb G. Statistical Analysis of Synthesis Parameters to Fabricate PVDF/PVP/TiO 2 Membranes via Phase-Inversion with Enhanced Filtration Performance and Photocatalytic Properties. Polymers (Basel) 2021; 14:polym14010113. [PMID: 35012135 PMCID: PMC8747740 DOI: 10.3390/polym14010113] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Revised: 12/20/2021] [Accepted: 12/25/2021] [Indexed: 11/16/2022] Open
Abstract
Non-solvent induced phase-inversion is one of the most used methods to fabricate membranes. However, there are only a few studies supported by statistical analysis on how the different fabrication conditions affect the formation and performance of membranes. In this paper, a central composite design was employed to analyze how different fabrication conditions affect the pure water flux, pore size, and photocatalytic activity of polyvinylidene fluoride (PVDF) membranes. Polyvinylpyrrolidone (PVP) was used to form pores, and titanium dioxide (TiO2) to ensure the photocatalytic activity of the membranes. The studied bath temperatures (15 to 25 °C) and evaporation times (0 to 60 s) did not significantly affect the pore size and pure water flux of the membranes. The concentration of PVDF (12.5 to 17.5%) affected the viscosity, formation capability, and pore sizes. PVDF at high concentrations resulted in membranes with small pore sizes. PVP affected the pore size and should be used to a limited extent to avoid possible hole formation. TiO2 contents were responsible for the decolorization of a methyl orange solution (10-5 M) up to 90% over the period studied (30 h). A higher content of TiO2 did not increase the decolorization rate. Acidic conditions increased the photocatalytic activity of the TiO2-membranes.
Collapse
Affiliation(s)
- Erika Nascimben Santos
- Department of Biosystems Engineering, Faculty of Engineering, University of Szeged, Moszkvai Blvd. 9, HU-6725 Szeged, Hungary; (E.N.S.); (Á.F.); (C.H.); (Z.L.); (S.B.)
- Doctoral School of Environmental Sciences, University of Szeged, Dugonics Square 13, HU-6720 Szeged, Hungary;
| | - Ákos Fazekas
- Department of Biosystems Engineering, Faculty of Engineering, University of Szeged, Moszkvai Blvd. 9, HU-6725 Szeged, Hungary; (E.N.S.); (Á.F.); (C.H.); (Z.L.); (S.B.)
- Doctoral School of Environmental Sciences, University of Szeged, Dugonics Square 13, HU-6720 Szeged, Hungary;
| | - Cecilia Hodúr
- Department of Biosystems Engineering, Faculty of Engineering, University of Szeged, Moszkvai Blvd. 9, HU-6725 Szeged, Hungary; (E.N.S.); (Á.F.); (C.H.); (Z.L.); (S.B.)
| | - Zsuzsanna László
- Department of Biosystems Engineering, Faculty of Engineering, University of Szeged, Moszkvai Blvd. 9, HU-6725 Szeged, Hungary; (E.N.S.); (Á.F.); (C.H.); (Z.L.); (S.B.)
| | - Sándor Beszédes
- Department of Biosystems Engineering, Faculty of Engineering, University of Szeged, Moszkvai Blvd. 9, HU-6725 Szeged, Hungary; (E.N.S.); (Á.F.); (C.H.); (Z.L.); (S.B.)
| | - Daniele Scheres Firak
- Doctoral School of Environmental Sciences, University of Szeged, Dugonics Square 13, HU-6720 Szeged, Hungary;
- Department of Inorganic and Analytical Chemistry, Institute of Chemistry, University of Szeged, Dóm Square 7, HU-6720 Szeged, Hungary
| | - Tamás Gyulavári
- Department of Applied and Environmental Chemistry, Institute of Chemistry, University of Szeged, Rerrich Béla Sq. 1, HU-6720 Szeged, Hungary; (T.G.); (K.H.)
| | - Klára Hernádi
- Department of Applied and Environmental Chemistry, Institute of Chemistry, University of Szeged, Rerrich Béla Sq. 1, HU-6720 Szeged, Hungary; (T.G.); (K.H.)
- Institute of Physical Metallurgy, Metal Forming and Nanotechnology, University of Miskolc, Miskolc-Egyetemváros, C/1 108, HU-3515 Miskolc, Hungary
| | - Gangasalam Arthanareeswaran
- Membrane Research Laboratory, Department of Chemical Engineering, National Institute of Technology, Tiruchirappalli 620015, Tamilnadu, India;
| | - Gábor Veréb
- Department of Biosystems Engineering, Faculty of Engineering, University of Szeged, Moszkvai Blvd. 9, HU-6725 Szeged, Hungary; (E.N.S.); (Á.F.); (C.H.); (Z.L.); (S.B.)
- Correspondence:
| |
Collapse
|
11
|
Teixeira J, Cardoso VF, Botelho G, Morão AM, Nunes-Pereira J, Lanceros-Mendez S. Effect of Polymer Dissolution Temperature and Conditioning Time on the Morphological and Physicochemical Characteristics of Poly(Vinylidene Fluoride) Membranes Prepared by Non-Solvent Induced Phase Separation. Polymers (Basel) 2021; 13:4062. [PMID: 34883566 PMCID: PMC8659276 DOI: 10.3390/polym13234062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Revised: 11/12/2021] [Accepted: 11/19/2021] [Indexed: 11/16/2022] Open
Abstract
This work reports on the production of poly(vinylidene fluoride) (PVDF) membranes by non-solvent induced phase separation (NIPS) using N,N-dimethylformamide (DMF) as solvent and water as non-solvent. The influence of the processing conditions in the morphology, surface characteristics, structure, thermal and mechanical properties were evaluated for polymer dissolution temperatures between 25 and 150 °C and conditioning time between 0 and 10 min. Finger-like pore morphology was obtained for all membranes and increasing the polymer dissolution temperature led to an increase in the average pore size (≈0.9 and 2.1 µm), porosity (≈50 to 90%) and water contact angle (up to 80°), in turn decreasing the β PVDF content (≈67 to 20%) with the degree of crystallinity remaining approximately constant (≈56%). The conditioning time did not significantly affect the polymer properties studied. Thus, the control of NIPS parameters proved to be suitable for tailoring PVDF membrane properties.
Collapse
Affiliation(s)
- João Teixeira
- CF-UM-UP, Centre of Physics of Minho and Porto Universities, Campus de Gualtar, University of Minho, 4710-057 Braga, Portugal; (J.T.); (V.F.C.)
| | - Vanessa Fernandes Cardoso
- CF-UM-UP, Centre of Physics of Minho and Porto Universities, Campus de Gualtar, University of Minho, 4710-057 Braga, Portugal; (J.T.); (V.F.C.)
- CMEMS-UMinho, Campus de Azurém, University of Minho, 4800-058 Guimarães, Portugal
| | - Gabriela Botelho
- Department of Chemistry, Campus de Gualtar, University of Minho, 4710-057 Braga, Portugal;
| | - António Miguel Morão
- CICS-UBI, The Health Sciences Research Centre, University of Beira Interior, Av. Infante D. Henrique, 6200-506 Covilhã, Portugal;
| | - João Nunes-Pereira
- CF-UM-UP, Centre of Physics of Minho and Porto Universities, Campus de Gualtar, University of Minho, 4710-057 Braga, Portugal; (J.T.); (V.F.C.)
- C-MAST-UBI, Centre for Mechanical and Aerospace Science and Technologies, University of Beira Interior, Rua Marquês d’Ávila e Bolama, 6200-001 Covilhã, Portugal
| | - Senentxu Lanceros-Mendez
- BCMaterials, Basque Center for Materials, Applications and Nanostructures, UPV/EHU Science Park, 48940 Leioa, Spain
- IKERBASQUE, Basque Foundation for Science, 48009 Bilbao, Spain
| |
Collapse
|
12
|
Al-Gharabli S, Abu El-Rub Z, Hamad E, Kujawski W, Flanc Z, Pianka K, Kujawa J. Surfaces with Adjustable Features-Effective and Durable Materials for Water Desalination. Int J Mol Sci 2021; 22:ijms222111743. [PMID: 34769183 PMCID: PMC8583984 DOI: 10.3390/ijms222111743] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Revised: 10/26/2021] [Accepted: 10/27/2021] [Indexed: 11/16/2022] Open
Abstract
Materials based on PVDF with desirable and controllable features were successfully developed. The chemistry and roughness were adjusted to produce membranes with improved transport and separation properties. Membranes were activated using the novel piranha approach to generate OH-rich surfaces, and finally furnished with epoxy and long-alkyl moieties via stable covalent attachment. The comprehensive materials characterization provided a broad spectrum of data, including morphology, textural, thermal properties, and wettability features. The defined materials were tested in the air-gap membrane distillation process for desalination, and improvement compared with pristine PVDF was observed. An outstanding behavior was found for the PVDF sample equipped with long-alkyl chains. The generated membrane showed an enhancement in the transport of 58-62% compared to pristine. A relatively high contact angle of 148° was achieved with a 560 nm roughness, producing a highly hydrophobic material. On the other hand, it was possible to tone the hydrophobicity and significantly reduce adhesion work. All materials were highly stable during the long-lasting separation process and were characterized by excellent effectiveness in water desalination.
Collapse
Affiliation(s)
- Samer Al-Gharabli
- Pharmaceutical and Chemical Engineering Department, German Jordanian University, Amman 11180, Jordan;
- Correspondence: (S.A.-G.); (J.K.); Tel./Fax: +962-6-429-4404 (S.A.-G.); +48-56-611-43-15 (J.K.); Fax: +48-56-611-45-26 (J.K.)
| | - Ziad Abu El-Rub
- Pharmaceutical and Chemical Engineering Department, German Jordanian University, Amman 11180, Jordan;
| | - Eyad Hamad
- Biomedical Engineering Department, German Jordanian University, Amman 11180, Jordan;
| | - Wojciech Kujawski
- Faculty of Chemistry, Nicolaus Copernicus University in Toruń, 7 Gagarina Street, 87-100 Toruń, Poland; (W.K.); (Z.F.); (K.P.)
| | - Zuzanna Flanc
- Faculty of Chemistry, Nicolaus Copernicus University in Toruń, 7 Gagarina Street, 87-100 Toruń, Poland; (W.K.); (Z.F.); (K.P.)
| | - Katarzyna Pianka
- Faculty of Chemistry, Nicolaus Copernicus University in Toruń, 7 Gagarina Street, 87-100 Toruń, Poland; (W.K.); (Z.F.); (K.P.)
| | - Joanna Kujawa
- Faculty of Chemistry, Nicolaus Copernicus University in Toruń, 7 Gagarina Street, 87-100 Toruń, Poland; (W.K.); (Z.F.); (K.P.)
- Correspondence: (S.A.-G.); (J.K.); Tel./Fax: +962-6-429-4404 (S.A.-G.); +48-56-611-43-15 (J.K.); Fax: +48-56-611-45-26 (J.K.)
| |
Collapse
|
13
|
Mu R, Soro DL, Wang X, Qing L, Cao G, Mei S, Liu Y. Performance of Self-Healing Cementitious Composites Using Aligned Tubular Healing Fiber. MATERIALS 2021; 14:ma14206162. [PMID: 34683754 PMCID: PMC8540065 DOI: 10.3390/ma14206162] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 10/10/2021] [Accepted: 10/12/2021] [Indexed: 11/16/2022]
Abstract
From the perspective of improving the self-healing method in construction, a tubular healing fiber was adopted as a container to improve the encapsulation capacity, which was available using a micro-capsule as a container. Knowing the direction of the stresses to which structure members are subjected, this research investigated the influence of aligning tubular healing fibers parallel to intended stress into a cementitious composite to increase the self-healing capability. For that, a healing agent was encapsulated into a tubular healing fiber made with polyvinylidene of fluoride resin (PVDF). Then, the healing fiber was combined with steel fibers to align both fibers together parallel to the direction of an intended splitting tensile stress when subjected to a magnetic field in a cylindrical cementitious composite. The alignment method and the key point through which the alignment of the healing fibers could efficiently improve autonomic self-healing were investigated. Since the magnetic field is known to be able to drag steel to an expected direction, steel fibers were combined with the healing fibers to form a hybrid fiber that aligned both fibers together. The required mixture workability was investigated to avoid the sinking of the healing fibers into the mixture. The healing efficiency, according to the orientation of the healing fibers in the composite matrix, was evaluated through a permeability test and a repetitive splitting tensile test. The aligned healing fibers performed better than the randomly distributed healing fibers. However, according to the healing efficiency with aligned healing fibers, it was deduced that the observed decreasing effect of the container’s alignment on the specimen’s mechanical properties was low enough to be neglected.
Collapse
|
14
|
Kang DH, Kim NK, Kang HW. Electrostatic Charge Retention in PVDF Nanofiber-Nylon Mesh Multilayer Structure for Effective Fine Particulate Matter Filtration for Face Masks. Polymers (Basel) 2021; 13:3235. [PMID: 34641051 PMCID: PMC8513023 DOI: 10.3390/polym13193235] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Revised: 09/08/2021] [Accepted: 09/10/2021] [Indexed: 11/20/2022] Open
Abstract
Currently, almost 70% of the world's population occupies urban areas. Owing to the high population density in these regions, they are exposed to various types of air pollutants. Fine particle air pollutants (<2.5 μm) can easily invade the human respiratory system, causing health issues. For fine particulate matter filtration, the use of a face mask filter is efficient; however, its use is accompanied by a high-pressure drop, making breathing difficult. Electrostatic interactions in the filter of the face mask constitute the dominant filtration mechanism for capturing fine particulate matter; these masks are, however, significantly weakened by the high humidity in exhaled breath. In this study, we demonstrate that a filter with an electrostatically rechargeable structure operates with normal breathing air power. In our novel face mask, a filter membrane is assembled by layer-by-layer stacking of the electrospun PVDF nanofiber mat formed on a nylon mesh. Tribo/piezoelectric characteristics via multilayer structure enhance filtration performance, even under air-powered filter bending taken as a normal breathing condition. The air gap between nanofiber and mesh layers increases air diffusion time and preserves the electrostatic charges within the multi-layered nanofiber filter membrane under humid air penetration, which is advantageous for face mask applications.
Collapse
Affiliation(s)
| | | | - Hyun Wook Kang
- Department of Mechanical Engineering, Chonnam National University, 77 Yongbong-ro, Buk-gu, Gwangju 61186, Korea; (D.H.K.); (N.K.K.)
| |
Collapse
|
15
|
Russo F, Marino T, Galiano F, Gzara L, Gordano A, Organji H, Figoli A. Tamisolve ® NxG as an Alternative Non-Toxic Solvent for the Preparation of Porous Poly (Vinylidene Fluoride) Membranes. Polymers (Basel) 2021; 13:polym13152579. [PMID: 34372182 PMCID: PMC8347625 DOI: 10.3390/polym13152579] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Revised: 07/14/2021] [Accepted: 07/21/2021] [Indexed: 01/17/2023] Open
Abstract
Tamisolve® NxG, a well-known non-toxic solvent, was used for poly(vinylidene fluoride) (PVDF) membranes preparation via a non-solvent-induced phase separation (NIPS) procedure with water as a coagulation bath. Preliminary investigations, related to the study of the physical/chemical properties of the solvent, the solubility parameters, the gel transition temperature and the viscosity of the polymer-solvent system, confirmed the power of the solvent to solubilize PVDF polymer for membranes preparation. The role of polyvinylpyrrolidone (PVP) and/or poly(ethylene glycol) (PEG), as pore former agents in the dope solution, was studied along with different polymer concentrations (10 wt%, 15 wt% and 18 wt%). The produced membranes were then characterized in terms of morphology, thickness, porosity, contact angle, atomic force microscopy (AFM) and infrared spectroscopy (ATR-FTIR). Pore size measurements, pore size distribution and water permeability (PWP) tests placed the developed membranes in the ultrafiltration (UF) and microfiltration (MF) range. Finally, PVDF membrane performances were investigated in terms of rejection (%) and permeability recovery ratio (PRR) using methylene blue (MB) in water solution to assess their potential application in separation and purification processes.
Collapse
Affiliation(s)
- Francesca Russo
- Institute on Membrane Technology (ITM-CNR), Via P. Bucci 17c, 87036 Rende, CS, Italy; (F.R.); (F.G.); (A.G.)
| | - Tiziana Marino
- Institute on Membrane Technology (ITM-CNR), Via P. Bucci 17c, 87036 Rende, CS, Italy; (F.R.); (F.G.); (A.G.)
- Correspondence: (T.M.); (A.F.)
| | - Francesco Galiano
- Institute on Membrane Technology (ITM-CNR), Via P. Bucci 17c, 87036 Rende, CS, Italy; (F.R.); (F.G.); (A.G.)
| | - Lassaad Gzara
- Center of Excellence in Desalination Technology, King Abdulaziz University, P.O. Box 80200, Jeddah 21589, Saudi Arabia; (L.G.); (H.O.)
| | - Amalia Gordano
- Institute on Membrane Technology (ITM-CNR), Via P. Bucci 17c, 87036 Rende, CS, Italy; (F.R.); (F.G.); (A.G.)
| | - Hussam Organji
- Center of Excellence in Desalination Technology, King Abdulaziz University, P.O. Box 80200, Jeddah 21589, Saudi Arabia; (L.G.); (H.O.)
| | - Alberto Figoli
- Institute on Membrane Technology (ITM-CNR), Via P. Bucci 17c, 87036 Rende, CS, Italy; (F.R.); (F.G.); (A.G.)
- Correspondence: (T.M.); (A.F.)
| |
Collapse
|
16
|
Mortaheb H, Baghban Salehi M, Rajabzadeh M. Optimized hybrid PVDF/graphene membranes for enhancing performance of AGMD process in water desalination. J IND ENG CHEM 2021. [DOI: 10.1016/j.jiec.2021.04.053] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
17
|
Abdulhamid MA, Park SH, Zhou Z, Ladner DA, Szekely G. Surface engineering of intrinsically microporous poly(ether-ether-ketone) membranes: From flat to honeycomb structures. J Memb Sci 2021. [DOI: 10.1016/j.memsci.2020.118997] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
18
|
Kalimuldina G, Turdakyn N, Abay I, Medeubayev A, Nurpeissova A, Adair D, Bakenov Z. A Review of Piezoelectric PVDF Film by Electrospinning and Its Applications. SENSORS (BASEL, SWITZERLAND) 2020; 20:E5214. [PMID: 32932744 PMCID: PMC7570857 DOI: 10.3390/s20185214] [Citation(s) in RCA: 59] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Revised: 08/31/2020] [Accepted: 09/01/2020] [Indexed: 11/16/2022]
Abstract
With the increase of interest in the application of piezoelectric polyvinylidene fluoride (PVDF) in nanogenerators (NGs), sensors, and microdevices, the most efficient and suitable methods of their synthesis are being pursued. Electrospinning is an effective method to prepare higher content β-phase PVDF nanofiber films without additional high voltage poling or mechanical stretching, and thus, it is considered an economically viable and relatively simple method. This work discusses the parameters affecting the preparation of the desired phase of the PVDF film with a higher electrical output. The design and selection of optimum preparation conditions such as solution concentration, solvents, the molecular weight of PVDF, and others lead to electrical properties and performance enhancement in the NG, sensor, and other applications. Additionally, the effect of the nanoparticle additives that showed efficient improvements in the PVDF films was discussed as well. For instance, additives of BaTiO3, carbon nanotubes, graphene, nanoclays, and others are summarized to show their contributions to the higher piezo response in the electrospun PVDF. The recently reported applications of electrospun PVDF films are also analyzed in this review paper.
Collapse
Affiliation(s)
- Gulnur Kalimuldina
- School of Engineering and Digital Sciences, Nazarbayev University, Nur-Sultan 010000, Kazakhstan; (N.T.); (I.A.); (A.M.); (D.A.); (Z.B.)
| | - Nursultan Turdakyn
- School of Engineering and Digital Sciences, Nazarbayev University, Nur-Sultan 010000, Kazakhstan; (N.T.); (I.A.); (A.M.); (D.A.); (Z.B.)
| | - Ingkar Abay
- School of Engineering and Digital Sciences, Nazarbayev University, Nur-Sultan 010000, Kazakhstan; (N.T.); (I.A.); (A.M.); (D.A.); (Z.B.)
| | - Alisher Medeubayev
- School of Engineering and Digital Sciences, Nazarbayev University, Nur-Sultan 010000, Kazakhstan; (N.T.); (I.A.); (A.M.); (D.A.); (Z.B.)
| | - Arailym Nurpeissova
- National Laboratory Astana, Institute of Batteries, Nazarbayev University, Nur-Sultan 010000, Kazakhstan;
| | - Desmond Adair
- School of Engineering and Digital Sciences, Nazarbayev University, Nur-Sultan 010000, Kazakhstan; (N.T.); (I.A.); (A.M.); (D.A.); (Z.B.)
| | - Zhumabay Bakenov
- School of Engineering and Digital Sciences, Nazarbayev University, Nur-Sultan 010000, Kazakhstan; (N.T.); (I.A.); (A.M.); (D.A.); (Z.B.)
- National Laboratory Astana, Institute of Batteries, Nazarbayev University, Nur-Sultan 010000, Kazakhstan;
| |
Collapse
|
19
|
Atif R, Khaliq J, Combrinck M, Hassanin AH, Shehata N, Elnabawy E, Shyha I. Solution Blow Spinning of Polyvinylidene Fluoride Based Fibers for Energy Harvesting Applications: A Review. Polymers (Basel) 2020; 12:E1304. [PMID: 32517387 PMCID: PMC7362018 DOI: 10.3390/polym12061304] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Revised: 04/14/2020] [Accepted: 04/22/2020] [Indexed: 12/31/2022] Open
Abstract
Polyvinylidene fluoride (PVDF)-based piezoelectric materials (PEMs) have found extensive applications in energy harvesting which are being extended consistently to diverse fields requiring strenuous service conditions. Hence, there is a pressing need to mass produce PVDF-based PEMs with the highest possible energy harvesting ability under a given set of conditions. To achieve high yield and efficiency, solution blow spinning (SBS) technique is attracting a lot of interest due to its operational simplicity and high throughput. SBS is arguably still in its infancy when the objective is to mass produce high efficiency PVDF-based PEMs. Therefore, a deeper understanding of the critical parameters regarding design and processing of SBS is essential. The key objective of this review is to critically analyze the key aspects of SBS to produce high efficiency PVDF-based PEMs. As piezoelectric properties of neat PVDF are not intrinsically much significant, various additives are commonly incorporated to enhance its piezoelectricity. Therefore, PVDF-based copolymers and nanocomposites are also included in this review. We discuss both theoretical and experimental results regarding SBS process parameters such as solvents, dissolution methods, feed rate, viscosity, air pressure and velocity, and nozzle design. Morphological features and mechanical properties of PVDF-based nanofibers were also discussed and important applications have been presented. For completeness, key findings from electrospinning were also included. At the end, some insights are given to better direct the efforts in the field of PVDF-based PEMs using SBS technique.
Collapse
Affiliation(s)
- Rasheed Atif
- Department of Mechanical and Construction Engineering, Faculty of Engineering and Environment, Northumbria University, Newcastle upon Tyne NE1 8ST, UK; (J.K.); (M.C.); (I.S.)
| | - Jibran Khaliq
- Department of Mechanical and Construction Engineering, Faculty of Engineering and Environment, Northumbria University, Newcastle upon Tyne NE1 8ST, UK; (J.K.); (M.C.); (I.S.)
| | - Madeleine Combrinck
- Department of Mechanical and Construction Engineering, Faculty of Engineering and Environment, Northumbria University, Newcastle upon Tyne NE1 8ST, UK; (J.K.); (M.C.); (I.S.)
| | - Ahmed H. Hassanin
- Center of Smart Nanotechnology and Photonics (CSNP), Smart CI Research Center, Alexandria University, Alexandria 21544, Egypt; (A.H.H.); (N.S.); (E.E.)
- Department of Textile Engineering, Faculty of Engineering, Alexandria University, Alexandria 21544, Egypt
| | - Nader Shehata
- Center of Smart Nanotechnology and Photonics (CSNP), Smart CI Research Center, Alexandria University, Alexandria 21544, Egypt; (A.H.H.); (N.S.); (E.E.)
- Department of Engineering Mathematics and Physics, Faculty of Engineering, Alexandria University, Alexandria 21544, Egypt
- USTAR Bioinnovations Center, Faculty of Science, Utah State University, Logan, UT 84341, USA
- Kuwait College of Science and Technology (KCST), Doha District 13133, Kuwait
| | - Eman Elnabawy
- Center of Smart Nanotechnology and Photonics (CSNP), Smart CI Research Center, Alexandria University, Alexandria 21544, Egypt; (A.H.H.); (N.S.); (E.E.)
| | - Islam Shyha
- Department of Mechanical and Construction Engineering, Faculty of Engineering and Environment, Northumbria University, Newcastle upon Tyne NE1 8ST, UK; (J.K.); (M.C.); (I.S.)
| |
Collapse
|
20
|
Pagliero M, Bottino A, Comite A, Costa C. Novel hydrophobic PVDF membranes prepared by nonsolvent induced phase separation for membrane distillation. J Memb Sci 2020. [DOI: 10.1016/j.memsci.2019.117575] [Citation(s) in RCA: 56] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
21
|
Ray SS, Lee HK, Kwon YN. Review on Blueprint of Designing Anti-Wetting Polymeric Membrane Surfaces for Enhanced Membrane Distillation Performance. Polymers (Basel) 2019; 12:E23. [PMID: 31877628 PMCID: PMC7023606 DOI: 10.3390/polym12010023] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Revised: 12/06/2019] [Accepted: 12/07/2019] [Indexed: 12/14/2022] Open
Abstract
Recently, membrane distillation (MD) has emerged as a versatile technology for treating saline water and industrial wastewater. However, the long-term use of MD wets the polymeric membrane and prevents the membrane from working as a semi-permeable barrier. Currently, the concept of antiwetting interfaces has been utilized for reducing the wetting issue of MD. This review paper discusses the fundamentals and roles of surface energy and hierarchical structures on both the hydrophobic characteristics and wetting tolerance of MD membranes. Designing stable antiwetting interfaces with their basic working principle is illustrated with high scientific discussions. The capability of antiwetting surfaces in terms of their self-cleaning properties has also been demonstrated. This comprehensive review paper can be utilized as the fundamental basis for developing antiwetting surfaces to minimize fouling, as well as the wetting issue in the MD process.
Collapse
Affiliation(s)
- Saikat Sinha Ray
- School of Urban and Environmental Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Korea
| | - Hyung-Kae Lee
- School of Urban and Environmental Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Korea
| | - Young-Nam Kwon
- School of Urban and Environmental Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Korea
| |
Collapse
|
22
|
Kim Y, Choi WS, Jeon B, Choi TH. The Effect of Temperature and Exposure Time on Stability of Cholesterol and Squalene in Latent Fingermarks Deposited on PVDF Membrane. J Forensic Sci 2019; 65:458-464. [PMID: 31658376 DOI: 10.1111/1556-4029.14209] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2019] [Revised: 09/01/2019] [Accepted: 09/16/2019] [Indexed: 11/29/2022]
Abstract
Cholesterol and squalene are fatty materials of latent fingermarks that can be utilized for dating methodologies and visualization techniques. Previous studies have suggested these compounds undergo degradation in fingermarks as a function of time (days) and light at ambient temperature. However, studies assessing how their composition changes at low and high temperatures over short periods of time (hours) have not been published previously. Here, we performed quantitative analysis of cholesterol and squalene in natural fingermark residue using PVDF membrane, after exposure to a range of temperatures (-20 to 100°C) for 4 and 8 h. We found that levels of both fatty materials remained constant at -20 to 60°C, but both showed significant reduction at 100°C, over short exposure times. These results indicate that cholesterol and squalene are detectable at -20 to 60°C, whereas at 100°C or higher, both are lost due to rapid thermal degradation.
Collapse
Affiliation(s)
- Youngmin Kim
- Interdisciplinary Program in Stem Cell Biology, College of Medicine, Seoul National University, 101 Daehak-ro, Jongno-gu, Seoul, 03080, South Korea.,Department of Plastic and Reconstructive Surgery, Institute of Human-Environment Interface Biology, College of Medicine, Seoul National University, 101 Daehak-ro, Jongno-gu, Seoul, 03080, South Korea
| | - Won-Sil Choi
- Chromatography Laboratory, National Instrumentation Center for Environmental Management, Seoul National University, Gwanak-ro 1, Gwanak-gu, Seoul, 08826, South Korea
| | - Byoungjun Jeon
- Department of Plastic and Reconstructive Surgery, Institute of Human-Environment Interface Biology, College of Medicine, Seoul National University, 101 Daehak-ro, Jongno-gu, Seoul, 03080, South Korea.,Interdisciplinary Program in Bioengineering, College of Engineering, Seoul National University, Gwanak-ro 1, Gwanak-gu, Seoul, 08826, South Korea
| | - Tae Hyun Choi
- Department of Plastic and Reconstructive Surgery, Institute of Human-Environment Interface Biology, College of Medicine, Seoul National University, 101 Daehak-ro, Jongno-gu, Seoul, 03080, South Korea
| |
Collapse
|
23
|
Barambu NU, Bilad MR, Wibisono Y, Jaafar J, Mahlia TMI, Khan AL. Membrane Surface Patterning as a Fouling Mitigation Strategy in Liquid Filtration: A Review. Polymers (Basel) 2019; 11:polym11101687. [PMID: 31618963 PMCID: PMC6835855 DOI: 10.3390/polym11101687] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2019] [Revised: 09/22/2019] [Accepted: 09/26/2019] [Indexed: 11/16/2022] Open
Abstract
Membrane fouling is seen as the main culprit that hinders the widespread of membrane application in liquid-based filtration. Therefore, fouling management is key for the successful implementation of membrane processes, and it is done across all magnitudes. For optimum operation, membrane developments and surface modifications have largely been reported, including membrane surface patterning. Membrane surface patterning involves structural modification of the membrane surface to induce secondary flow due to eddies, which mitigate foulant agglomeration and increase the effective surface area for improved permeance and antifouling properties. This paper reviews surface patterning approaches used for fouling mitigation in water and wastewater treatments. The focus is given on the pattern formation methods and their effect on overall process performances.
Collapse
Affiliation(s)
- Nafiu Umar Barambu
- Chemical Engineering Department, Universiti Teknologi PETRONAS, Perak 32610, Malaysia.
| | - Muhammad Roil Bilad
- Chemical Engineering Department, Universiti Teknologi PETRONAS, Perak 32610, Malaysia.
| | - Yusuf Wibisono
- Bioprocess Engineering Program, Faculty of Agricultural Technology, Universitas Brawijaya, Malang 65141, Indonesia.
| | - Juhana Jaafar
- Advanced Membrane Technology Research Centre (AMTEC), Faculty of Chemical and Natural Resources Engineering, Universiti Teknologi Malaysia, Johor 81310, Malaysia.
| | - Teuku Meurah Indra Mahlia
- School of Information, Systems and Modelling, Faculty of Engineering and Information Technology, University of Technology Sydney, Sydney, NSW 2007, Australia.
| | - Asim Laeeq Khan
- Department of Chemical Engineering, COMSATS University Islamabad (CUI), Lahore 54000, Pakistan.
| |
Collapse
|
24
|
Huang B, Hu X, Fu C, Cheng H, Wang X, Wang L. Molecular Morphology and Viscoelasticity of ASP Solution under the Action of a Different Medium Injection Tool. Polymers (Basel) 2019; 11:polym11081299. [PMID: 31382509 PMCID: PMC6722813 DOI: 10.3390/polym11081299] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2019] [Revised: 07/31/2019] [Accepted: 08/01/2019] [Indexed: 11/17/2022] Open
Abstract
In order to improve the oil displacement effect of alkali/surfactant/polymer (ASP) solution in low-permeability oil layers, Daqing Oilfield has proposed a separate injection technology. The objective of separate injection technology is to reduce the viscosity of ASP solution through a different medium injection tool and increase the injection amount of ASP solution in low permeability oil layer, thus improving the oil displacement effect. In order to study the effect of the different medium injection tool on ASP solution, SEM is used to observe the changes in molecular micromorphology before and after the ASP solution flows through the tool. Then, the influence of the tool on viscosity and the first normal stress difference of the solution are studied through static shear experiments. Finally, the storage and loss modulus of the solution are measured through dynamic mechanical experiments and the relaxation time and zero shear viscosity of the solution are verified and compared. The results show that molecular chains are obviously broken and the grid structure is destroyed after the ASP solution is acted on by the different medium injection tool. The viscosity and elasticity of ASP solution decrease, and the influence degree of the different medium injection tool on viscosity is greater than elasticity. The results of the steady shear experiment and dynamic mechanics experiment are consistent. Therefore, the different medium injection tool can achieve the purpose of use, which is conducive to the injection of displacement fluid into low-permeability oil layers and enhance the recovery ratio.
Collapse
Affiliation(s)
- Bin Huang
- Key Laboratory of Enhanced Oil Recovery (Northeast Petroleum University), Ministry of Education, College of Petroleum Engineering, Northeast Petroleum University, Daqing 163318, China
| | - Xinyu Hu
- Key Laboratory of Enhanced Oil Recovery (Northeast Petroleum University), Ministry of Education, College of Petroleum Engineering, Northeast Petroleum University, Daqing 163318, China
| | - Cheng Fu
- Key Laboratory of Enhanced Oil Recovery (Northeast Petroleum University), Ministry of Education, College of Petroleum Engineering, Northeast Petroleum University, Daqing 163318, China.
- Post-Doctoral Scientific Research Station, Daqing Oilfield Company, Daqing 163413, China.
| | - Haoran Cheng
- Research Institute of Tsinghua University in Shenzhen, Shenzhen 518057, China.
- ICORE GROUP INC, Shenzhen 518057, China.
| | - Xin Wang
- Research Institute of Production Engineering, Daqing Oilfield, Daqing 163453, China
| | - Li Wang
- Research Institute of Production Engineering, Daqing Oilfield, Daqing 163453, China
| |
Collapse
|
25
|
Tandon B, Kamble P, Olsson RT, Blaker JJ, Cartmell SH. Fabrication and Characterisation of Stimuli Responsive Piezoelectric PVDF and Hydroxyapatite-Filled PVDF Fibrous Membranes. Molecules 2019; 24:E1903. [PMID: 31108899 PMCID: PMC6571942 DOI: 10.3390/molecules24101903] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2019] [Revised: 05/13/2019] [Accepted: 05/14/2019] [Indexed: 11/18/2022] Open
Abstract
Poly(vinylidene fluoride) has attracted interest from the biomaterials community owing to its stimuli responsive piezoelectric property and promising results for application in the field of tissue engineering. Here, solution blow spinning and electrospinning were employed to fabricate PVDF fibres and the variation in resultant fibre properties assessed. The proportion of piezoelectric β-phase in the solution blow spun fibres was higher than electrospun fibres. Fibre production rate was circa three times higher for solution blow spinning compared to electrospinning for the conditions explored. However, the solution blow spinning method resulted in higher fibre variability between fabricated batches. Fibrous membranes are capable of generating different cellular response depending on fibre diameter. For this reason, electrospun fibres with micron and sub-micron diameters were fabricated, along with successful inclusion of hydroxyapatite particles to fabricate stimuli responsive bioactive fibres.
Collapse
Affiliation(s)
- Biranche Tandon
- School of Materials, MSS Tower, The University of Manchester, Manchester M13 9PL, UK.
- Bio-Active Materials Group, School of Materials, MSS Tower, The University of Manchester, Manchester M13 9PL, UK.
| | - Prashant Kamble
- School of Materials, MSS Tower, The University of Manchester, Manchester M13 9PL, UK.
| | - Richard T Olsson
- Department of Fibre and Polymer Technology, School of Chemical Science and Engineering, KTH Royal Institute of Technology, Teknikringen 56, SE-10044 Stockholm, Sweden.
| | - Jonny J Blaker
- School of Materials, MSS Tower, The University of Manchester, Manchester M13 9PL, UK.
- Bio-Active Materials Group, School of Materials, MSS Tower, The University of Manchester, Manchester M13 9PL, UK.
| | - Sarah H Cartmell
- School of Materials, MSS Tower, The University of Manchester, Manchester M13 9PL, UK.
| |
Collapse
|
26
|
Development of A Novel Corrugated Polyvinylidene difluoride Membrane via Improved Imprinting Technique for Membrane Distillation. Polymers (Basel) 2019; 11:polym11050865. [PMID: 31086013 PMCID: PMC6571879 DOI: 10.3390/polym11050865] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2019] [Revised: 04/29/2019] [Accepted: 05/05/2019] [Indexed: 11/25/2022] Open
Abstract
Membrane distillation (MD) is an attractive technology for desalination, mainly because its performance that is almost independent of feed solute concentration as opposed to the reverse osmosis process. However, its widespread application is still limited by the low water flux, low wetting resistance and high scaling vulnerability. This study focuses on addressing those limitations by developing a novel corrugated polyvinylidene difluoride (PVDF) membrane via an improved imprinting technique for MD. Corrugations on the membrane surface are designed to offer an effective surface area and at the same time act as a turbulence promoter to induce hydrodynamic by reducing temperature polarization. Results show that imprinting of spacer could help to induce surface corrugation. Pore defect could be minimized by employing a dual layer membrane. In short term run experiment, the corrugated membrane shows a flux of 23.1 Lm−2h−1 and a salt rejection of >99%, higher than the referenced flat membrane (flux of 18.0 Lm−2h−1 and similar rejection). The flux advantage can be ascribed by the larger effective surface area of the membrane coupled with larger pore size. The flux advantage could be maintained in the long-term operation of 50 h at a value of 8.6 Lm−2h−1. However, the flux performance slightly deteriorates over time mainly due to wetting and scaling. An attempt to overcome this limitation should be a focus of the future study, especially by exploring the role of cross-flow velocity in combination with the corrugated surface in inducing local mixing and enhancing system performance.
Collapse
|
27
|
Janakiraman S, Surendran A, Biswal R, Ghosh S, Anandhan S, Venimadhav A. Electrochemical characterization of a polar β-phase poly (vinylidene fluoride) gel electrolyte in sodium ion cell. J Electroanal Chem (Lausanne) 2019. [DOI: 10.1016/j.jelechem.2018.12.011] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
28
|
Abdallah H, Taman R, Elgayar D, Farag H. Antibacterial blend polyvinylidene fluoride/polyethyleneimine membranes for salty oil emulsion separation. Eur Polym J 2018. [DOI: 10.1016/j.eurpolymj.2018.09.035] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|