1
|
L’Estimé M, Schindler M, Shahidzadeh N, Bonn D. Droplet Size Distribution in Emulsions. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:275-281. [PMID: 38118145 PMCID: PMC10786033 DOI: 10.1021/acs.langmuir.3c02463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 11/16/2023] [Accepted: 11/16/2023] [Indexed: 12/22/2023]
Abstract
The droplet size in emulsions is known to affect the rheological properties and plays a crucial role in many applications of emulsions. Despite its importance, the underlying mechanisms governing droplet size in emulsification remain poorly understood. We investigate the average drop size and size distribution upon emulsification with a high-shear mixer for model oil-in-water emulsions stabilized by a surfactant. The size distribution is found to be a log-normal distribution resulting from the repetitive random breakup of drops. High-shear emulsification, the usual way of making emulsions, is therefore found to be very different from turbulent emulsification given by the Kolmogorov-Hinze theory, for which power-law distributions of the drop size are expected. In agreement with this, the mean droplet size does not follow a scaling with the Reynolds number of the emulsification flow but rather a capillary number scaling based on the viscosity of the continuous phase.
Collapse
Affiliation(s)
- Manon L’Estimé
- Van
der Waals-Zeeman Institute, Institute of Physics, University of Amsterdam, 1098XH Amsterdam, The Netherlands
| | - Michael Schindler
- CNRS
UMR7083, ESPCI Paris, Université PSL, 10 Rue Vauquelin, 75005 Paris, France
| | - Noushine Shahidzadeh
- Van
der Waals-Zeeman Institute, Institute of Physics, University of Amsterdam, 1098XH Amsterdam, The Netherlands
| | - Daniel Bonn
- Van
der Waals-Zeeman Institute, Institute of Physics, University of Amsterdam, 1098XH Amsterdam, The Netherlands
| |
Collapse
|
2
|
Khanuja HK, Dureja H. Recent Patents and Potential Applications of Homogenisation Techniques in Drug Delivery Systems. RECENT PATENTS ON NANOTECHNOLOGY 2023; 17:33-50. [PMID: 34825646 DOI: 10.2174/1872210515666210719120203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 03/08/2021] [Accepted: 04/08/2021] [Indexed: 06/13/2023]
Abstract
BACKGROUND The term homogenise means "to force or provide coalesce". Homogenisation is a process to attain homogenous particle size. The objective of the homogenisation process is to use fluid force to split the fragments or tiny particles contained in the fluids into very small dimensions and form a sustainable dispersion suitable for further production. METHODS The databases were collected through Scopus, google patent, science web, google scholar, PubMed on the concept of homogenisation. The data obtained were systematically investigated. RESULTS The present study focus on the use of the homogenisation in drug delivery system. The aim of homogenisation process is to achieve the particle size in micro-and nano- range as it affects the different parameters in the formulation and biopharmaceutical profile of the drug. The particle size reduction plays a key role in influencing drug dissolution and absorption. The reduced particle size enhances the stability and therapeutic efficacy of the drug. Homogenization technology ensures to achieve effective, clinically efficient and targeted drug delivery with the minimal side effect. CONCLUSION Homogenization technology has been shown to be an efficient and easy method of size reduction to increase solubility and bioavailability, stability of drug carriers. This article gives an overview of the process attributes affecting the homogenization process, the patenting of homogeniser types, design, the geometry of valves and nozzles and its role in drug delivery.
Collapse
Affiliation(s)
- Harpreet Kaur Khanuja
- Department of Pharmaceutical Sciences, Maharshi Dayanand University, Rohtak-124001, India
| | - Harish Dureja
- Department of Pharmaceutical Sciences, Maharshi Dayanand University, Rohtak-124001, India
| |
Collapse
|
3
|
Rüegg R, Schmid T, Hollenstein L, Müller N. Effect of particle characteristics and foaming parameters on resulting foam quality and stability. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2022.113859] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2022]
|
4
|
Hammerstein R, Schubert T, Braun G, Wolf T, Barbe S, Quade A, Foest R, Karousos DS, Favvas EP. The Optimization of Dispersion and Application Techniques for Nanocarbon-Doped Mixed Matrix Gas Separation Membranes. MEMBRANES 2022; 12:membranes12010087. [PMID: 35054612 PMCID: PMC8779637 DOI: 10.3390/membranes12010087] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 12/23/2021] [Accepted: 12/27/2021] [Indexed: 12/07/2022]
Abstract
In this work, supported cellulose acetate (CA) mixed matrix membranes (MMMs) were prepared and studied concerning their gas separation behaviors. The dispersion of carbon nanotube fillers were studied as a factor of polymer and filler concentrations using the mixing methods of the rotor–stator system (RS) and the three-roll-mill system (TRM). Compared to the dispersion quality achieved by RS, samples prepared using the TRM seem to have slightly bigger, but fewer and more homogenously distributed, agglomerates. The green γ-butyrolactone (GBL) was chosen as a polyimide (PI) polymer-solvent, whereas diacetone alcohol (DAA) was used for preparing the CA solutions. The coating of the thin CA separation layer was applied using a spin coater. For coating on the PP carriers, a short parameter study was conducted regarding the plasma treatment to affect the wettability, the coating speed, and the volume of dispersion that was applied to the carrier. As predicted by the parameter study, the amount of dispersion that remained on the carriers decreased with an increasing rotational speed during the spin coating process. The dry separation layer thickness was varied between about 1.4 and 4.7 μm. Electrically conductive additives in a non-conductive matrix showed a steeply increasing electrical conductivity after passing the so-called percolation threshold. This was used to evaluate the agglomeration behavior in suspension and in the applied layer. Gas permeation tests were performed using a constant volume apparatus at feed pressures of 5, 10, and 15 bar. The highest calculated CO2/N2 selectivity (ideal), 21, was achieved for the CA membrane and corresponded to a CO2 permeability of 49.6 Barrer.
Collapse
Affiliation(s)
- Ruben Hammerstein
- Institute of Chemical Process Engineering and Plant Design, TH Köln, 50679 Cologne, Germany; (R.H.); (G.B.)
| | - Tim Schubert
- Institute of Chemical Process Engineering and Plant Design, TH Köln, 50679 Cologne, Germany; (R.H.); (G.B.)
- Correspondence:
| | - Gerd Braun
- Institute of Chemical Process Engineering and Plant Design, TH Köln, 50679 Cologne, Germany; (R.H.); (G.B.)
| | - Tobias Wolf
- Faculty of Applied Natural Sciences, Chemical Engineering, TH Köln, 51368 Leverkusen, Germany; (T.W.); (S.B.)
| | - Stéphan Barbe
- Faculty of Applied Natural Sciences, Chemical Engineering, TH Köln, 51368 Leverkusen, Germany; (T.W.); (S.B.)
| | - Antje Quade
- Leibniz-Institute for Plasma Science and Technology e.V. (INP), 17489 Greifswald, Germany; (A.Q.); (R.F.)
| | - Rüdiger Foest
- Leibniz-Institute for Plasma Science and Technology e.V. (INP), 17489 Greifswald, Germany; (A.Q.); (R.F.)
| | - Dionysios S. Karousos
- Institute of Nanoscience and Nanotechnology, National Center for Scientific Research “Demokritos”, Aghia Paraskevi, 15341 Athens, Greece; (D.S.K.); (E.P.F.)
| | - Evangelos P. Favvas
- Institute of Nanoscience and Nanotechnology, National Center for Scientific Research “Demokritos”, Aghia Paraskevi, 15341 Athens, Greece; (D.S.K.); (E.P.F.)
| |
Collapse
|
5
|
Preparation of Stable Phase Change Material Emulsions for Thermal Energy Storage and Thermal Management Applications: A Review. MATERIALS 2021; 15:ma15010121. [PMID: 35009265 PMCID: PMC8746220 DOI: 10.3390/ma15010121] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Revised: 12/17/2021] [Accepted: 12/20/2021] [Indexed: 11/17/2022]
Abstract
Thermal energy storage (TES) is an important means for the conservation and efficient utilization of excessive and renewable energy. With a much higher thermal storage capacity, latent heat storage (LHS) may be more efficient than sensible heat storage. Phase change materials (PCMs) are the essential storage media for LHS. PCM emulsions have been developed for LHS in flow systems, which act as both heat transfer and thermal storage media with enhanced heat transfer, low pumping power, and high thermal storage capacity. However, two major barriers to the application of PCM emulsions are their instability and high degree of supercooling. To overcome these, various strategies have been attempted, such as the reduction of emulsion droplet size, addition of nucleating agents, and optimization of the formulation. To the best of our knowledge, however, there is still a lack of review articles on fabrication methods for PCM emulsions or their latest applications. This review was to provide an up-to-date and comprehensive summary on the effective strategies and the underlying mechanisms for the preparation of stable PCM emulsions and reduction of supercooling, especially with the organic PCMs of paraffin. It was also to share our insightful perspectives on further development and potential applications of PCM emulsions for efficient energy storage.
Collapse
|
6
|
Choradiya BR, Patil SB. A comprehensive review on nanoemulsion as an ophthalmic drug delivery system. J Mol Liq 2021. [DOI: 10.1016/j.molliq.2021.116751] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
7
|
Pang B, Liu H, Zhang K. Recent progress on Pickering emulsions stabilized by polysaccharides-based micro/nanoparticles. Adv Colloid Interface Sci 2021; 296:102522. [PMID: 34534752 DOI: 10.1016/j.cis.2021.102522] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Revised: 08/16/2021] [Accepted: 09/05/2021] [Indexed: 02/07/2023]
Abstract
Pickering emulsions stabilized by micro/nanoparticles have attracted considerable attention owing to their great potential in various applications ranging from cosmetic and food industries to catalysis, tissue engineering and drug delivery. There is a growing demand to design "green" micro/nanoparticles for constructing stable Pickering emulsions. Micro/nanoparticles derived from the naturally occurring polysaccharides including cellulose, chitin, chitosan and starch are capable of assembling at oil/water interfaces and are promising green candidates because of their excellent biodegradability and renewability. The physicochemical properties of the micro/nanoparticles, which are determined by the fabricating approaches and/or post-modification methods, have a significant effect on the characteristics of the final Pickering emulsions and their applications. Herein, recent advances on Pickering emulsions stabilized by polysaccharides-based micro/nanoparticles and the construction of functional materials including porous foams, microcapsules and latex particles from these emulsions as templates, are reviewed. In particular, the effects of micro/nanoparticles properties on the characteristics of the Pickering emulsions and their applications are discussed. Furthermore, the obstacles that hinder the practical applications of polysaccharides-based micro/nanoparticles and Pickering emulsions as well as the prospects for the future development, are discussed.
Collapse
|
8
|
Estimating Breakup Frequencies in Industrial Emulsification Devices: The Challenge of Inferring Local Frequencies from Global Methods. Processes (Basel) 2021. [DOI: 10.3390/pr9040645] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Experimental methods to study the breakup frequency in industrial devices are increasingly important. Since industrial production-scale devices are often inaccessible to single-drop experiments, breakup frequencies for these devices can only be studied with “global methods”; i.e., breakup frequency estimated from analyzing emulsification-experiment data. However, how much can be said about the local breakup frequencies (e.g., needed in modelling) from these global estimates? This question is discussed based on insights from a numerical validation procedure where set local frequencies are compared to global estimates. It is concluded that the global methods provide a valid estimate of local frequencies as long as the dissipation rate of turbulent kinetic energy is fairly homogenous throughout the device (although a residence-time-correction, suggested in this contribution, is needed as long as the flow is not uniform in the device). For the more realistic case of an inhomogeneous breakup frequency, the global estimate underestimates the local frequency (at the volume-averaged dissipation rate of turbulent kinetic energy). However, the relative error between local frequencies and global estimates is approximately constant when comparing between conditions. This suggest that the global methods are still valuable for studying how local breakup frequencies scale across operating conditions, geometries and fluid properties.
Collapse
|
9
|
Cao L, Russo D, Lapkin AA. Automated robotic platforms in design and development of formulations. AIChE J 2021. [DOI: 10.1002/aic.17248] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Liwei Cao
- Department of Chemical Engineering and Biotechnology University of Cambridge Cambridge UK
- Cambridge Centre for Advanced Research and Education in Singapore, CARES Ltd. Singapore
| | - Danilo Russo
- Department of Chemical Engineering and Biotechnology University of Cambridge Cambridge UK
| | - Alexei A. Lapkin
- Department of Chemical Engineering and Biotechnology University of Cambridge Cambridge UK
- Cambridge Centre for Advanced Research and Education in Singapore, CARES Ltd. Singapore
| |
Collapse
|
10
|
Effect of structural parameters on the flow field and power consumption of in-line high shear mixer. J INDIAN CHEM SOC 2021. [DOI: 10.1016/j.jics.2021.100042] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
11
|
Analysis of Power Input of an In-Line Rotor-Stator Mixer for Viscoplastic Fluids. Processes (Basel) 2020. [DOI: 10.3390/pr8080916] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
In this work, the power draw and shear profile of a novel in-line rotor-stator mixer were studied experimentally and the laminar flow regime was simulated. The power draw of the rotor-stator mixer was investigated experimentally using viscoplastic shear-thinning fluid and the results of the obtained power consumptions were verified through simulations. The power draw constant and Otto-Metzner coefficient were determined from the result of experimental data and through simulations. A new method is suggested for the determination of the Otto-Metzner coefficient for the Herschel–Bulkley model and the term efficiency is introduced. It was shown that the proposed method can be applied successfully for the prediction of the Otto-Metzner coefficient for the mixing of viscoplastic shear-thinning fluids. The effect of geometry and rotor speed on power consumption and shear rate profile in the investigated mixer is discussed from the results of the simulations. It was found that numerical methods are a convenient tool and can predict the power draw of the in-line rotor-stator mixer successfully.
Collapse
|
12
|
Espinoza C, Alberini F, Mihailova O, Kowalski A, Simmons M. Flow, turbulence and potential droplet break up mechanisms in an in-line Silverson 150/250 high shear mixer. CHEMICAL ENGINEERING SCIENCE: X 2020. [DOI: 10.1016/j.cesx.2020.100055] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
|
13
|
Uttinger MJ, Heyn TR, Jandt U, Wawra SE, Winzer B, Keppler JK, Peukert W. Measurement of length distribution of beta-lactoglobulin fibrils by multiwavelength analytical ultracentrifugation. EUROPEAN BIOPHYSICS JOURNAL: EBJ 2020; 49:745-760. [PMID: 32006057 PMCID: PMC7701075 DOI: 10.1007/s00249-020-01421-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/25/2019] [Revised: 12/19/2019] [Accepted: 01/03/2020] [Indexed: 11/24/2022]
Abstract
The whey protein beta-lactoglobulin is the building block of amyloid fibrils which exhibit a great potential in various applications. These include stabilization of gels or emulsions. During biotechnological processing, high shear forces lead to fragmentation of fibrils and therefore to smaller fibril lengths. To provide insight into such processes, pure straight amyloid fibril dispersions (prepared at pH 2) were produced and sheared using the rotor stator setup of an Ultra Turrax. In the first part of this work, the sedimentation properties of fragmented amyloid fibrils sheared at different stress levels were analyzed with mulitwavelength analytical ultracentrifugation (AUC). Sedimentation data analysis was carried out with the boundary condition that fragmented fibrils were of cylindrical shape, for which frictional properties are known. These results were compared with complementary atomic force microscopy (AFM) measurements. We demonstrate how the sedimentation coefficient distribution from AUC experiments is influenced by the underlying length and diameter distribution of amyloid fibrils. In the second part of this work, we show how to correlate the fibril size reduction kinetics with the applied rotor revolution and the resulting energy density, respectively, using modal values of the sedimentation coefficients obtained from AUC. Remarkably, the determined scaling laws for the size reduction are in agreement with the results for other material systems, such as emulsification processes or the size reduction of graphene oxide sheets.
Collapse
Affiliation(s)
- Maximilian J Uttinger
- Institute of Particle Technology, Interdisciplinary Center for Functional Particle Systems, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Timon R Heyn
- Institute of Human Nutrition and Food Science, Division of Food Technology, Kiel University, 24118, Kiel, Germany
| | - Uwe Jandt
- Institute of Bioprocess and Biosystems Engineering, Hamburg University of Technology, Hamburg, Germany
| | - Simon E Wawra
- Institute of Particle Technology, Interdisciplinary Center for Functional Particle Systems, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Bettina Winzer
- Institute of Particle Technology, Interdisciplinary Center for Functional Particle Systems, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Julia K Keppler
- Institute of Human Nutrition and Food Science, Division of Food Technology, Kiel University, 24118, Kiel, Germany.,Laboratory of Food Process Engineering, Wageningen University, Bornse Weilanden 9, 6708WG, Wageningen, P.O. Box 17, 6700 AA, Wageningen, The Netherlands
| | - Wolfgang Peukert
- Institute of Particle Technology, Interdisciplinary Center for Functional Particle Systems, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany.
| |
Collapse
|
14
|
|
15
|
Lebon B, Tzanakis I, Pericleous K, Eskin D. Numerical Modelling of the Ultrasonic Treatment of Aluminium Melts: An Overview of Recent Advances. MATERIALS (BASEL, SWITZERLAND) 2019; 12:E3262. [PMID: 31590463 PMCID: PMC6804316 DOI: 10.3390/ma12193262] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/17/2019] [Revised: 10/01/2019] [Accepted: 10/03/2019] [Indexed: 12/01/2022]
Abstract
The prediction of the acoustic pressure field and associated streaming is of paramount importance to ultrasonic melt processing. Hence, the last decade has witnessed the emergence of various numerical models for predicting acoustic pressures and velocity fields in liquid metals subject to ultrasonic excitation at large amplitudes. This paper summarizes recent research, arguably the state of the art, and suggests best practice guidelines in acoustic cavitation modelling as applied to aluminium melts. We also present the remaining challenges that are to be addressed to pave the way for a reliable and complete working numerical package that can assist in scaling up this promising technology.
Collapse
Affiliation(s)
- Bruno Lebon
- Brunel Centre for Advanced Solidification Technology, Brunel University London, Kingston Lane, Uxbridge UB8 3PH, UK.
| | - Iakovos Tzanakis
- Oxford Brookes University, Wheatley Campus, Oxford OX33 1HX, UK.
| | - Koulis Pericleous
- Computational Science and Engineering Group, University of Greenwich, 30 Park Row, London SE10 9LS, UK.
| | - Dmitry Eskin
- Brunel Centre for Advanced Solidification Technology, Brunel University London, Kingston Lane, Uxbridge UB8 3PH, UK.
| |
Collapse
|
16
|
John T, Fonte C, Kowalski A, Rodgers T. A comparison of power and flow characteristics between batch and in-line rotor-stator mixers. Chem Eng Sci 2019. [DOI: 10.1016/j.ces.2019.03.015] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
17
|
Harvey DHS, Mothersdale T, Shchukin D, Kowalski AJ. Plant Fiber Processing Using the Controlled Deformation Dynamic Mixer. Chem Eng Technol 2019. [DOI: 10.1002/ceat.201800718] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Daniel H. S. Harvey
- University of LiverpoolUltra Mixing & Processing Facility Crown Street L69 7ZD Liverpool United Kingdom
| | - Thomas Mothersdale
- Unilever R&D Quarry Road East, Port Sunlight CH63 3JW Wirral United Kingdom
| | - Dmitry Shchukin
- University of LiverpoolSIRE Crown Street L69 7ZD Liverpool United Kingdom
| | - Adam J Kowalski
- Unilever R&D Quarry Road East, Port Sunlight CH63 3JW Wirral United Kingdom
| |
Collapse
|
18
|
Special Issue on Feature Papers for Celebrating the Fifth Anniversary of the Founding of Processes. Processes (Basel) 2019. [DOI: 10.3390/pr7010015] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
The Special Issue “Feature Papers for Celebrating the Fifth Anniversary of the Founding of Processes” represents a landmark for this open access journal covering chemical, biological, materials, pharmaceutical, and environmental systems as well as general computational methods for process and systems engineering. [...]
Collapse
|