1
|
Extending galactose-oxidation pathway of Pseudomonas putida for utilization of galactose-rich red macroalgae as sustainable feedstock. J Biotechnol 2022; 348:1-9. [DOI: 10.1016/j.jbiotec.2022.02.009] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Revised: 02/21/2022] [Accepted: 02/23/2022] [Indexed: 12/23/2022]
|
2
|
Ashokkumar V, Venkatkarthick R, Jayashree S, Chuetor S, Dharmaraj S, Kumar G, Chen WH, Ngamcharussrivichai C. Recent advances in lignocellulosic biomass for biofuels and value-added bioproducts - A critical review. BIORESOURCE TECHNOLOGY 2022; 344:126195. [PMID: 34710596 DOI: 10.1016/j.biortech.2021.126195] [Citation(s) in RCA: 131] [Impact Index Per Article: 43.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Revised: 10/16/2021] [Accepted: 10/19/2021] [Indexed: 06/13/2023]
Abstract
Lignocellulosic biomass is a highly renewable, economical, and carbon-neutral feedstock containing sugar-rich moieties that can be processed to produce second-generation biofuels and bio-sourced compounds. However, due to their heterogeneous multi-scale structure, the lignocellulosic materials have major limitations to valorization and exhibit recalcitrance to saccharification or hydrolysis by enzymes. In this context, this review focuses on the latest methods available and state-of-the-art technologies in the pretreatment of lignocellulosic biomass, which aids the disintegration of the complex materials into monomeric units. In addition, this review deals with the genetic engineering techniques to develop advanced strategies for fermentation processes or microbial cell factories to generate desired products in native or modified hosts. Further, it also intends to bridge the gap in developing various economically feasible lignocellulosic products and chemicals using biorefining technologies.
Collapse
Affiliation(s)
- Veeramuthu Ashokkumar
- Center of Excellence in Catalysis for Bioenergy and Renewable Chemicals (CBRC), Faculty of Science, Chulalongkorn University, Pathum Wan, Bangkok 10330, Thailand.
| | | | - Shanmugam Jayashree
- Department of Biotechnology, Stella Maris College (Autonomous), Chennai, Tamil Nadu 600086, India
| | - Santi Chuetor
- Department of Chemical Engineering, Faculty of Engineering, King Mongkut's University of Technology North Bangkok (KMUTNB), Bangkok, Thailand
| | - Selvakumar Dharmaraj
- Department of Marine Biotechnology, Academy of Maritime Education and Training [AMET] (Deemed to be University), Chennai 603112, Tamil Nadu, India
| | - Gopalakrishnan Kumar
- School of Civil and Environmental Engineering, Yonsei University, Seoul 03722, Republic of Korea; Institute of Chemistry, Bioscience and Environmental Engineering, Faculty of Science and Technology, University of Stavanger, Box 8600 Forus, 4036 Stavanger, Norway
| | - Wei-Hsin Chen
- Department of Aeronautics and Astronautics, National Cheng Kung University, Tainan 701, Taiwan; Research Center for Smart Sustainable Circular Economy, Tunghai University, Taichung 407, Taiwan; Department of Mechanical Engineering, National Chin-Yi University of Technology, Taichung 411, Taiwan
| | - Chawalit Ngamcharussrivichai
- Center of Excellence in Catalysis for Bioenergy and Renewable Chemicals (CBRC), Faculty of Science, Chulalongkorn University, Pathum Wan, Bangkok 10330, Thailand; Center of Excellence on Petrochemical and Materials Technology (PETROMAT), Chulalongkorn University, Pathumwan, Bangkok 10330, Thailand
| |
Collapse
|
3
|
Azubuike CC, Allemann MN, Michener JK. Microbial assimilation of lignin-derived aromatic compounds and conversion to value-added products. Curr Opin Microbiol 2021; 65:64-72. [PMID: 34775172 DOI: 10.1016/j.mib.2021.10.014] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Revised: 10/19/2021] [Accepted: 10/21/2021] [Indexed: 11/03/2022]
Abstract
Lignin is an abundant and sustainable source of aromatic compounds that can be converted to value-added products. However, lignin is underutilized, since depolymerization produces a complex mixture of aromatic compounds that is difficult to convert to a single product. Microbial conversion of mixed aromatic substrates provides a potential solution to this conversion challenge. Recent advances have expanded the range of lignin-derived aromatic substrates that can be assimilated and demonstrated efficient conversion via central metabolism to new potential products. The development of additional non-model microbial hosts and genetic tools for these hosts have accelerated engineering efforts. However, yields with real depolymerized lignin are still low, and additional work will be required to achieve viable conversion processes.
Collapse
Affiliation(s)
| | - Marco N Allemann
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, 37830, USA
| | - Joshua K Michener
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, 37830, USA.
| |
Collapse
|
4
|
Chen Y, Banerjee D, Mukhopadhyay A, Petzold CJ. Systems and synthetic biology tools for advanced bioproduction hosts. Curr Opin Biotechnol 2020; 64:101-109. [PMID: 31927061 DOI: 10.1016/j.copbio.2019.12.007] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2019] [Revised: 11/27/2019] [Accepted: 12/08/2019] [Indexed: 02/07/2023]
Abstract
The genomic revolution ushered in an era of discovery and characterization of enzymes from novel organisms that fueled engineering of microbes to produce commodity and high-value compounds. Over the past decade advances in synthetic biology tools in recent years contributed to significant progress in metabolic engineering efforts to produce both biofuels and bioproducts resulting in several such related items being brought to market. These successes represent a burgeoning bio-economy; however, significant resources and time are still necessary to progress a system from proof-of-concept to market. In order to fully realize this potential, methods that examine biological systems in a comprehensive, systematic and high-throughput manner are essential. Recent success in synthetic biology has coincided with the development of systems biology and analytical approaches that kept pace and scaled with technology development. Here, we review a selection of systems biology methods and their use in synthetic biology approaches for microbial biotechnology platforms.
Collapse
Affiliation(s)
- Yan Chen
- Joint BioEnergy Institute, Lawrence Berkeley National Laboratory, Emeryville, CA, USA; Agile BioFoundry, Lawrence Berkeley National Laboratory, Emeryville, CA, USA; Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Deepanwita Banerjee
- Joint BioEnergy Institute, Lawrence Berkeley National Laboratory, Emeryville, CA, USA; Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Aindrila Mukhopadhyay
- Joint BioEnergy Institute, Lawrence Berkeley National Laboratory, Emeryville, CA, USA; Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA; Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Christopher J Petzold
- Joint BioEnergy Institute, Lawrence Berkeley National Laboratory, Emeryville, CA, USA; Agile BioFoundry, Lawrence Berkeley National Laboratory, Emeryville, CA, USA; Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA.
| |
Collapse
|
5
|
Peabody GL, Elmore JR, Martinez-Baird J, Guss AM. Engineered Pseudomonas putida KT2440 co-utilizes galactose and glucose. BIOTECHNOLOGY FOR BIOFUELS 2019; 12:295. [PMID: 31890023 PMCID: PMC6927180 DOI: 10.1186/s13068-019-1627-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2019] [Accepted: 12/04/2019] [Indexed: 06/01/2023]
Abstract
BACKGROUND Efficient conversion of plant biomass to commodity chemicals is an important challenge that needs to be solved to enable a sustainable bioeconomy. Deconstruction of biomass to sugars and lignin yields a wide variety of low molecular weight carbon substrates that need to be funneled to product. Pseudomonas putida KT2440 has emerged as a potential platform for bioconversion of lignin and the other components of plant biomass. However, P. putida is unable to natively utilize several of the common sugars in hydrolysate streams, including galactose. RESULTS In this work, we integrated a De Ley-Doudoroff catabolic pathway for galactose catabolism into the chromosome of P. putida KT2440, using genes from several different organisms. We found that the galactonate catabolic pathway alone (DgoKAD) supported slow growth of P. putida on galactose. Further integration of genes to convert galactose to galactonate and to optimize the transporter expression level resulted in a growth rate of 0.371 h-1. Additionally, the best-performing strain was demonstrated to co-utilize galactose with glucose. CONCLUSIONS We have engineered P. putida to catabolize galactose, which will allow future engineered strains to convert more plant biomass carbon to products of interest. Further, by demonstrating co-utilization of glucose and galactose, continuous bioconversion processes for mixed sugar streams are now possible.
Collapse
Affiliation(s)
- George L. Peabody
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831 USA
| | - Joshua R. Elmore
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831 USA
- Present Address: Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA 99354 USA
| | | | - Adam M. Guss
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831 USA
| |
Collapse
|
6
|
Hogancamp TN, Cory SA, Barondeau DP, Raushel FM. Structure and Chemical Reaction Mechanism of LigU, an Enzyme That Catalyzes an Allylic Isomerization in the Bacterial Degradation of Lignin. Biochemistry 2019; 58:3494-3503. [PMID: 31339729 DOI: 10.1021/acs.biochem.9b00549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
LigU from Novosphingobium sp. strain KA1 catalyzes the isomerization of (4E)-oxalomesaconate (OMA) to (3Z)-2-keto-4-carboxy-3-hexenedioate (KCH) as part of the protocatechuate (PCA) 4,5-cleavage pathway during the degradation of lignin. The three-dimensional structure of the apo form of the wild-type enzyme was determined by X-ray crystallography, and the structure of the K66M mutant enzyme was determined in the presence of the substrate OMA. LigU is a homodimer requiring no cofactors or metal ions with a diaminopimelate epimerase structural fold, consisting of two domains with similar topologies. Each domain has a central α-helix surrounded by a β-barrel composed of antiparallel β-strands. The active site is at the cleft of the two domains. 1H nuclear magnetic resonance spectroscopy demonstrated that the enzyme catalyzes the exchange of the pro-S hydrogen at C5 of KCH with D2O during the isomerization reaction. Solvent-deuterium exchange experiments demonstrated that mutation of Lys-66 eliminated the isotope exchange at C5 and that mutation of C100 abolished exchange at C3. The positioning of these two residues in the active site of LigU is consistent with a reaction mechanism that is initiated by the abstraction of the pro-S hydrogen at C3 of OMA by the thiolate anion of Cys-100 and the donation of a proton at C5 of the proposed enolate anion intermediate by the side chain of Lys-66 to form the product KCH. The 1,3-proton transfer is suprafacial.
Collapse
Affiliation(s)
- Tessily N Hogancamp
- Department of Chemistry , Texas A&M University , College Station , Texas 77843 , United States
| | - Seth A Cory
- Department of Chemistry , Texas A&M University , College Station , Texas 77843 , United States
| | - David P Barondeau
- Department of Chemistry , Texas A&M University , College Station , Texas 77843 , United States
| | - Frank M Raushel
- Department of Chemistry , Texas A&M University , College Station , Texas 77843 , United States
| |
Collapse
|