1
|
Nakro V, Lotha TN, Ao K, Ao I, Ritse V, Rudithongru L, Pongener C, Aier M, Sinha D, Jamir L. Recent advances in applications of animal biowaste-based activated carbon as biosorbents of water pollutants: a mini-review. ENVIRONMENTAL MONITORING AND ASSESSMENT 2024; 196:974. [PMID: 39312095 DOI: 10.1007/s10661-024-13123-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Accepted: 09/13/2024] [Indexed: 10/20/2024]
Abstract
Advances in green engineering and technology have revealed a number of environmentally acceptable alternatives for water purification. In line with this, recent advances in biosorption of pollutants from aqueous solutions using animal biowaste-based activated carbon (AC) are reported herein. Apart from the fish scale-derived AC which is extensively documented, animal bones, among the rest others, have been studied most widely, followed by hair and feathers. Out of the various target water pollutants, removal of heavy metals has been mostly studied. Majority of the reports showed the Freundlich isotherm and pseudo second order as the best fit. Few investigations on the thermodynamics of the adsorption studies and reports on the Gibbs free energy change (ΔG°), enthalpy change (ΔH°), and entropy change (ΔS°) have also been discussed in this report. It has been concluded that while plant-based AC has gained wide interest, the same is not true for the animal-based counterpart albeit the latter's potential for high sorption efficiency as seen in the present report.
Collapse
Affiliation(s)
- Vevosa Nakro
- Department of Environmental Science, Nagaland University, Lumami Campus, 798627, Nagaland, India
| | - Tsenbeni N Lotha
- Department of Environmental Science, Nagaland University, Lumami Campus, 798627, Nagaland, India
| | - Ketiyala Ao
- Department of Environmental Science, Nagaland University, Lumami Campus, 798627, Nagaland, India
| | - Imkongyanger Ao
- Department of Environmental Science, Nagaland University, Lumami Campus, 798627, Nagaland, India
| | - Vimha Ritse
- Department of Environmental Science, Nagaland University, Lumami Campus, 798627, Nagaland, India
| | - Lemzila Rudithongru
- Department of Environmental Science, Nagaland University, Lumami Campus, 798627, Nagaland, India
| | - Chubaakum Pongener
- Department of Environmental Science, Nagaland University, Lumami Campus, 798627, Nagaland, India
| | - Merangmenla Aier
- Department of Chemistry, National Institute of Technology Nagaland, Chumoukedima, 797103, Nagaland, India
| | - Dipak Sinha
- Department of Chemistry, Nagaland University, Lumami Campus, 798627, Nagaland, India
| | - Latonglila Jamir
- Department of Environmental Science, Nagaland University, Lumami Campus, 798627, Nagaland, India.
| |
Collapse
|
2
|
Saeed M, Shahzad U, Fazle Rabbee M, Manzar R, Al-Humaidi JY, Siddique A, Sheikh TA, Althomali RH, Qamar T, Rahman MM. Potential Development of Porous Carbon Composites Generated from the Biomass for Energy Storage Applications. Chem Asian J 2024; 19:e202400394. [PMID: 38847495 DOI: 10.1002/asia.202400394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 06/02/2024] [Indexed: 07/25/2024]
Abstract
Creating an innovative and environmentally friendly energy storage system is of vital importance due to the growing number of environmental problems and the fast exhaustion of fossil fuels. Energy storage using porous carbon composites generated from biomass has attracted a lot of attention in the research community. This is primarily due to the environmentally friendly nature, abundant availability in nature, accessibility, affordability, and long-term viability of macro/meso/microporous carbon sourced from a variety of biological materials. Extensive information on the design and the building of an energy storage device that uses supercapacitors was a part of this research. This study examines both porous carbon electrodes (ranging from 44 to 1050 F/g) and biomasses with a large surface area (between 215 and 3532 m2/g). Supposedly, these electrodes have a capacitive retention performance of about 99.7 percent after 1000 cycles. The energy density of symmetric supercapacitors is also considered, with values between 5.1 and 138.4 Wh/kg. In this review, we look at the basic structures of biomass and how they affect porous carbon synthesis. It also discusses the effects of different structured porous carbon materials on electrochemical performance and analyzes them. In recent developments, significant steps have been made across various fields including fuel cells, carbon capture, and the utilization of biomass-derived carbonaceous nanoparticles. Notably, our study delves into the innovative energy conversion and storage potentials inherent in these materials. This comprehensive investigation seeks to lay the foundation for forthcoming energy storage research endeavors by delineating the current advancements and anticipating potential challenges in fabricating porous carbon composites sourced from biomass.
Collapse
Affiliation(s)
- Mohsin Saeed
- Department of Chemistry, Faculty of Science, King Abdulaziz University, Jeddah, 21589, Saudi Arabia
| | - Umer Shahzad
- Department of Chemistry, Faculty of Science, King Abdulaziz University, Jeddah, 21589, Saudi Arabia
| | | | - Rabia Manzar
- Department of Chemistry, Forman Christian College Lahore (A Chartered University), Lahore, Pakistan
| | - Jehan Y Al-Humaidi
- Department of Chemistry, College of Science, Princess Nourah bint Abdulrahman University, P.O. BOX, 84428, Riyadh 11671, Saudi Arabia
| | - Amna Siddique
- Institute of Chemistry, Faculty of Chemical & Biological Science, The Islamia University of Bahawalpur, Baghdad-ul-Jadeed Campus, Bahawalpur-63100, Pakistan
| | - Tahir Ali Sheikh
- Institute of Chemistry, Faculty of Chemical & Biological Science, The Islamia University of Bahawalpur, Baghdad-ul-Jadeed Campus, Bahawalpur-63100, Pakistan
| | - Raed H Althomali
- Department of Chemistry, College of Art and Science, Prince Sattam bin Abdulaziz University, Wadi Al-Dawasir, 11991, Saudi Arabia
| | - Tariq Qamar
- Department of Chemistry, Forman Christian College (A Chartered University), Lahore, Pakistan
| | - Mohammed M Rahman
- Department of Chemistry, Faculty of Science, King Abdulaziz University, Jeddah, 21589, Saudi Arabia
- Center of Excellence for Advanced Materials Research (CEAMR), King Abdulaziz University, Jeddah, 21589, Saudi Arabia
| |
Collapse
|
3
|
Tsai WT, Kuo LA, Tsai CH, Huang HL, Yang RY, Tsai JH. Production of Porous Biochar from Cow Dung Using Microwave Process. MATERIALS (BASEL, SWITZERLAND) 2023; 16:7667. [PMID: 38138813 PMCID: PMC10744617 DOI: 10.3390/ma16247667] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 12/11/2023] [Accepted: 12/12/2023] [Indexed: 12/24/2023]
Abstract
To valorize livestock manure, the present study investigated the production of biochar from cow dung (CD) by microwave pyrolysis. The pore properties and chemical characteristics of CD and CD-based biochar products were found to correlate with the process parameters like microwave power (300-1000 W) and residence time (5-20 min). The findings indicated that CD is an excellent biomass based on the richness of lignocellulosic constituents from the results of proximate analysis and thermogravimetric analysis (TGA). Higher calorific values were obtained at mild microwave conditions, giving the maximal enhancement factor 139% in comparison with the calorific value of CD (18.97 MJ/kg). Also, it can be concluded that the biochar product obtained at 800 W for a holding time of 5 min had the maximal BET surface area of 127 m2/g and total pore volume of 0.104 cm3/g, which were microporous and mesoporous in the nitrogen adsorption-desorption adsorption analysis. On the other hand, the CD-based biochar contained oxygen-containing functional groups and inorganic minerals based on the spectroscopic analyses by Fourier-transform infrared spectroscopy (FTIR) and energy-dispersive X-ray spectroscopy (EDS), thus featuring to be prone to hydrophilicity in aqueous solutions.
Collapse
Affiliation(s)
- Wen-Tien Tsai
- Graduate Institute of Bioresources, National Pingtung University of Science and Technology, Pingtung 912, Taiwan;
| | - Li-An Kuo
- Department of Environmental Science and Engineering, National Pingtung University of Science and Technology, Pingtung 912, Taiwan; (L.-A.K.); (J.-H.T.)
| | - Chi-Hung Tsai
- Department of Resources Engineering, National Cheng Kung University, Tainan 701, Taiwan;
| | - Hsiang-Lan Huang
- Graduate Institute of Bioresources, National Pingtung University of Science and Technology, Pingtung 912, Taiwan;
| | - Ru-Yuan Yang
- Department of Materials Engineering, National Pingtung University of Science and Technology, Pingtung 912, Taiwan;
| | - Jen-Hsiung Tsai
- Department of Environmental Science and Engineering, National Pingtung University of Science and Technology, Pingtung 912, Taiwan; (L.-A.K.); (J.-H.T.)
| |
Collapse
|
4
|
Tsai WT, Ayestas R, Tsai CH, Lin YQ. Preparation and Characterization of Porous Materials from Pineapple Peel at Elevated Pyrolysis Temperatures. MATERIALS 2022; 15:ma15134686. [PMID: 35806810 PMCID: PMC9267861 DOI: 10.3390/ma15134686] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Revised: 06/20/2022] [Accepted: 06/28/2022] [Indexed: 11/16/2022]
Abstract
In this work, pineapple peel (PP) was reused as a precursor in biochar (BC) production at elevated temperatures (i.e., 500−900 °C) for residence times of 0−60 min. The findings showed that pyrolysis temperature and residence time played a vital role in pore development. As pyrolysis temperature increased from 800 to 900 °C for residence times of 20 and 60 min, the data on the Brunauer−Emmett−Teller (BET) surface area of the resulting biochar products significantly jumped from 11.98−32.34 to 119.43−133.40 m2/g. In addition, there was a significant increase in the BET surface area from 1.02 to 133.40 m2/g with the residence time of 0 to 20 min at 900 °C. From the data of the nitrogen adsorption−desorption isotherms and the pore size distribution, both micropores (pore diameters of <2.0 nm) and mesopores (pore diameters of 2.0−50.0 nm) are present in the PP-based biochar products. Due to its good fittings in the pseudo-second-order model and its hydrophilic nature, as seen in the Fourier transform infrared spectroscopy (FTIR), the resulting biochar could be a porous material to be used for the effective removal of cationic compounds (i.e., methylene blue (MB)) from liquid phases.
Collapse
Affiliation(s)
- Wen-Tien Tsai
- Graduate Institute of Bioresources, National Pingtung University of Science and Technology, Pingtung City 912, Taiwan;
- Correspondence: ; Tel.: +886-8-7703202
| | - Raquel Ayestas
- Department of Tropical Agriculture and International Cooperation, National Pingtung University of Science and Technology, Pingtung City 912, Taiwan;
| | - Chi-Hung Tsai
- Department of Resources Engineering, National Cheng Kung University, Tainan 701, Taiwan;
| | - Yu-Quan Lin
- Graduate Institute of Bioresources, National Pingtung University of Science and Technology, Pingtung City 912, Taiwan;
| |
Collapse
|
5
|
High Surface Area–Activated Carbon Production from Cow Manure Controlled by Heat Treatment Conditions. Processes (Basel) 2022. [DOI: 10.3390/pr10071282] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
In this study, methods of adding value to cow manure were studied. Due to the properties of cow manure, activated carbon with a high surface area can only be produced by increasing the fixed carbon ratio and removing the ash content. Activated carbon was fabricated using five different treatments: (1) raw material–chemical activation, (2) raw material–hydrothermal carbonization–chemical activation, (3) raw material–hydrothermal carbonization–chemical activation–acid washing, (4) raw material–hydrothermal carbonization–heat treatment–chemical activation, and (5) raw material–hydrothermal carbonization–chemical activation–acid washing. The products then underwent proximate, elementary, and surface area analyses. In addition, changes in activated carbon properties depending on the heat treatment temperature (300, 500, 700 °C) and the applied chemical activator ratios (1:1–1:3) were examined. The results showed that the best heat treatment temperature was 300 °C, and the cow manure to chemical activator ratio was 1:2. The heat treatment stabilization process increases the fixed carbon ratio and the solid yield, and the acid wash process removes substances that restrain the increase in surface area. Therefore, activated carbon with a surface area of 1955 m2/g can be produced after the addition of heat treatment and an acid wash to the process. In addition, the adsorption properties of activated carbon with different heat treatment conditions were studied.
Collapse
|
6
|
Abd AA, Othman MR, Kim J. A review on application of activated carbons for carbon dioxide capture: present performance, preparation, and surface modification for further improvement. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:43329-43364. [PMID: 34189695 DOI: 10.1007/s11356-021-15121-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Accepted: 06/21/2021] [Indexed: 06/13/2023]
Abstract
The atmosphere security and regulation of climate change are being continuously highlighted as a pressing issue. The crisis of climate change owing to the anthropogenic carbon dioxide emission has led many governments at federal and provincial levels to promulgate policies to address this concern. Among them is regulating the carbon dioxide emission from major industrial sources such as power plants, petrochemical industries, cement plants, and other industries that depend on the combustion of fossil fuels for energy to operate. In view of this, various CO2 capture and sequestration technologies have been investigated and presented. From this review, adsorption of CO2 on porous solid materials has been gaining increasing attention due to its cost-effectiveness, ease of application, and comparably low energy demand. Despite the myriad of advanced materials such as zeolites, carbons-based, metal-organic frameworks, mesoporous silicas, and polymers being researched, research on activated carbons (ACs) continue to be in the mainstream. Therefore, this review is endeavored to elucidate the adsorption properties of CO2 on activated carbons derived from different sources. Selective adsorption based on pore size/shape and surface chemistry is investigated. Accordingly, the effect of surface modifications of the ACs with NH3, amines, and metal oxides on adsorption performance toward CO2 is evaluated. The adsorption performance of the activated carbons under humid conditions is also reviewed. Finally, activated carbon-based composite has been surveyed and recommended as a feasible strategy to improve AC adsorption properties toward CO2. The activated carbon surface in the graphical abstract is nitrogen rich modified using ammonia through thermal treatment. The values of CO2 emissions by sources are taken from (Yoro and Daramola 2020).
Collapse
Affiliation(s)
- Ammar Ali Abd
- Chemical Engineering Department, Curtin University, Perth, Australia.
- School of Chemical Engineering, Universiti Sains Malaysia, 14300, Nibong Tebal, Pulau Pinang, Malaysia.
- Water Resources Engineering College, Al-Qasim Green University, Babylon, Iraq.
| | - Mohd Roslee Othman
- School of Chemical Engineering, Universiti Sains Malaysia, 14300, Nibong Tebal, Pulau Pinang, Malaysia.
| | - Jinsoo Kim
- Department of Chemical Engineering, Kyung Hee University, 1732 Deogyeong-daero, Giheung-gu, Yongin-si, Gyeonggi-do, 17104, Korea
| |
Collapse
|
7
|
Wibawa PJ, Nur M, Asy’ari M, Wijanarka W, Susanto H, Sutanto H, Nur H. Green Synthesized Silver Nanoparticles Immobilized on Activated Carbon Nanoparticles: Antibacterial Activity Enhancement Study and Its Application on Textiles Fabrics. Molecules 2021; 26:3790. [PMID: 34206375 PMCID: PMC8270246 DOI: 10.3390/molecules26133790] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2021] [Revised: 06/06/2021] [Accepted: 06/13/2021] [Indexed: 11/16/2022] Open
Abstract
This research aimed to enhance the antibacterial activity of silver nanoparticles (AgNPs) synthesized from silver nitrate (AgNO3) using aloe vera extract. It was performed by means of incorporating AgNPs on an activated carbon nanoparticle (ACNPs) under ultrasonic agitation (40 kHz, 2 × 50 watt) for 30 min in an aqueous colloidal medium. The successful AgNPs synthesis was clarified with both Ultraviolet-Visible (UV-Vis) and Fourier Transform Infrared (FTIR) spectrophotometers. The successful AgNPs-ACNPs incorporation and its particle size analysis was performed using Transmission Electron Microscope (TEM). The brown color suspension generation and UV-Vis's spectra maximum wavelength at around 480 nm confirmed the existence of AgNPs. The particle sizes of the produced AgNPs were about 5 to 10 nm in the majority number, which collectively surrounded the aloe vera extract secondary metabolites formed core-shell like nanostructure of 8.20 ± 2.05 nm in average size, while ACNPs themselves were about 20.10 ± 1.52 nm in average size formed particles cluster, and 48.00 ± 8.37 nm in average size as stacking of other particles. The antibacterial activity of the synthesized AgNPs and AgNPs-immobilized ACNPs was 57.58% and 63.64%, respectively (for E. coli); 61.25%, and 93.49%, respectively (for S. aureus). In addition, when the AgNPs-immobilized ACNPs material was coated on the cotton and polyester fabrics, the antibacterial activity of the materials changed, becoming 19.23% (cotton; E. coli), 31.73% (polyester; E. coli), 13.36% (cotton; S. aureus), 21.15% (polyester; S. aureus).
Collapse
Affiliation(s)
- Pratama Jujur Wibawa
- Department of Chemistry, Faculty of Sciences and Mathematics, Diponegoro University, Jalan Prof. H. Soedarto, SH. No.1 Tembalang, Semarang 50275, Indonesia;
| | - Muhammad Nur
- Department of Physics, Faculty of Sciences and Mathematics, Diponegoro University, Jalan Prof. H. Soedarto, SH. No.1 Tembalang, Semarang 50275, Indonesia; (M.N.); (H.S.)
| | - Mukhammad Asy’ari
- Department of Chemistry, Faculty of Sciences and Mathematics, Diponegoro University, Jalan Prof. H. Soedarto, SH. No.1 Tembalang, Semarang 50275, Indonesia;
| | - Wijanarka Wijanarka
- Department of Biology, Faculty of Sciences and Mathematics, Diponegoro University, Jalan Prof. H. Soedarto, SH. No.1 Tembalang, Semarang 50275, Indonesia;
| | - Heru Susanto
- Department of Chemical Engineering, Faculty of Enginering, Diponegoro University, Jalan Prof. H. Soedarto, SH. No.1 Tembalang, Semarang 50275, Indonesia;
| | - Heri Sutanto
- Department of Physics, Faculty of Sciences and Mathematics, Diponegoro University, Jalan Prof. H. Soedarto, SH. No.1 Tembalang, Semarang 50275, Indonesia; (M.N.); (H.S.)
| | - Hadi Nur
- Center for Sustainable Nanomaterials, Inbu Sina Institute for Scientific and Industrial Research, Universiti Teknologi Malaysia, Skudai 81310, Johor, Malaysia;
- Central Laboratory of Minerals and Advanced Materials, Faculty of Mathematica and Natural Sciences, State University of Malang, Malang 65145, Indonesia
| |
Collapse
|
8
|
Liquid-Phase Removal of Methylene Blue as Organic Pollutant by Mesoporous Activated Carbon Prepared from Water Caltrop Husk Using Carbon Dioxide Activation. Processes (Basel) 2021. [DOI: 10.3390/pr9020238] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
In this work, a mesoporous activated carbon (AC) was prepared from a unique lignocellulosic biomass (water caltrop husk) in triplicate using a single-step physical activation process at lower temperature (i.e., 750 °C) and longer holding time (i.e., 90 min). Based on the pore properties and adsorption properties for removal of methylene blue (MB) as organic pollutant, the results proved that the resulting AC possesses a mesoporous feature with the Brunauer–Emmett–Teller (BET) surface area of 810.5 m2/g and mesopore volume of about 0.13 cm3/g. Due to its fast adsorption rate and maximal adsorption capacity fitted (126.6 mg/g), the mesoporous carbon material could be used as an excellent adsorbent for liquid-phase removal of MB. In addition, the pseudo-second-order model is well suited for describing the adsorption system between the cationic adsorbate and the resulting AC with oxygen surface groups.
Collapse
|
9
|
Pereira Lopes R, Astruc D. Biochar as a support for nanocatalysts and other reagents: Recent advances and applications. Coord Chem Rev 2021. [DOI: 10.1016/j.ccr.2020.213585] [Citation(s) in RCA: 46] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
|
10
|
Special Issue: Application of Advanced Oxidation Processes. Processes (Basel) 2020. [DOI: 10.3390/pr8070867] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Advanced oxidation processes (AOPs) are nowadays not only considered as a complementary treatment option but as an attractive alternative to conventional methods [...]
Collapse
|
11
|
The Potentiality of Rice Husk-Derived Activated Carbon: From Synthesis to Application. Processes (Basel) 2020. [DOI: 10.3390/pr8020203] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Activated carbon (AC) has been extensively utilized as an adsorbent over the past few decades. AC has widespread applications, including the removal of different contaminants from water and wastewater, and it is also being used in capacitors, battery electrodes, catalytic supports, and gas storage materials because of its specific characteristics e.g., high surface area with electrical properties. The production of AC from naturally occurring precursors (e.g., coal, biomass, coconut shell, sugarcane bagasse, and so on) is highly interesting in terms of the material applications in chemistry; however, recently much focus has been placed on the use of agricultural wastes (e.g., rice husk) to produce AC. Rice husk (RH) is an abundant as well as cheap material which can be converted into AC for various applications. Various pollutants such as textile dyes, organic contaminants, inorganic anions, pesticides, and heavy metals can be effectively removed by RH-derived AC. In addition, RH-derived AC has been applied in supercapacitors, electrodes for Li-ion batteries, catalytic support, and energy storage, among other uses. Cost-effective synthesis of AC can be an alternative for AC production. Therefore, this review mainly covers different synthetic routes and applications of AC produced from RH precursors. Different environmental, catalytic, and energy applications have been pinpointed. Furthermore, AC regeneration, desorption, and relevant environmental concerns have also been covered. Future scopes for further research and development activities are also discussed. Overall, it was found that RH-derived AC has great potential for different applications which can be further explored at real scales, i.e., for industrial applications in the future.
Collapse
|
12
|
Enhancing the Pore Properties and Adsorption Performance of Cocoa Pod Husk (CPH)-Derived Biochars via Post-Acid Treatment. Processes (Basel) 2020. [DOI: 10.3390/pr8020144] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
In this work, the cocoa pod husk (CPH) was converted into biochar products at higher carbonization temperatures (i.e., 400–800 °C). The pore and chemical properties of the resulting biochars and its post-leaching biochars by acid washing, including specific surface area, total pore volume, pore size distribution, true density, and scanning electron microscopy-energy dispersive X-ray spectroscopy (SEM-EDS) and Fourier Transform infrared spectroscopy (FTIR) were studied. Based on the pore properties, pyrolysis temperature at around 800 °C seemed to have the most profound impact on the pore development for producing biochar, where its Brunauer–Emmet–Teller (BET) surface area is 101 m2/g. More noticeably, more pores in the CPH-based biochar could be significantly created during the acid-washing, resulting in an increase of BET surface area from 101 to 342 m2/g. According to the data on the EDS and FTIR, the resulting biochars seemed to have oxygen-containing functional groups on the surface. Furthermore, the methylene blue (MB) adsorption performance of the optimal biochar product with maximal BET surface area was tested to fit its kinetics by the pseudo-second order model, showing a strong interaction between the biochar adsorbent and the cationic adsorbate.
Collapse
|