1
|
Nasiripour S, Pishbin F, Seyyed Ebrahimi SA. 3D Printing of a Self-Healing, Bioactive, and Dual-Cross-Linked Polysaccharide-Based Composite Hydrogel as a Scaffold for Bone Tissue Engineering. ACS APPLIED BIO MATERIALS 2025; 8:582-599. [PMID: 39764630 DOI: 10.1021/acsabm.4c01476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2025]
Abstract
Although 3D printing is becoming a dominant technique for scaffold preparation in bone tissue engineering (TE), developing hydrogel-based ink compositions with bioactive and self-healing properties remains a challenge. This research focuses on developing a bone scaffold based on a composite hydrogel, which maintains its self-healing properties after incorporating bioactive glass and is 3D-printable. The plain hydrogel ink was synthesized using natural polymers of 1 wt % N-carboxyethyl chitosan, 2 wt % hyaluronic acid aldehyde, 0.3 wt % adipic acid hydrazide, and alginate (ALG) (2, 5, and 10 wt %). Bioactive glass (BG) (0 and 5 w/v %) particles were incorporated into the plain matrix to obtain an osteogenic composite hydrogel. The material was characterized via rheology, field emission scanning electron microscopy/energy-dispersive X-ray spectroscopy (FESEM/EDS), Fourier transform infrared (FTIR) spectroscopy, X-ray diffraction (XRD), swelling, degradation, bioactivity, and in vitro cellular assessments. Rheological evaluations confirmed that the specimen with 0 w/v % BG and 5 wt % ALG exhibited the highest G', G″, and viscosity values. All specimens exhibited self-healing, provided by two reversible dynamic bonds, namely, imine and acylhydrazone. Bioactivity evaluation by SBF immersion revealed the formation of HA particles on the composite hydrogels. MTT cytotoxicity assay on MG63 indicated that the composite sample containing 5 w/v % BG and 10 wt % ALG had the highest cell viability (95 ± 1.02%) by culture day 3. The developed approach presents a promising hydrogel ink formulation with a high potential for extrusion-based 3D printing of bone TE constructs.
Collapse
Affiliation(s)
- Saba Nasiripour
- School of Metallurgy and Materials Engineering, College of Engineering, University of Tehran, North Kargar Street, Tehran 11155-4563, Iran
| | - Fatemehsadat Pishbin
- School of Metallurgy and Materials Engineering, College of Engineering, University of Tehran, North Kargar Street, Tehran 11155-4563, Iran
| | - S A Seyyed Ebrahimi
- Advanced Magnetic Materials Research Center, School of Metallurgy and Materials Engineering, College of Engineering, University of Tehran, North Kargar Street, Tehran 11155-4563, Iran
| |
Collapse
|
2
|
Cunliffe AJ, Askew P, Iredale G, Marchant A, Redfern J. Methods to assess antibacterial, antifungal and antiviral surfaces in relation to touch and droplet transfer: a review, gap-analysis and suggested approaches. Access Microbiol 2024; 6:000804.v3. [PMID: 39130740 PMCID: PMC11316596 DOI: 10.1099/acmi.0.000804.v3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Accepted: 05/16/2024] [Indexed: 08/13/2024] Open
Abstract
To help assess whether a potentially antimicrobial material, surface, or coating provides antimicrobial efficacy, a number of standardised test methods have been developed internationally. Ideally, these methods should generate data that supports the materials efficacy when deployed in the intended end-use application. These methods can be categorised based on their methodological approach such as suspension tests, agar plate/zone diffusion tests, surface inoculation tests, surface growth tests or surface adhesion tests. To support those interested in antimicrobial coating efficacy, this review brings together an exhaustive list of methods (for porous and non-porous materials), exploring the methodological and environmental parameters used to quantify antibacterial, antifungal, or antiviral activity. This analysis demonstrates that antimicrobial efficacy methods that test either fungi or viruses are generally lacking, whilst methods that test bacteria, fungi and viruses are not designed to simulate end-use/lack realistic conditions. As such, a number of applications for antimicrobial activity across medical touch screens, medical textiles and gloves and transport seat textiles are explored as example applications, providing guidance on modifications to existing methods that may better simulate the intended end-use of antimicrobial materials.
Collapse
Affiliation(s)
- Alexander J. Cunliffe
- Department of Natural Sciences, Manchester Metropolitan University, Manchester, M1 5GD, UK
| | - Peter Askew
- IMSL, Pale Lane, Hartley Whitney, Hants RG27 8DH, UK
| | | | - Abby Marchant
- IMSL, Pale Lane, Hartley Whitney, Hants RG27 8DH, UK
| | - James Redfern
- Department of Natural Sciences, Manchester Metropolitan University, Manchester, M1 5GD, UK
| |
Collapse
|
3
|
Goestenkors AP, Liu T, Okafor SS, Semar BA, Alvarez RM, Montgomery SK, Friedman L, Rutz AL. Manipulation of cross-linking in PEDOT:PSS hydrogels for biointerfacing. J Mater Chem B 2023; 11:11357-11371. [PMID: 37997395 DOI: 10.1039/d3tb01415k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2023]
Abstract
Conducting hydrogels can be used to fabricate bioelectronic devices that are soft for improved cell- and tissue-interfacing. Those based on conjugated polymers, such as poly(3,4-ethylene-dioxythiophene):polystyrene sulfonate (PEDOT:PSS), can be made simply with solution-based processing techniques, yet the influence of fabrication variables on final gel properties is not fully understood. In this study, we investigated if PEDOT:PSS cross-linking could be manipulated by changing the concentration of a gelling agent, ionic liquid, in the hydrogel precursor mixture. Rheology and gelation kinetics of precursor mixtures were investigated, and aqueous stability, swelling, conductivity, stiffness, and cytocompatibility of formed hydrogels were characterized. Increasing ionic liquid concentration was found to increase cross-linking as measured by decreased swelling, decreased non-network fraction, increased stiffness, and increased conductivity. Such manipulation of IL concentration thus afforded control of final gel properties and was utilized in further investigations of biointerfacing. When cross-linked sufficiently, PEDOT:PSS hydrogels were stable in sterile cell culture conditions for at least 28 days. Additionally, hydrogels supported a viable and proliferating population of human dermal fibroblasts for at least two weeks. Collectively, these characterizations of stability and cytocompatibility illustrate that these PEDOT:PSS hydrogels have significant promise for biointerfacing applications that require soft materials for direct interaction with cells.
Collapse
Affiliation(s)
- Anna P Goestenkors
- Department of Biomedical Engineering, Washington University in St. Louis, 1 Brookings Dr, St. Louis, MO, USA.
| | - Tianran Liu
- Department of Biomedical Engineering, Washington University in St. Louis, 1 Brookings Dr, St. Louis, MO, USA.
| | - Somtochukwu S Okafor
- Department of Biomedical Engineering, Washington University in St. Louis, 1 Brookings Dr, St. Louis, MO, USA.
| | - Barbara A Semar
- Department of Mechanical Engineering and Materials Science, Washington University in St. Louis, 1 Brookings Dr, St. Louis, MO, USA
| | - Riley M Alvarez
- Department of Biomedical Engineering, Washington University in St. Louis, 1 Brookings Dr, St. Louis, MO, USA.
| | - Sandra K Montgomery
- Department of Biomedical Engineering, Washington University in St. Louis, 1 Brookings Dr, St. Louis, MO, USA.
| | - Lianna Friedman
- Department of Biomedical Engineering, Washington University in St. Louis, 1 Brookings Dr, St. Louis, MO, USA.
| | - Alexandra L Rutz
- Department of Biomedical Engineering, Washington University in St. Louis, 1 Brookings Dr, St. Louis, MO, USA.
| |
Collapse
|
4
|
Kurowiak J, Klekiel T, Będziński R. Biodegradable Polymers in Biomedical Applications: A Review-Developments, Perspectives and Future Challenges. Int J Mol Sci 2023; 24:16952. [PMID: 38069272 PMCID: PMC10707259 DOI: 10.3390/ijms242316952] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 11/23/2023] [Accepted: 11/28/2023] [Indexed: 12/18/2023] Open
Abstract
Biodegradable polymers are materials that, thanks to their remarkable properties, are widely understood to be suitable for use in scientific fields such as tissue engineering and materials engineering. Due to the alarming increase in the number of diagnosed diseases and conditions, polymers are of great interest in biomedical applications especially. The use of biodegradable polymers in biomedicine is constantly expanding. The application of new techniques or the improvement of existing ones makes it possible to produce materials with desired properties, such as mechanical strength, controlled degradation time and rate and antibacterial and antimicrobial properties. In addition, these materials can take virtually unlimited shapes as a result of appropriate design. This is additionally desirable when it is necessary to develop new structures that support or restore the proper functioning of systems in the body.
Collapse
Affiliation(s)
| | | | - Romuald Będziński
- Department of Biomedical Engineering, Institute of Material and Biomedical Engineering, Faculty of Mechanical Engineering, University of Zielona Góra, Licealna 9 Street, 65-417 Zielona Gora, Poland; (J.K.); (T.K.)
| |
Collapse
|
5
|
Ghahremani-Nasab M, Akbari-Gharalari N, Rahmani Del Bakhshayesh A, Ghotaslou A, Ebrahimi-Kalan A, Mahdipour M, Mehdipour A. Synergistic effect of chitosan-alginate composite hydrogel enriched with ascorbic acid and alpha-tocopherol under hypoxic conditions on the behavior of mesenchymal stem cells for wound healing. Stem Cell Res Ther 2023; 14:326. [PMID: 37953287 PMCID: PMC10642036 DOI: 10.1186/s13287-023-03567-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Accepted: 11/08/2023] [Indexed: 11/14/2023] Open
Abstract
BACKGROUND In regenerative medicine, especially skin tissue engineering, the focus is on enhancing the quality of wound healing. Also, several constructs with different regeneration potentials have been used for skin tissue engineering. In this study, the regenerative properties of chitosan-alginate composite hydrogels in skin wound healing under normoxic and hypoxic conditions were investigated in vitro. METHODS The ionic gelation method was used to prepare chitosan/alginate (CA) hydrogel containing CA microparticles and bioactive agents [ascorbic acid (AA) and α-tocopherol (TP)]. After preparing composite hydrogels loaded with AA and TP, the physicochemical properties such as porosity, pore size, swelling, weight loss, wettability, drug release, and functional groups were analyzed. Also, the hemo-biocompatibility of composite hydrogels was evaluated by a hemolysis test. Then, the rat bone marrow mesenchymal stem cells (rMSCs) were seeded onto the hydrogels after characterization by flow cytometry. The survival rate was analyzed using MTT assay test. The hydrogels were also investigated by DAPI and H&E staining to monitor cell proliferation and viability. To induce hypoxia, the cells were exposed to CoCl2. To evaluate the regenerative potential of rMSCs cultured on CA/AA/TP hydrogels under hypoxic conditions, the expression of the main genes involved in the healing of skin wounds, including HIF-1α, VEGF-A, and TGF-β1, was investigated by real-time PCR. RESULTS The results demonstrated that the prepared composite hydrogels were highly porous, with interconnected pores that ranged in sizes from 20 to 188 μm. The evaluation of weight loss showed that the prepared hydrogels have the ability to biodegrade according to the goals of wound healing. The reduction percentage of CA/AA/TP mass in 21 days was reported as 21.09 ± 0.52%. Also, based on wettability and hemolysis tests of the CA/AA/TP, hydrophilicity (θ = 55.6° and 53.7°) and hemocompatibility with a hemolysis ratio of 1.36 ± 0.19 were evident for them. Besides, MTT assay, DAPI, and H&E staining also showed that the prepared hydrogels provide a suitable substrate for cell growth and proliferation. Finally, based on real-time PCR, increased expression levels of VEGF and TGF-β1 were observed in rMSCs in hypoxic conditions cultured on the prepared hydrogels. CONCLUSIONS In conclusion, this study provides evidence that 3D CA/AA/TP composite hydrogels seeded by rMSCs in hypoxic conditions have great potential to improve wound healing.
Collapse
Affiliation(s)
- Maryam Ghahremani-Nasab
- Department of Tissue Engineering, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Naeimeh Akbari-Gharalari
- Department of Neurosciences and Cognition, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Azizeh Rahmani Del Bakhshayesh
- Department of Tissue Engineering, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Armita Ghotaslou
- Department of Medical Biotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Abbas Ebrahimi-Kalan
- Department of Neurosciences and Cognition, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mahdi Mahdipour
- Stem Cell Research Centre, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Ahmad Mehdipour
- Department of Tissue Engineering, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
6
|
Martinović J, Lukinac J, Jukić M, Ambrus R, Planinić M, Šelo G, Perković G, Bucić-Kojić A. The Release of Grape Pomace Phenolics from Alginate-Based Microbeads during Simulated Digestion In Vitro: The Influence of Coatings and Drying Method. Gels 2023; 9:870. [PMID: 37998960 PMCID: PMC10671312 DOI: 10.3390/gels9110870] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 10/28/2023] [Accepted: 10/30/2023] [Indexed: 11/25/2023] Open
Abstract
Grape pomace is a byproduct of wineries and a sustainable source of bioactive phenolic compounds. Encapsulation of phenolics with a well-chosen coating may be a promising means of delivering them to the intestine, where they can then be absorbed and exert their health-promoting properties, including antioxidant, anti-inflammatory, anticancer, cardioprotective, and antimicrobial effects. Ionic gelation of grape pomace extract with natural coatings (sodium alginate and its combination with maltodextrins, gelatin, chitosan, gums Tragacanth and Arabic) was performed, and the resulting hydrogel microbeads were then air-, vacuum-, and freeze-dried to prevent spoilage. Freeze-drying showed advantages in preserving the geometrical parameters and morphology of the microbeads compared to other drying techniques. A good relationship was found between the physicochemical properties of the dried microbeads and the in vitro release of phenolics. Freeze-dried microbeads showed the highest cumulative release of phenols in the intestinal phase (23.65-43.27 mgGAE/gMB), while the most suitable release dynamics in vitro were observed for alginate-based microbeads in combination with gelatin, gum Arabic, and 1.5% (w/v) chitosan. The results highlight the importance of developing encapsulated formulations containing a natural source of bioactive compounds that can be used in various functional foods and pharmaceutical products.
Collapse
Affiliation(s)
- Josipa Martinović
- Faculty of Food Technology Osijek, Josip Juraj Strossmayer University of Osijek, F. Kuhača 18, HR-31 000 Osijek, Croatia; (J.M.); (J.L.); (M.J.)
| | - Jasmina Lukinac
- Faculty of Food Technology Osijek, Josip Juraj Strossmayer University of Osijek, F. Kuhača 18, HR-31 000 Osijek, Croatia; (J.M.); (J.L.); (M.J.)
| | - Marko Jukić
- Faculty of Food Technology Osijek, Josip Juraj Strossmayer University of Osijek, F. Kuhača 18, HR-31 000 Osijek, Croatia; (J.M.); (J.L.); (M.J.)
| | - Rita Ambrus
- Faculty of Pharmacy, Institute of Pharmaceutical Technology and Regulatory Affairs, University of Szeged, H-6720 Szeged, Hungary
| | - Mirela Planinić
- Faculty of Food Technology Osijek, Josip Juraj Strossmayer University of Osijek, F. Kuhača 18, HR-31 000 Osijek, Croatia; (J.M.); (J.L.); (M.J.)
| | - Gordana Šelo
- Faculty of Food Technology Osijek, Josip Juraj Strossmayer University of Osijek, F. Kuhača 18, HR-31 000 Osijek, Croatia; (J.M.); (J.L.); (M.J.)
| | - Gabriela Perković
- Faculty of Food Technology Osijek, Josip Juraj Strossmayer University of Osijek, F. Kuhača 18, HR-31 000 Osijek, Croatia; (J.M.); (J.L.); (M.J.)
| | - Ana Bucić-Kojić
- Faculty of Food Technology Osijek, Josip Juraj Strossmayer University of Osijek, F. Kuhača 18, HR-31 000 Osijek, Croatia; (J.M.); (J.L.); (M.J.)
| |
Collapse
|
7
|
Ruan H, Aulova A, Ghai V, Pandit S, Lovmar M, Mijakovic I, Kádár R. Polysaccharide-based antibacterial coating technologies. Acta Biomater 2023; 168:42-77. [PMID: 37481193 DOI: 10.1016/j.actbio.2023.07.023] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 06/16/2023] [Accepted: 07/17/2023] [Indexed: 07/24/2023]
Abstract
To tackle antimicrobial resistance, a global threat identified by the United Nations, is a common cause of healthcare-associated infections (HAI) and is responsible for significant costs on healthcare systems, a substantial amount of research has been devoted to developing polysaccharide-based strategies that prevent bacterial attachment and biofilm formation on surfaces. Polysaccharides are essential building blocks for life and an abundant renewable resource that have attracted much attention due to their intrinsic remarkable biological potential antibacterial activities. If converted into efficient antibacterial coatings that could be applied to a broad range of surfaces and applications, polysaccharide-based coatings could have a significant potential global impact. However, the ultimate success of polysaccharide-based antibacterial materials will be determined by their potential for use in manufacturing processes that are scalable, versatile, and affordable. Therefore, in this review we focus on recent advances in polysaccharide-based antibacterial coatings from the perspective of fabrication methods. We first provide an overview of strategies for designing polysaccharide-based antimicrobial formulations and methods to assess the antibacterial properties of coatings. Recent advances on manufacturing polysaccharide-based coatings using some of the most common polysaccharides and fabrication methods are then detailed, followed by a critical comparative overview of associated challenges and opportunities for future developments. STATEMENT OF SIGNIFICANCE: Our review presents a timely perspective by being the first review in the field to focus on advances on polysaccharide-based antibacterial coatings from the perspective of fabrication methods along with an overview of strategies for designing polysaccharide-based antimicrobial formulations, methods to assess the antibacterial properties of coatings as well as a critical comparative overview of associated challenges and opportunities for future developments. Meanwhile this work is specifically targeted at an audience focused on featuring critical information and guidelines for developing polysaccharide-based coatings. Including such a complementary work in the journal could lead to further developments on polysaccharide antibacterial applications.
Collapse
Affiliation(s)
- Hengzhi Ruan
- Department of Industrial and Materials Science, Chalmers University of Technology, 412 96 Göteborg, Sweden
| | - Alexandra Aulova
- Department of Industrial and Materials Science, Chalmers University of Technology, 412 96 Göteborg, Sweden
| | - Viney Ghai
- Department of Industrial and Materials Science, Chalmers University of Technology, 412 96 Göteborg, Sweden
| | - Santosh Pandit
- Department of Biology and Biological Engineering, Chalmers University of Technology, 412 96 Göteborg, Sweden
| | - Martin Lovmar
- Department of Biology and Biological Engineering, Chalmers University of Technology, 412 96 Göteborg, Sweden; Wellspect Healthcare AB, 431 21 Mölndal, Sweden
| | - Ivan Mijakovic
- Department of Biology and Biological Engineering, Chalmers University of Technology, 412 96 Göteborg, Sweden; The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, 2800 Kongens Lyngby, Denmark.
| | - Roland Kádár
- Department of Industrial and Materials Science, Chalmers University of Technology, 412 96 Göteborg, Sweden; Wallenberg Wood Science Centre (WWSC), Chalmers University of Technology, 412 96 Göteborg, Sweden.
| |
Collapse
|
8
|
Ali M, Kwak SH, Byeon JY, Choi HJ. In Vitro and In Vivo Evaluation of Epidermal Growth Factor (EGF) Loaded Alginate-Hyaluronic Acid (AlgHA) Microbeads System for Wound Healing. J Funct Biomater 2023; 14:403. [PMID: 37623648 PMCID: PMC10455903 DOI: 10.3390/jfb14080403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 07/11/2023] [Accepted: 07/25/2023] [Indexed: 08/26/2023] Open
Abstract
The management of skin injuries is one of the most common concerns in medical facilities. Different types of biomaterials with effective wound-healing characteristics have been studied previously. In this study, we used alginate (Alg) and hyaluronic acid (HA) composite (80:20) beads for the sustained release of epidermal growth factor (EGF) delivery. Heparin crosslinked AlgHA beads showed significant loading and entrapment of EGF. Encapsulated beads demonstrated biocompatibility with rat L929 cells and significant migration at the concentration of AlgHAEGF100 and AlgHAEGF150 within 24 h. Both groups significantly improved the expression of Fetal Liver Kinase 1 (FLK-1) along with the Intercellular Adhesion Molecule-1 (ICAM-1) protein in rat bone Mesenchymal stem cells (rbMSCs). In vivo assessment exhibited significant epithelialization and wound closure gaps within 2 weeks. Immunohistochemistry shows markedly significant levels of ICAM-1, FLK-1, and fibronectin (FN) in the AlgHAEGF100 and AlgHAEGF150 groups. Hence, we conclude that the EGF-loaded alginate-hyaluronic acid (AlgHA) bead system can be used to promote wound healing.
Collapse
Affiliation(s)
- Maqsood Ali
- Department of Regenerative Medicine, College of Medicine, Soonchunhyang University, Cheonan 31538, Republic of Korea
| | - Si Hyun Kwak
- Department of Plastic and Reconstructive Surgery, College of Medicine, Soonchunhyang University, Cheonan 31538, Republic of Korea
| | - Je Yeon Byeon
- Department of Plastic and Reconstructive Surgery, College of Medicine, Soonchunhyang University, Cheonan 31538, Republic of Korea
| | - Hwan Jun Choi
- Department of Plastic and Reconstructive Surgery, College of Medicine, Soonchunhyang University, Cheonan 31538, Republic of Korea
| |
Collapse
|
9
|
Farzamfar S, Richer M, Rahmani M, Naji M, Aleahmad M, Chabaud S, Bolduc S. Biological Macromolecule-Based Scaffolds for Urethra Reconstruction. Biomolecules 2023; 13:1167. [PMID: 37627232 PMCID: PMC10452429 DOI: 10.3390/biom13081167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 07/17/2023] [Accepted: 07/17/2023] [Indexed: 08/27/2023] Open
Abstract
Urethral reconstruction strategies are limited with many associated drawbacks. In this context, the main challenge is the unavailability of a suitable tissue that can endure urine exposure. However, most of the used tissues in clinical practices are non-specialized grafts that finally fail to prevent urine leakage. Tissue engineering has offered novel solutions to address this dilemma. In this technology, scaffolding biomaterials characteristics are of prime importance. Biological macromolecules are naturally derived polymers that have been extensively studied for various tissue engineering applications. This review discusses the recent advances, applications, and challenges of biological macromolecule-based scaffolds in urethral reconstruction.
Collapse
Affiliation(s)
- Saeed Farzamfar
- Centre de Recherche en Organogénèse Expérimentale/LOEX, Regenerative Medicine Division, CHU de Québec-Université Laval Research Center, Quebec, QC G1V 4G2, Canada; (S.F.); (M.R.); (S.C.)
| | - Megan Richer
- Centre de Recherche en Organogénèse Expérimentale/LOEX, Regenerative Medicine Division, CHU de Québec-Université Laval Research Center, Quebec, QC G1V 4G2, Canada; (S.F.); (M.R.); (S.C.)
| | - Mahya Rahmani
- Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran 1983963113, Iran;
| | - Mohammad Naji
- Urology and Nephrology Research Center, Shahid Beheshti University of Medical Sciences, Tehran 1983963113, Iran;
| | - Mehdi Aleahmad
- Department of Immunology, School of Public Health, Tehran University of Medical Sciences, Tehran 1417613151, Iran;
| | - Stéphane Chabaud
- Centre de Recherche en Organogénèse Expérimentale/LOEX, Regenerative Medicine Division, CHU de Québec-Université Laval Research Center, Quebec, QC G1V 4G2, Canada; (S.F.); (M.R.); (S.C.)
| | - Stéphane Bolduc
- Centre de Recherche en Organogénèse Expérimentale/LOEX, Regenerative Medicine Division, CHU de Québec-Université Laval Research Center, Quebec, QC G1V 4G2, Canada; (S.F.); (M.R.); (S.C.)
- Department of Surgery, Faculty of Medicine, Laval University, Quebec, QC G1V 0A6, Canada
| |
Collapse
|
10
|
Cao Y, Cong H, Yu B, Shen Y. A review on the synthesis and development of alginate hydrogels for wound therapy. J Mater Chem B 2023; 11:2801-2829. [PMID: 36916313 DOI: 10.1039/d2tb02808e] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/06/2023]
Abstract
Convenient and low-cost dressings can reduce the difficulty of wound treatment. Alginate gel dressings have the advantages of low cost and safe usage, and they have obvious potential for development in biomedical materials. Alginate gel dressings are currently a research area of great interest owing to their versatility, intelligent, and their application attempts in treating complex wounds. We present a detailed summary of the preparation of alginate hydrogels and a study of their performance improvement. Herein, we summarize the various applications of alginate hydrogels. The research focuses in this area mainly include designing multifunctional dressings for the treatment of various wounds and fabricating specialized dressings to assist physicians in the treatment of complex wounds (TOC). This review gives an outlook for future directions in the field of alginate hydrogel dressings. We hope to attract more research interest and studies in alginate hydrogel dressings, thus contributing to the creation of low-cost and highly effective wound treatment materials.
Collapse
Affiliation(s)
- Yang Cao
- College of Chemistry and Chemical Engineering, College of Materials Science and Engineering, Institute of Biomedical Materials and Engineering, Qingdao University, Qingdao, 266071, China.
| | - Hailin Cong
- College of Chemistry and Chemical Engineering, College of Materials Science and Engineering, Institute of Biomedical Materials and Engineering, Qingdao University, Qingdao, 266071, China. .,State Key Laboratory of Bio-Fibers and Eco-Textiles, Qingdao University, Qingdao 266071, China.,School of Materials Science and Engineering, Shandong University of Technology, Zibo 255000, China
| | - Bing Yu
- College of Chemistry and Chemical Engineering, College of Materials Science and Engineering, Institute of Biomedical Materials and Engineering, Qingdao University, Qingdao, 266071, China. .,State Key Laboratory of Bio-Fibers and Eco-Textiles, Qingdao University, Qingdao 266071, China
| | - Youqing Shen
- College of Chemistry and Chemical Engineering, College of Materials Science and Engineering, Institute of Biomedical Materials and Engineering, Qingdao University, Qingdao, 266071, China. .,Key Laboratory of Biomass Chemical Engineering of Ministry of Education, Center for Bionanoengineering, and Department of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, China
| |
Collapse
|
11
|
Jiang Z, Shi Y, Chen X, Xu Z, Wang S. Preparation of combined hydrogel solution that is suitable to control the emission of odor pollutants from brownfield site and its control effects. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:36979-36992. [PMID: 36564682 DOI: 10.1007/s11356-022-24869-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Accepted: 12/15/2022] [Indexed: 06/17/2023]
Abstract
Odor pollution caused by brownfield site has attracted increasing attention. However, to date, fewer suitable materials can be used to control the emission of odor pollutant from brownfield site during remediation. This study prepared a kind of combined hydrogel solution based on sodium alginate and carboxymethyl cellulose sodium (CHS-SC) and tested the possibility of its membrane in controlling the emission of three odor pollutants (trichloroethylene, dimethyl disulfide, and p-xylene) from polluted soil. Our results showed that CHS-SC membrane could effectively control the emission of three odor pollutants from polluted soil. Comparatively, CHS-SC membrane had higher control rates for three odor pollutants at high ambient temperature (32 °C), short storage time of CHS-SC (5 days, 25 °C), and low odor pollutant concentration (2 ml/kg soil) than at low ambient temperature (2 °C), long storage time of CHS-SC (10 d, 25 °C), and high odor pollutant concentration (4 ml/kg soil), respectively. CHS-SC membrane was degraded by 79.23% after 150 days in soil and slightly changed soil bacterial community, indicating that it had good biodegradability and environmental friendliness. In addition, CHS-SC cost was the lowest among the products with similar function. This study shows that CHS-SC is effective in short-timely controlling the emission of odor pollutants from brownfield site.
Collapse
Affiliation(s)
- Zhen Jiang
- Department of Environmental Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Yifan Shi
- Department of Environmental Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Xiaochun Chen
- Department of Environmental Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Zhongjun Xu
- Department of Environmental Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Shuguang Wang
- Department of Environmental Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, China.
| |
Collapse
|
12
|
Wierzbicka A, Krakos M, Wilczek P, Bociaga D. A comprehensive review on hydrogel materials in urology: Problems, methods, and new opportunities. J Biomed Mater Res B Appl Biomater 2023; 111:730-756. [PMID: 36237176 DOI: 10.1002/jbm.b.35179] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 07/07/2022] [Accepted: 09/22/2022] [Indexed: 01/21/2023]
Abstract
Hydrogel materials provide an extremely promising group of materials that can find an increasingly wide range of use in treating urinary system conditions due to their unique properties. The present review describes achievements to date in terms of the use and development prospects of hydrogel materials applications in the treatment and reconstruction of the urinary system organs, which among others include: hydrogel systems of intravesical drug delivery, ureteral stents design, treatment of vesicoureteral reflux, urinary bladder and urethral defects reconstruction, design of modern urinary catheters and also solutions applied in urinary incontinence therapy (Figure 4). In addition, hydrogel materials find increasingly growing applications in the construction of educational simulation models of organs and specific conditions of the urinary system, which enable the education of medical personnel. Numerous research efforts are underway to expand the existing treatment methods and reconstruction of the urinary system based on hydrogel materials. After conducting the further necessary research, many of the innovative solutions developed to date have high application potential.
Collapse
Affiliation(s)
- Adrianna Wierzbicka
- Faculty of Mechanical Engineering, Institute of Materials Science and Engineering, Lodz University of Technology, Lodz, Poland
| | - Marek Krakos
- Department of Pediatric Surgery and Urology, Hospital of J. Korczak, Lodz, Poland.,Department of Pediatric Nephrology, Polish Mother's Memorial Hospital Research Institute, Lodz, Poland
| | - Piotr Wilczek
- Faculty of Health Sciences, Calisia University, Kalisz, Poland.,Heart Prostheses Institute, Prof. Z. Religa Foundation of Cardiac Surgery Development, Zabrze, Poland
| | - Dorota Bociaga
- Faculty of Mechanical Engineering, Institute of Materials Science and Engineering, Lodz University of Technology, Lodz, Poland
| |
Collapse
|
13
|
Abolhassani S, Hossein-Aghdaei M, Geramizadeh B, Azarpira N, Koohpeyma F, Gholami M, Alizadeh A. Primary hepatocyte urea assessment in the sodium-alginate patterned hydrogel by electrochemical procedure containing umbilical cord conditioned media. J Biomater Appl 2023; 37:1470-1485. [PMID: 36318091 DOI: 10.1177/08853282221137093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Limitations in liver transplantation and advances in cell therapy methods motivated us to study primary hepatocytes. The main challenge in using primary hepatocytes for liver regeneration is that they lose their functionalities. We aimed to develop a controlled-shape hydrogel and apply the conditioned-media of mesenchymal stromal cells (CM-MSCs) to improve in vitro hepatocyte functions. In this experimental study, following rat hepatocyte isolation by collagenase perfusion and collection of human umbilical cord CM-MSCs, a simple and precise system called electrodeposition was used to produce the patterned alginate hydrogel. To reduce the cytopathic effects, we used an indirect electrodeposition method. For characterizing this structure, mechanical properties, Fourier-transform infrared spectroscopy (FTIR), water uptake, in-vitro degradation, and hydrogel stability were studied. Urea synthesis as a basic function of hepatocytes was assessed in five different groups. Scanning electron microscope (SEM) was utilized to evaluate the primary hepatocyte morphology and their dispersion in the fabricated structure. We observed a significant increase in urea synthesis in the presence of CM-MSCs in patterned hydrogel alginate compared to 2D culture on day 3 (p<0.05). However, there was no significant difference in simple and patterned hydrogel on day 2. We found that the electrodeposition method is appropriate for the rapid fabricating of hydrogel structures with arbitrary patterns for 3D cell culture.
Collapse
Affiliation(s)
- Sareh Abolhassani
- School of Advanced Medical Sciences and Technologies, 48435Shiraz University of Medical Sciences, Shiraz, Iran
| | | | - Bita Geramizadeh
- Transplant Research Center, 226722Shiraz University of Medical Sciences, Shiraz, Iran
| | - Negar Azarpira
- Transplant Research Center, 226722Shiraz University of Medical Sciences, Shiraz, Iran
| | - Farhad Koohpeyma
- Endocrine and metabolism Research Center, 48435Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mahnaz Gholami
- Transplant Research Center, 226722Shiraz University of Medical Sciences, Shiraz, Iran
| | - Aliakbar Alizadeh
- School of Advanced Medical Sciences and Technologies, 48435Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
14
|
Arslan AK, Aydoğdu A, Tolunay T, Basat Ç, Bircan R, Demirbilek M. The effect of alginate scaffolds on bone healing in defects formed with drilling model in rat femur diaphysis. J Biomed Mater Res B Appl Biomater 2023; 111:1299-1308. [PMID: 36786191 DOI: 10.1002/jbm.b.35233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Revised: 01/08/2023] [Accepted: 01/30/2023] [Indexed: 02/15/2023]
Abstract
Alginate (ALG) is a biocompatible and biodegradable polymer. Mechanical weakness is one of the main problems for the alginate-based scaffolds. Various plasticizer additives or modifications tested to improve the mechanical properties. In the presented study, ALG plasticized with triacetin (TA), and tributyl citrate (TBC) than tested on bone healing. In the presented study, the alginate modified with triacetin or tributyl citrate. In-vitro, and in-vivo efficiency of the scaffolds tested on bone tissue regeneration. Scaffolds fabricated by solvent casting, and physicochemical characterizations performed. Monocytes (THP-1) cultured with scaffolds, and macrophage-released cytokines was determined. In-vivo efficacy of the scaffolds was tested in the rat drill hole model. Alginate and tributyl citrate-modified scaffolds have no cytotoxic effect on osteoblastic cells (MC-3T3). Tributyl citrate modification increased tumor necrosis factor-alpha (TNF-alpha) level but did not increase interleukin -1 beta (IL-1 beta) level. In vivo studies showed that osteoblastic growth was significant in alginate and triacetin-modified scaffolds. However, the best values for osteoclastic activity and osteoid tissue formation seen in the triacetin modification. The results demonstrated that the modified alginate scaffolds were more successful than non-modified alginate scaffolds and can used as long-term bone repairing treatments.
Collapse
Affiliation(s)
- Arslan Kagan Arslan
- Department of Orthopedics and Traumatology, Yıldırım Beyazıt University, Yenimahalle Education and Research Hospital, Ankara, Turkey
| | - Ali Aydoğdu
- Faculty of Medicine, Hitit University, Çorum, Turkey
| | - Tolga Tolunay
- Faculty of Medicine, Department of Orthopedics and Traumatology, Gazi University, Ankara, Turkey
| | - Çağdaş Basat
- Faculty of Medicine, Department of Orthopedics and Traumatology, Ahi Evran University, Kırşehir, Turkey
| | - Resul Bircan
- Faculty of Medicine, Department of Orthopedics and Traumatology, Gazi University, Ankara, Turkey
| | - Murat Demirbilek
- Biology Department, Ankara Hacı Bayram Veli University, Ankara, Turkey
| |
Collapse
|
15
|
Rotariu T, Pulpea D, Toader G, Rusen E, Diacon A, Neculae V, Liggat J. Peelable Nanocomposite Coatings: "Eco-Friendly" Tools for the Safe Removal of Radiopharmaceutical Spills or Accidental Contamination of Surfaces in General-Purpose Radioisotope Laboratories. Pharmaceutics 2022; 14:2360. [PMID: 36365178 PMCID: PMC9695050 DOI: 10.3390/pharmaceutics14112360] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 10/27/2022] [Accepted: 10/28/2022] [Indexed: 07/28/2023] Open
Abstract
Radioactive materials are potentially harmful due to the radiation emitted by radionuclides and the risk of radioactive contamination. Despite strict compliance with safety protocols, contamination with radioactive materials is still possible. This paper describes innovative and inexpensive formulations that can be employed as 'eco-friendly' tools for the safe decontamination of radiopharmaceuticals spills or other accidental radioactive contamination of the surfaces arising from general-purpose radioisotope handling facilities (radiopharmaceutical laboratories, hospitals, research laboratories, etc.). These new peelable nanocomposite coatings are obtained from water-based, non-toxic, polymeric blends containing readily biodegradable components, which do not damage the substrate on which they are applied while also displaying efficient binding and removal of the contaminants from the targeted surfaces. The properties of the film-forming decontamination solutions were assessed using rheological measurements and evaporation rate tests, while the resulting strippable coatings were subjected to Fourier-transform infrared spectroscopy (FTIR), thermogravimetric analysis (TGA), differential scanning calorimetry (DSC), and tensile tests. Radionuclide decontamination tests were performed on various types of surfaces encountered in radioisotope workspaces (concrete, painted metal, ceramic tiles, linoleum, epoxy resin cover). Thus, it was shown that they possess remarkable properties (thermal and mechanical resistance which permits facile removal through peeling) and that their capacity to entrap and remove beta and alpha particle emitters depends on the constituents of the decontaminating formulation, but more importantly, on the type of surface tested. Except for the cement surface (which was particularly porous), at which the decontamination level ranged between approximately 44% and 89%, for all the other investigated surfaces, a decontamination efficiency ranging from 80.6% to 96.5% was achieved.
Collapse
Affiliation(s)
- Traian Rotariu
- Military Technical Academy “Ferdinand I”, 39–49 George Cosbuc Boulevard, 050141 Bucharest, Romania
| | - Daniela Pulpea
- Military Technical Academy “Ferdinand I”, 39–49 George Cosbuc Boulevard, 050141 Bucharest, Romania
| | - Gabriela Toader
- Military Technical Academy “Ferdinand I”, 39–49 George Cosbuc Boulevard, 050141 Bucharest, Romania
| | - Edina Rusen
- Faculty of Chemical Engineering and Biotechnologies, University ‘POLITEHNICA’ of Bucharest, 1–7 Gh. Polizu Street, 011061 Bucharest, Romania
| | - Aurel Diacon
- Military Technical Academy “Ferdinand I”, 39–49 George Cosbuc Boulevard, 050141 Bucharest, Romania
- Faculty of Chemical Engineering and Biotechnologies, University ‘POLITEHNICA’ of Bucharest, 1–7 Gh. Polizu Street, 011061 Bucharest, Romania
| | - Valentina Neculae
- Institute for Nuclear Research—RATEN ICN-Pitesti, 1 Street Campului, 115400 Mioveni, Romania
| | - John Liggat
- Department of Pure and Applied Chemistry, University of Strathclyde, 295 Cathedral Street, Glasgow G1 1BX, UK
| |
Collapse
|
16
|
Ali M, Kwak SH, Lee BT, Choi HJ. Controlled release of vascular endothelial growth factor (VEGF) in alginate and hyaluronic acid (ALG–HA) bead system to promote wound healing in punch-induced wound rat model. JOURNAL OF BIOMATERIALS SCIENCE, POLYMER EDITION 2022; 34:612-631. [PMID: 36218190 DOI: 10.1080/09205063.2022.2135264] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
For wound healing, angiogenesis is one of the main therapeutic factors for recovering the injured tissue. To address this issue, a combination of two different polymers, alginate (ALG) and hyaluronic acid (HA) in an 80:20 ratio composition is used to optimize the bead system along with the 5 IU heparin (Hep) by crosslinking into calcium chloride (CaCl2). Encapsulation of Vascular endothelial growth factor (VEGF) in the bead system shows delayed cumulative release in phosphate buffer saline (PBS). For in vitro studies, calf pulmonary artery endothelial (CPAE) cells showed biocompatibility. ALG-HA/VEGF150 improves endothelial Vascular cell adhesion protein 1 (VCAM1) and endothelial nitric oxide synthase (eNOS) expression markers in CPAE cells. In vivo evaluation of the bead system shows around 68% of wound closure 2 weeks post-implantation in 8 mm punch wound models. The treatment group shows decreased epithelial gap between the ends of the wound and neo-epidermal regeneration. ALG-HA/VEGF150 induced significant vascularization, collagen type-1 (Col-1) and fibronectin (FN) development in the in vivo models after 2 weeks of the implantation. Hence, ALG-HA/VEGF150 beads can be used to promote wound healing.
Collapse
Affiliation(s)
- Maqsood Ali
- Department of Regenerative Medicine, College of Medicine, Soonchunhyang University, Cheonan, South Korea
| | - Si Hyun Kwak
- Department of Plastic and Reconstructive surgery, College of Medicine, Soonchunhyang University, Cheonan, South Korea
| | - Byong-Taek Lee
- Department of Regenerative Medicine, College of Medicine, Soonchunhyang University, Cheonan, South Korea
- Institute of Regenerative Medicine, College of Medicine, Soonchunhyang University, Cheonan, South Korea
| | - Hwan Jun Choi
- Department of Plastic and Reconstructive surgery, College of Medicine, Soonchunhyang University, Cheonan, South Korea
- Institute of Regenerative Medicine, College of Medicine, Soonchunhyang University, Cheonan, South Korea
| |
Collapse
|
17
|
Changes in the Mechanical Properties of Alginate-Gelatin Hydrogels with the Addition of Pygeum africanum with Potential Application in Urology. Int J Mol Sci 2022; 23:ijms231810324. [PMID: 36142228 PMCID: PMC9499472 DOI: 10.3390/ijms231810324] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 08/05/2022] [Accepted: 08/16/2022] [Indexed: 11/17/2022] Open
Abstract
New hydrogel materials developed to improve soft tissue healing are an alternative for medical applications, such as tissue regeneration or enhancing the biotolerance effect in the tissue-implant–body fluid system. The biggest advantages of hydrogel materials are the presence of a large amount of water and a polymeric structure that corresponds to the extracellular matrix, which allows to create healing conditions similar to physiological ones. The present work deals with the change in mechanical properties of sodium alginate mixed with gelatin containing Pygeum africanum. The work primarily concentrates on the evaluation of the mechanical properties of the hydrogel materials produced by the sol–gel method. The antimicrobial activity of the hydrogels was investigated based on the population growth dynamics of Escherichia coli ATCC 25922 and Staphylococcus aureus ATCC 25923, as well as the degree of degradation after contact with urine using an innovative method with a urine flow simulation stand. On the basis of mechanical tests, it was found that sodium alginate-based hydrogels with gelatin showed weaker mechanical properties than without the additive. In addition, gelatin accelerates the degradation process of the produced hydrogel materials. Antimicrobial studies have shown that the presence of African plum bark extract in the hydrogel enhances the inhibitory effect on Gram-positive and Gram-negative bacteria. The research topic was considered due to the increased demand from patients for medical devices to promote healing of urethral epithelial injuries in order to prevent the formation of urethral strictures.
Collapse
|
18
|
Poolwong J, Aomchad V, Del Gobbo S, Kleij AW, D'Elia V. Simple Halogen-Free, Biobased Organic Salts Convert Glycidol to Glycerol Carbonate under Atmospheric CO 2 Pressure. CHEMSUSCHEM 2022; 15:e202200765. [PMID: 35726476 DOI: 10.1002/cssc.202200765] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2022] [Revised: 06/20/2022] [Indexed: 06/15/2023]
Abstract
Glycerol carbonate (GC) has emerged as an attractive synthetic target due to various promising technological applications. Among several viable strategies to produce GC from CO2 and glycerol and its derivatives, the cycloaddition of CO2 to glycidol represents an atom-economic an efficient strategy that can proceed via a halide-free manifold through a proton-shuttling mechanism. Here, it was shown that the synthesis of GC can be promoted by bio-based and readily available organic salts leading to quantitative GC formation under atmospheric CO2 pressure and moderate temperatures. Comparative and mechanistic experiments using sodium citrate as the most efficient catalyst highlighted the role of both hydrogen bond donor and weakly basic sites in the organic salt towards GC formation. The citrate salt was also used as a catalyst for the conversion of other epoxy alcohols. Importantly, the discovery that homogeneous organic salts catalyze the target reaction inspired us to use metal alginates as heterogeneous and recoverable bio-based catalysts for the same process.
Collapse
Affiliation(s)
- Jitpisut Poolwong
- Department of Materials Science and Engineering, School of Molecular Science and Engineering, Vidyasirimedhi Institute of Science and Technology (VISTEC), 555 Moo 1, 21210, Payupnai, WangChan, Rayong, Thailand
| | - Vatcharaporn Aomchad
- Department of Materials Science and Engineering, School of Molecular Science and Engineering, Vidyasirimedhi Institute of Science and Technology (VISTEC), 555 Moo 1, 21210, Payupnai, WangChan, Rayong, Thailand
| | - Silvano Del Gobbo
- Department of Materials Science and Engineering, School of Molecular Science and Engineering, Vidyasirimedhi Institute of Science and Technology (VISTEC), 555 Moo 1, 21210, Payupnai, WangChan, Rayong, Thailand
| | - Arjan W Kleij
- Institute of Chemical Research of Catalonia (ICIQ), Barcelona Institute of Science & Technology (BIST), Av. Països Catalans 16, 43007, Tarragona, Spain
- Catalan Institute for Research and Advanced Studies (ICREA), Pg. Lluis Companys 23, 08010, Barcelona, Spain
| | - Valerio D'Elia
- Department of Materials Science and Engineering, School of Molecular Science and Engineering, Vidyasirimedhi Institute of Science and Technology (VISTEC), 555 Moo 1, 21210, Payupnai, WangChan, Rayong, Thailand
| |
Collapse
|
19
|
Martinez-Garcia FD, van Dongen JA, Burgess JK, Harmsen MC. Matrix Metalloproteases from Adipose Tissue-Derived Stromal Cells Are Spatiotemporally Regulated by Hydrogel Mechanics in a 3D Microenvironment. BIOENGINEERING (BASEL, SWITZERLAND) 2022; 9:bioengineering9080340. [PMID: 35892753 PMCID: PMC9332414 DOI: 10.3390/bioengineering9080340] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Revised: 07/11/2022] [Accepted: 07/16/2022] [Indexed: 01/16/2023]
Abstract
Adipose tissue-derived stromal cells (ASCs) are of interest in tissue engineering and regenerative medicine (TERM) due to their easy acquisition, multipotency, and secretion of a host of factors that promote regeneration. Retention of ASCs in or around lesions is poor following direct administration. Therefore, for TERM applications, ASCs can be ‘immobilized’ via their incorporation into hydrogels such as gelatine methacryloyl (GelMA). Tweaking GelMA concentration is a common approach to approximate the mechanical properties found in organs or tissues that need repair. Distinct hydrogel mechanics influence the ability of a cell to spread, migrate, proliferate, and secrete trophic factors. Mesenchymal cells such as ASCs are potent remodellers of the extracellular matrix (ECM). Not only do ASCs deposit components, they also secrete matrix metalloproteases (MMPs) which degrade ECM. In this work, we investigated if GelMA polymer concentration influenced the expression of active MMPs by ASCs. In addition, MMPs’ presence was interrogated with regard to ASCs morphology and changes in hydrogel ultrastructure. For this, immortalised ASCs were embedded in 5%, 10%, and 15% (w/v) GelMA hydrogels, photopolymerised and cultured for 14 d. Zymography in situ indicated that MMPs had a variable, hydrogel concentration-dependent influence on ASCs-secreted MMPs. In 5% GelMA, ASCs showed a high and sustained expression of MMPs, while, in 10% and 15% GelMA, such expression was almost null. ASCs morphology based on F-actin staining showed that increasing GelMA concentrations inhibit their spreading. Scanning electron microscopy (SEM) showed that hydrogel ultrastructure in terms of pore density, pore size, and percentage porosity were not consistently influenced by cells. Interestingly, changes in ultrastructural parameters were detected also in cell-free materials, albeit without a clear trend. We conclude that hydrogel concentration and its underlying mechanics influenced MMP expression by ASCs. The exact MMPs that respond to these mechanical cues should be defined in follow-up experiments.
Collapse
Affiliation(s)
- Francisco Drusso Martinez-Garcia
- Department of Pathology and Medical Biology, University Medical Center Groningen, University of Groningen, 9713 GZ Groningen, The Netherlands; (F.D.M.-G.); (J.K.B.)
- W.J. Kolff Research Institute, University Medical Center Groningen, University of Groningen, 9713 GZ Groningen, The Netherlands
| | - Joris Anton van Dongen
- Department of Plastic Surgery, University Medical Center Utrecht, 3584 CX Utrecht, The Netherlands;
| | - Janette Kay Burgess
- Department of Pathology and Medical Biology, University Medical Center Groningen, University of Groningen, 9713 GZ Groningen, The Netherlands; (F.D.M.-G.); (J.K.B.)
- W.J. Kolff Research Institute, University Medical Center Groningen, University of Groningen, 9713 GZ Groningen, The Netherlands
- Groningen Research Institute for Asthma and COPD (GRIAC), University Medical Center Groningen, University of Groningen, 9713 GZ Groningen, The Netherlands
| | - Martin Conrad Harmsen
- Department of Pathology and Medical Biology, University Medical Center Groningen, University of Groningen, 9713 GZ Groningen, The Netherlands; (F.D.M.-G.); (J.K.B.)
- W.J. Kolff Research Institute, University Medical Center Groningen, University of Groningen, 9713 GZ Groningen, The Netherlands
- Groningen Research Institute for Asthma and COPD (GRIAC), University Medical Center Groningen, University of Groningen, 9713 GZ Groningen, The Netherlands
- Correspondence:
| |
Collapse
|
20
|
3D Printed Gene-Activated Sodium Alginate Hydrogel Scaffolds. Gels 2022; 8:gels8070421. [PMID: 35877506 PMCID: PMC9319089 DOI: 10.3390/gels8070421] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Revised: 06/28/2022] [Accepted: 07/01/2022] [Indexed: 12/27/2022] Open
Abstract
Gene therapy is one of the most promising approaches in regenerative medicine to restore damaged tissues of various types. However, the ability to control the dose of bioactive molecules in the injection site can be challenging. The combination of genetic constructs, bioresorbable material, and the 3D printing technique can help to overcome these difficulties and not only serve as a microenvironment for cell infiltration but also provide localized gene release in a more sustainable way to induce effective cell differentiation. Herein, the cell transfection with plasmid DNA directly incorporated into sodium alginate prior to 3D printing was investigated both in vitro and in vivo. The 3D cryoprinting ensures pDNA structure integrity and safety. 3D printed gene-activated scaffolds (GAS) mediated HEK293 transfection in vitro and effective synthesis of model EGFP protein in vivo, thereby allowing the implementation of the developed GAS in future tissue engineering applications.
Collapse
|
21
|
Kurowiak J, Mackiewicz A, Klekiel T, Będziński R. Evaluation of Selected Properties of Sodium Alginate-Based Hydrogel Material—Mechanical Strength, μDIC Analysis and Degradation. MATERIALS 2022; 15:ma15031225. [PMID: 35161169 PMCID: PMC8839524 DOI: 10.3390/ma15031225] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 02/03/2022] [Accepted: 02/04/2022] [Indexed: 11/25/2022]
Abstract
The search for ideal solutions for the treatment of urethral stenosis continues. This includes developing the material, design, while maintaining its optimal and desired properties. This paper presents the results of the research conducted on sodium alginate-based hydrogel material (AHM), which may be used as a material for stents dedicated to the treatment of pathologies occurring in the genitourinary system. In order to determine the selected parameters of the AHM samples, strength and degradation tests, as well as analysis of the micro changes occurring on the surface of the material using a digital image correlation (µDIC) system, were performed. This study shows that the material possessed good mechanical strength parameters, the knowledge of which is particularly important from the point of view of the stent-tissue interaction. The degradation analysis performed showed that the AHM samples degrade in an artificial urine environment, and that the degradation time mainly depends on the chemical composition of the material. The novel µDIC method performed allowed us to characterize the homogeneity of the material structure depending on the cross-linking agent used.
Collapse
|
22
|
P B S, S G, J P, Muthusamy S, R N, Krishnakumar GS, R S. Tricomposite gelatin-carboxymethylcellulose-alginate bioink for direct and indirect 3D printing of human knee meniscal scaffold. Int J Biol Macromol 2022; 195:179-189. [PMID: 34863969 DOI: 10.1016/j.ijbiomac.2021.11.184] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Revised: 11/12/2021] [Accepted: 11/26/2021] [Indexed: 12/13/2022]
Abstract
The development of technologies that could ease the production of customizable patient-specific tissue engineering constructs having required biomechanical properties and restoring function in damaged tissue is the need of the hour. In this study, we report the optimization of composite, bioactive and biocompatible tripolymeric hydrogel bioink, suitable for both direct and indirect printing of customizable scaffolds for cartilage tissue engineering applications. A customized hierarchical meniscal scaffold was designed using solid works software and developed using a negative mould made of polylactic acid (PLA) filament and by a direct 3D printing process. A composite tripolymeric bioink made of gelatin, carboxymethyl cellulose (CMC) and alginate was optimized and characterized for its printability, structural, bio-mechanical and bio-functional properties. The optimized composite hydrogel bioink was extruded into the negative mould with and without live cells, cross-linked and the replica of meniscus structure was retrieved aseptically. The cellular proliferation, apatite formation, and extracellular matrix secretion from negative printed meniscal scaffold were determined using MTT, live/dead and collagen estimation assays. A significant increase in collagen secretion, cellular proliferation and changes in biomechanical properties was observed in the 3D scaffolds with MG63-osteosarcoma cells indicating its suitability for cartilage tissue engineering.
Collapse
Affiliation(s)
- Sathish P B
- Tissue Engineering Laboratory, Department of Biotechnology, PSG Institute of Advanced Studies, Coimbatore 641004, India
| | - Gayathri S
- Tissue Engineering Laboratory, Department of Biotechnology, PSG Institute of Advanced Studies, Coimbatore 641004, India; Department of Electronics and Communication Engineering, PSG College of Technology, Coimbatore 641004, India
| | - Priyanka J
- Tissue Engineering Laboratory, Department of Biotechnology, PSG Institute of Advanced Studies, Coimbatore 641004, India; Department of Electronics and Communication Engineering, PSG College of Technology, Coimbatore 641004, India
| | - Shalini Muthusamy
- Applied Biomaterials Laboratory, Department of Biotechnology, PSG Institute of Advanced Studies, Coimbatore 641004, India
| | - Narmadha R
- Tissue Engineering Laboratory, Department of Biotechnology, PSG Institute of Advanced Studies, Coimbatore 641004, India
| | - Gopal Shankar Krishnakumar
- Applied Biomaterials Laboratory, Department of Biotechnology, PSG Institute of Advanced Studies, Coimbatore 641004, India
| | - Selvakumar R
- Tissue Engineering Laboratory, Department of Biotechnology, PSG Institute of Advanced Studies, Coimbatore 641004, India.
| |
Collapse
|
23
|
Alginate Modification and Lectin-Conjugation Approach to Synthesize the Mucoadhesive Matrix. APPLIED SCIENCES-BASEL 2021. [DOI: 10.3390/app112411818] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Alginates are natural anionic polyelectrolytes investigated in various biomedical applications, such as drug delivery, tissue engineering, and 3D bioprinting. Functionalization of alginates is one possible way to provide a broad range of requirements for those applications. A range of techniques, including esterification, amidation, acetylation, phosphorylation, sulfation, graft copolymerization, and oxidation and reduction, have been implemented for this purpose. The rationale behind these investigations is often the combination of such modified alginates with different molecules. Particularly promising are lectin conjugate macromolecules for lectin-mediated drug delivery, which enhance the bioavailability of active ingredients on a specific site. Most interesting for such application are alginate derivatives, because these macromolecules are more resistant to acidic and enzymatic degradation. This review will report recent progress in alginate modification and conjugation, focusing on alginate-lectin conjugation, which is proposed as a matrix for mucoadhesive drug delivery and provides a new perspective for future studies with these conjugation methods.
Collapse
|
24
|
Functional role of crosslinking in alginate scaffold for drug delivery and tissue engineering: A review. Eur Polym J 2021. [DOI: 10.1016/j.eurpolymj.2021.110807] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
|
25
|
The Importance of Synthesis and Characterization of Biomedical Materials for the Current State of Medicine and Dentistry. Processes (Basel) 2021. [DOI: 10.3390/pr9060978] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
From time immemorial to the present day, health has been considered to be of the highest value [...]
Collapse
|
26
|
Pita-López ML, Fletes-Vargas G, Espinosa-Andrews H, Rodríguez-Rodríguez R. Physically cross-linked chitosan-based hydrogels for tissue engineering applications: A state-of-the-art review. Eur Polym J 2021. [DOI: 10.1016/j.eurpolymj.2020.110176] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
27
|
Abstract
AbstractAlginate is a polysaccharide of natural origin, which shows outstanding properties of biocompatibility, gel forming ability, non-toxicity, biodegradability and easy to process. Due to these excellent properties of alginate, sodium alginate, a hydrogel form of alginate, oxidized alginate and other alginate based materials are used in various biomedical fields, especially in drug delivery, wound healing and tissue engineering. Alginate can be easily processed as the 3D scaffolding materials which includes hydrogels, microcapsules, microspheres, foams, sponges, and fibers and these alginate based bio-polymeric materials have particularly used in tissue healing, healing of bone injuries, scars, wound, cartilage repair and treatment, new bone regeneration, scaffolds for the cell growth. Alginate can be easily modified and blended by adopting some physical and chemical processes and the new alginate derivative materials obtained have new different structures, functions, and properties having improved mechanical strength, cell affinity and property of gelation. This can be attained due to combination with other different biomaterials, chemical and physical crosslinking, and immobilization of definite ligands (sugar and peptide molecules). Hence alginate, its modified forms, derivative and composite materials are found to be more attractive towards tissue engineering. This article provides a comprehensive outline of properties, structural aspects, and application in tissue engineering.
Collapse
|
28
|
Mahmoud E, Sayed M, El-Kady AM, Elsayed H, Naga S. In vitro and in vivo study of naturally derived alginate/hydroxyapatite bio composite scaffolds. Int J Biol Macromol 2020; 165:1346-1360. [DOI: 10.1016/j.ijbiomac.2020.10.014] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2020] [Revised: 09/19/2020] [Accepted: 10/01/2020] [Indexed: 12/25/2022]
|
29
|
Mackiewicz AG, Klekiel T, Kurowiak J, Piasecki T, Bedzinski R. Determination of Stent Load Conditions in New Zealand White Rabbit Urethra. J Funct Biomater 2020; 11:jfb11040070. [PMID: 32992694 PMCID: PMC7712058 DOI: 10.3390/jfb11040070] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Revised: 09/17/2020] [Accepted: 09/21/2020] [Indexed: 12/18/2022] Open
Abstract
Background: Frequency of urethral stenosis makes it necessary to develop new innovative methods of treating this disease. This pathology most often occurs in men and manifests itself in painful urination, reduced urine flow, or total urinary retention. This is a condition that requires immediate medical intervention. Methods: Experimental tests were carried out on a rabbit in order to determine the changes of pressure in the urethra system and to estimate the velocity of urine flow. For this purpose, a measuring system was proposed to measure the pressure of a fluid-filled urethra. A fluoroscope was used to observe the deformability of the bladder and urethra canal. Results: Based on these tests, the range of changes in the urethra tube diameter, the pressures inside the system, and the flow velocity during micturition were determined. Conclusions: The presented studies allowed determining the behavior of the urethra under the conditions of urinary filling. The fluid-filled bladder and urethra increased their dimensions significantly. Such large changes require that the stents used for the treatment of urethral stenosis should not have a fixed diameter but should adapt to changing urethral dimensions.
Collapse
Affiliation(s)
- Agnieszka G. Mackiewicz
- Department of Biomedical Engineering, Institute of Material and Biomedical Engineering, University of Zielona Gora, Licealna 9 Street, 65-417 Zielona Gora, Poland; (T.K.); (J.K.); (R.B.)
- Correspondence:
| | - Tomasz Klekiel
- Department of Biomedical Engineering, Institute of Material and Biomedical Engineering, University of Zielona Gora, Licealna 9 Street, 65-417 Zielona Gora, Poland; (T.K.); (J.K.); (R.B.)
| | - Jagoda Kurowiak
- Department of Biomedical Engineering, Institute of Material and Biomedical Engineering, University of Zielona Gora, Licealna 9 Street, 65-417 Zielona Gora, Poland; (T.K.); (J.K.); (R.B.)
| | - Tomasz Piasecki
- Department of Epizootiology and Clinic of Birds and Exotic Animals, Faculty of Veterinary Medicine, Wroclaw University of Environmental and Life Sciences, C. K. Norwida 25 Street, 50-375 Wroclaw, Poland;
| | - Romuald Bedzinski
- Department of Biomedical Engineering, Institute of Material and Biomedical Engineering, University of Zielona Gora, Licealna 9 Street, 65-417 Zielona Gora, Poland; (T.K.); (J.K.); (R.B.)
| |
Collapse
|