1
|
Sun W, Huang A, Wen S, Yang R, Liu X. Temporal Assessment of Protein Stability in Dried Blood Spots. J Proteome Res 2024; 23:3585-3597. [PMID: 38950347 DOI: 10.1021/acs.jproteome.4c00233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/03/2024]
Abstract
The use of protein biomarkers in blood for clinical settings is limited by the cost and accessibility of traditional venipuncture sampling. The dried blood spot (DBS) technique offers a less invasive and more accessible alternative. However, protein stability in DBS has not been well evaluated. Herein, we deployed a quantitative LC-MS/MS system to construct proteomic atlases of whole blood, DBSs, plasma, and blood cells. Approximately 4% of detected proteins' abundance was significantly altered during blood drying into blood spots, with overwhelming disturbances in cytoplasmic fraction. We also reported a novel finding suggesting a decrease in the level of membrane/cytoskeletal proteins (SLC4A1, RHAG, DSC1, DSP, and JUP) and an increase in the level of proteins (ATG3, SEC14L4, and NRBP1) related to intracellular trafficking. Furthermore, we identified 19 temporally dynamic proteins in DBS samples stored at room temperature for up to 6 months. There were three declined cytoskeleton-related proteins (RDX, SH3BGRL3, and MYH9) and four elevated proteins (XPO7, RAN, SLC2A1, and SLC29A1) involved in cytoplasmic transport as representatives. The instability was governed predominantly by hydrophilic proteins and enhanced significantly with an increasing storage time. Our analyses provide comprehensive knowledge of both short- and long-term storage stability of DBS proteins, forming the foundation for the widespread use of DBS in clinical proteomics and other analytical applications.
Collapse
Affiliation(s)
- Weifen Sun
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
- Shanghai Key Laboratory of Forensic Medicine, Shanghai Forensic Service Platform, Academy of Forensic Science Ministry of Justice, Shanghai 200063, China
| | - Ao Huang
- Shanghai Key Laboratory of Forensic Medicine, Shanghai Forensic Service Platform, Academy of Forensic Science Ministry of Justice, Shanghai 200063, China
- Department of Forensic Science, Medical School of Soochow University, Suzhou 215123, Jiangsu Province, China
| | - Shubo Wen
- Shanghai Key Laboratory of Forensic Medicine, Shanghai Forensic Service Platform, Academy of Forensic Science Ministry of Justice, Shanghai 200063, China
- Department of Forensic Science, Medical School of Soochow University, Suzhou 215123, Jiangsu Province, China
| | - Ruicong Yang
- Shanghai Key Laboratory of Forensic Medicine, Shanghai Forensic Service Platform, Academy of Forensic Science Ministry of Justice, Shanghai 200063, China
- School of Forensic Medicine, Kunming Medical University, Kunming 650500, Yunnan Province, China
| | - Xiling Liu
- Shanghai Key Laboratory of Forensic Medicine, Shanghai Forensic Service Platform, Academy of Forensic Science Ministry of Justice, Shanghai 200063, China
| |
Collapse
|
2
|
Vialaret J, Vignon M, Hirtz C, Badiou S, Baptista G, Fichter L, Dupuy AM, Maceski AM, Fayolle M, Brousse M, Cristol JP, Jeandel C, Lehmann S. Use of dried blood spots for monitoring inflammatory and nutritional biomarkers in the elderly. Clin Chem Lab Med 2024; 62:881-890. [PMID: 37999931 DOI: 10.1515/cclm-2023-0312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Accepted: 11/01/2023] [Indexed: 11/25/2023]
Abstract
OBJECTIVES Blood microsampling, particularly dried blood spots (DBSs), is an attractive minimally-invasive approach that is well suited for home sampling and predictive medicine associated with longitudinal follow-up of the elderly. However, in vitro diagnostic quantification of biomarkers from DBS poses a major challenge. Clinical mass spectrometry can reliably quantify blood proteins in various research projects. Our goal here was to use mass spectrometry of DBS in a real-world clinical setting and compared it to the standard immunoassay method. We also sought to correlate DBS mass spectrometry measurements with clinical indices. METHODS A clinical trial of diagnostic equivalence was conducted to compare conventional venous samples quantified by immunoassay and DBSs quantified by mass spectrometry in an elderly population. We assayed three protein biomarkers of nutritional and inflammatory status: prealbumin (transthyretin), C-reactive protein, and transferrin. RESULTS The analysis of DBSs showed satisfactory variability and low detection limits. Statistical analysis confirmed that the two methods give comparable results at clinical levels of accuracy. In conclusion, we demonstrated, in a real-life setting, that DBSs can be used to measure prealbumin, CRP and transferrin, which are commonly used markers of nutritional status and inflammation in the elderly. However, there was no correlation with patient frailty for these proteins. CONCLUSIONS Early detection and regular monitoring of nutritional and inflammatory problems using DBS appear to be clinically feasible. This could help resolve major public health challenges in the elderly for whom frailty leads to serious risks of health complications.
Collapse
Affiliation(s)
- Jérôme Vialaret
- LBPC-PPC, Univ Montpellier, CHU Montpellier, INM INSERM, Montpellier, France
| | - Margaux Vignon
- LBPC-PPC, Univ Montpellier, CHU Montpellier, INM INSERM, Montpellier, France
| | - Christophe Hirtz
- LBPC-PPC, Univ Montpellier, CHU Montpellier, INM INSERM, Montpellier, France
| | - Stéphanie Badiou
- Department of Biochemistry and Hormonology, Univ Montpellier, CHU Montpellier, INSERM, Montpellier, France
| | - Gregory Baptista
- Centre de gérontologie clinique Antonin-Balmès, Univ Montpellier, CHU Montpellier, Montpellier, France
| | - Laura Fichter
- LBPC-PPC, Univ Montpellier, CHU Montpellier, INM INSERM, Montpellier, France
| | - Anne-Marie Dupuy
- Department of Biochemistry and Hormonology, Univ Montpellier, CHU Montpellier, INSERM, Montpellier, France
| | | | - Martin Fayolle
- LBPC-PPC, Univ Montpellier, CHU Montpellier, INM INSERM, Montpellier, France
- Department of Biochemistry and Hormonology, Univ Montpellier, CHU Montpellier, INSERM, Montpellier, France
| | - Mehdi Brousse
- LBPC-PPC, Univ Montpellier, CHU Montpellier, INM INSERM, Montpellier, France
- Department of Biochemistry and Hormonology, Univ Montpellier, CHU Montpellier, INSERM, Montpellier, France
| | - Jean-Paul Cristol
- Department of Biochemistry and Hormonology, Univ Montpellier, CHU Montpellier, INSERM, Montpellier, France
| | - Claude Jeandel
- Centre de gérontologie clinique Antonin-Balmès, Univ Montpellier, CHU Montpellier, Montpellier, France
| | - Sylvain Lehmann
- LBPC-PPC, Univ Montpellier, CHU Montpellier, INM INSERM, Montpellier, France
| |
Collapse
|
3
|
Baillargeon K, Morbioli GG, Brooks JC, Miljanic PR, Mace CR. Direct Processing and Storage of Cell-Free Plasma Using Dried Plasma Spot Cards. ACS MEASUREMENT SCIENCE AU 2022; 2:457-465. [PMID: 36281294 PMCID: PMC9585636 DOI: 10.1021/acsmeasuresciau.2c00034] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Revised: 07/12/2022] [Accepted: 07/13/2022] [Indexed: 06/16/2023]
Abstract
Plasma separation cards represent a viable approach for expanding testing capabilities away from clinical settings by generating cell-free plasma with minimal user intervention. These devices typically comprise a basic structure of the plasma separation membrane, unconstrained porous collection pad, and utilize either (i) lateral or (ii) vertical fluidic pathways for separating plasma. Unfortunately, these configurations are highly susceptible to (i) inconsistent sampling volume due to differences in the patient hematocrit or (ii) severe contamination due to leakage of red blood cells or release of hemoglobin (i.e., hemolysis). Herein, we combine the enhanced sampling of our previously reported patterned dried blood spot cards with an assembly of porous separation materials to produce a patterned dried plasma spot card for direct processing and storage of cell-free plasma. Linking both vertical separation and lateral distribution of plasma yields discrete plasma collection zones that are spatially protected from potential contamination due to hemolysis and an inlet zone enriched with blood cells for additional testing. We evaluate the versatility of this card by quantitation of three classes of analytes and techniques including (i) the soluble transferrin receptor by enzyme-linked immunosorbent assay, (ii) potassium by inductively coupled plasma atomic emission spectroscopy, and (iii) 18S rRNA by reverse transcriptase quantitative polymerase chain reaction. We achieve quantitative recovery of each class of analyte with no statistically significant difference between dried and liquid reference samples. We anticipate that this sampling approach can be applied broadly to improve access to critical blood testing in resource-limited settings or at the point-of-care.
Collapse
|
4
|
Cvetko A, Tijardović M, Bilandžija-Kuš I, Gornik O. Comparison of self-sampling blood collection for N-glycosylation analysis. BMC Res Notes 2022; 15:61. [PMID: 35172879 PMCID: PMC8849020 DOI: 10.1186/s13104-022-05958-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2021] [Accepted: 02/07/2022] [Indexed: 11/27/2022] Open
Abstract
Objective Self-sampling of capillary blood provides easier sample collection, handling, and shipping compared to more invasive blood sampling via venepuncture. Recently, other means of capillary blood collection were introduced to the market, such as Neoteryx sticks and Noviplex cards. We tested the comparability of these two self-sampling methods, alongside dried blood spots (DBS), with plasma acquired from venepunctured blood in N-glycoprofiling of total proteins. We have also tested the intra-day repeatability of the three mentioned self-sampling methods. Capillary blood collection with Neoteryx, Noviplex and DBS was done following the manufacturers’ instructions and N-glycoprofiling of released, fluorescently labelled N-glycans was performed with ultra-performance liquid chromatography. Results Comparability with plasma was assessed by calculating the relative deviance, which was 0.674 for DBS, 0.092 for Neoteryx sticks, and 0.069 for Noviplex cards. In repeatability testing, similar results were obtained, with Noviplex cards and Neoteryx sticks performing substantially better than DBS (CVs = 4.831% and 7.098%, compared to 14.305%, respectively). Our preliminary study on the use of Neoteryx and Noviplex self-sampling devices in glycoanalysis demonstrates their satisfactory performance in both the comparability and repeatability testing, however, they should be further tested in larger collaborations and cohorts. Supplementary Information The online version contains supplementary material available at 10.1186/s13104-022-05958-9.
Collapse
Affiliation(s)
- Ana Cvetko
- Faculty of Pharmacy and Biochemistry, University of Zagreb, Ante Kovačića 1, 10000, Zagreb, Croatia
| | - Marko Tijardović
- Faculty of Pharmacy and Biochemistry, University of Zagreb, Ante Kovačića 1, 10000, Zagreb, Croatia
| | | | - Olga Gornik
- Faculty of Pharmacy and Biochemistry, University of Zagreb, Ante Kovačića 1, 10000, Zagreb, Croatia.
| |
Collapse
|