1
|
Vo Q, Carlson KA, Chiknas PM, Brocker CN, DaSilva L, Clark E, Park SK, Ajiboye AS, Wier EM, Benam KH. On-Chip Reconstitution of Uniformly Shear-Sensing 3D Matrix-embedded Multicellular Blood Microvessel. ADVANCED FUNCTIONAL MATERIALS 2024; 34:2304630. [PMID: 38465199 PMCID: PMC10923530 DOI: 10.1002/adfm.202304630] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Indexed: 03/12/2024]
Abstract
Preclinical human-relevant modeling of organ-specific vasculature offers a unique opportunity to recreate pathophysiological intercellular, tissue-tissue, and cell-matrix interactions for a broad range of applications. Here, we present a reliable, and simply reproducible process for constructing user-controlled long rounded extracellular matrix (ECM)-embedded vascular microlumens on-chip for endothelization and co-culture with stromal cells obtained from human lung. We demonstrate the critical impact of microchannel cross-sectional geometry and length on uniform distribution and magnitude of vascular wall shear stress, which is key when emulating in vivo-observed blood flow biomechanics in health and disease. In addition, we provide an optimization protocol for multicellular culture and functional validation of the system. Moreover, we show the ability to finely tune rheology of the three-dimensional natural matrix surrounding the vascular microchannel to match pathophysiological stiffness. In summary, we provide the scientific community with a matrix-embedded microvasculature on-chip populated with all-primary human-derived pulmonary endothelial cells and fibroblasts to recapitulate and interrogate lung parenchymal biology, physiological responses, vascular biomechanics, and disease biogenesis in vitro. Such a mix-and-match synthetic platform can be feasibly adapted to study blood vessels, matrix, and ECM-embedded cells in other organs and be cellularized with additional stromal cells.
Collapse
Affiliation(s)
- Quoc Vo
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Kaely A. Carlson
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA 15219, USA
| | - Peter M. Chiknas
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Chad N. Brocker
- Center for Tobacco Products, U.S. Food and Drug Administration, Silver Spring, MD 20993, USA
| | - Luis DaSilva
- Center for Tobacco Products, U.S. Food and Drug Administration, Silver Spring, MD 20993, USA
| | - Erica Clark
- Center for Tobacco Products, U.S. Food and Drug Administration, Silver Spring, MD 20993, USA
| | - Sang Ki Park
- Center for Tobacco Products, U.S. Food and Drug Administration, Silver Spring, MD 20993, USA
| | - A. Seun Ajiboye
- Center for Tobacco Products, U.S. Food and Drug Administration, Silver Spring, MD 20993, USA
| | - Eric M. Wier
- Center for Tobacco Products, U.S. Food and Drug Administration, Silver Spring, MD 20993, USA
| | - Kambez H. Benam
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine, University of Pittsburgh, Pittsburgh, PA 15213, USA
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA 15219, USA
- Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, PA 15213, USA
| |
Collapse
|
2
|
Elia E, Caneparo C, McMartin C, Chabaud S, Bolduc S. Tissue Engineering for Penile Reconstruction. Bioengineering (Basel) 2024; 11:230. [PMID: 38534504 DOI: 10.3390/bioengineering11030230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 02/19/2024] [Accepted: 02/23/2024] [Indexed: 03/28/2024] Open
Abstract
The penis is a complex organ with a development cycle from the fetal stage to puberty. In addition, it may suffer from either congenital or acquired anomalies. Penile surgical reconstruction has been the center of interest for many researchers but is still challenging due to the complexity of its anatomy and functionality. In this review, penile anatomy, pathologies, and current treatments are described, including surgical techniques and tissue engineering approaches. The self-assembly technique currently applied is emphasized since it is considered promising for an adequate tissue-engineered penile reconstructed substitute.
Collapse
Affiliation(s)
- Elissa Elia
- Centre de Recherche en Organogénèse Expérimentale/LOEX, Regenerative Medicine Division, CHU de Québec-Université Laval Research Center, Québec, QC G1J 1Z4, Canada
| | - Christophe Caneparo
- Centre de Recherche en Organogénèse Expérimentale/LOEX, Regenerative Medicine Division, CHU de Québec-Université Laval Research Center, Québec, QC G1J 1Z4, Canada
| | - Catherine McMartin
- Division of Urology, Department of Surgery, CHU de Québec-Université Laval, Québec, QC G1V 4G2, Canada
| | - Stéphane Chabaud
- Centre de Recherche en Organogénèse Expérimentale/LOEX, Regenerative Medicine Division, CHU de Québec-Université Laval Research Center, Québec, QC G1J 1Z4, Canada
| | - Stéphane Bolduc
- Centre de Recherche en Organogénèse Expérimentale/LOEX, Regenerative Medicine Division, CHU de Québec-Université Laval Research Center, Québec, QC G1J 1Z4, Canada
- Division of Urology, Department of Surgery, CHU de Québec-Université Laval, Québec, QC G1V 4G2, Canada
| |
Collapse
|
3
|
Byun H, Lee S, Shin H. Bioassembly of multicellular spheroids to mimic complex tissue structure using surface-modified magnetized nanofibers. Biofabrication 2024; 16:025006. [PMID: 38198701 DOI: 10.1088/1758-5090/ad1cf2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Accepted: 01/10/2024] [Indexed: 01/12/2024]
Abstract
Advancements in biofabrication have led to major strides toward creating authentic organ models; however, replicating intricate organ structures without scaffolds remains challenging. In this study, we introduce a method utilizing surface-modifiable magnetic nanofibers to achieve precise control over spheroid functions and geometrical features, allowing the creation of multiple functional domains within a single microtissue. We generated magnetized nanofibers by electrospinning magnetic nanoparticles dispersed in poly-L-lactic acid solution. These fibers were then coated with polydopamine (PD) to enhance their biological functions, particularly reactive oxygen species (ROS) scavenging. These PD-coated magnetic fibers (PMFs) had magnetic-responsive properties when incorporated into human dermal fibroblast spheroids (0.019 ± 0.001 emu g-1). Furthermore, PMFs within the spheroids effectively regulated ROS levels by upregulating the expression of key anti-oxidative genes such assuperoxide dismutase-1(2.2 ± 0.1) andglutathione peroxidase-1(2.6 ± 0.1). By exploiting the magnetic responsiveness of spheroids, we were able to assemble them into various structures such as linear, triangular, and square structures using remotely applied magnetic forces. Within the assembled three-dimensional constructs, the cells in spheroids incorporating PMFs demonstrated resistance to ROS regulatory activity in the presence of hydrogen peroxide, while spheroids composed of bare fibers exhibited high ROS levels. Furthermore, we assembled spheroids containing fibroblasts and endothelial cells into complex tissue structures resembling vessels under magnetic manipulation. This innovative method holds tremendous promise for organ modeling and regenerative medicine due to the unprecedented control it allows in developing microtissues that closely emulate real organs.
Collapse
Affiliation(s)
- Hayeon Byun
- Department of Bioengineering, Hanyang University, 222 Wangsimri-ro, Seongdong-gu, Seoul 04763, Republic of Korea
- BK21 FOUR Education and Research Group for Biopharmaceutical Innovation Leader, Department of Bioengineering, Hanyang University, 222 Wangsimni-ro, Seongdong-gu, Seoul 04763, Republic of Korea
| | - Sangmin Lee
- Department of Bioengineering, Hanyang University, 222 Wangsimri-ro, Seongdong-gu, Seoul 04763, Republic of Korea
- BK21 FOUR Education and Research Group for Biopharmaceutical Innovation Leader, Department of Bioengineering, Hanyang University, 222 Wangsimni-ro, Seongdong-gu, Seoul 04763, Republic of Korea
| | - Heungsoo Shin
- Department of Bioengineering, Hanyang University, 222 Wangsimri-ro, Seongdong-gu, Seoul 04763, Republic of Korea
- BK21 FOUR Education and Research Group for Biopharmaceutical Innovation Leader, Department of Bioengineering, Hanyang University, 222 Wangsimni-ro, Seongdong-gu, Seoul 04763, Republic of Korea
- Institute of Nano Science and Technology, Hanyang University, 222 Wangsimri-ro, Seongdong-gu, Seoul 04763, Republic of Korea
| |
Collapse
|
4
|
Cevik M, Dikici S. Development of tissue-engineered vascular grafts from decellularized parsley stems. SOFT MATTER 2024; 20:338-350. [PMID: 38088147 DOI: 10.1039/d3sm01236k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2024]
Abstract
Cardiovascular diseases are mostly associated with narrowing or blockage of blood vessels, and it is the most common cause of death worldwide. The use of vascular grafts is a promising approach to bypass or replace the blocked vessels for long-term treatment. Although autologous arteries or veins are the most preferred tissue sources for vascular bypass, the limited presence and poor quality of autologous vessels necessitate seeking alternative biomaterials. Recently, synthetic grafts have gained attention as an alternative to autologous grafts. However, the high failure rate of synthetic grafts has been reported primarily due to thrombosis, atherosclerosis, intimal hyperplasia, or infection. Thrombosis, the main reason for failure upon implantation, is associated with damage or absence of endothelial cell lining in the vascular graft's luminal surface. To overcome this, tissue-engineered vascular grafts (TEVGs) have come into prominence. Alongside the well-established scaffold manufacturing techniques, decellularized plant-based constructs have recently gained significant importance and are an emerging field in tissue engineering and regenerative medicine. Accordingly, in this study, we demonstrated the fabrication of tubular scaffolds from decellularized parsley stems and recellularized them with human endothelial cells to be used as a potential TEVG. Our results suggested that the native plant DNA was successfully removed, and soft tubular biomaterials were successfully manufactured via the chemical decellularization of the parsley stems. The decellularized parsley stems showed suitable mechanical and biological properties to be used as a TEVG material, and they provided a suitable environment for the culture of human endothelial cells to attach and create a pseudo endothelium prior to implantation. This study is the first one to demonstrate the potential of the parsley stems to be used as a potential TEVG biomaterial.
Collapse
Affiliation(s)
- Merve Cevik
- Department of Biotechnology, Graduate School of Education, Izmir Institute of Technology, 35430, Izmir, Turkey
| | - Serkan Dikici
- Department of Bioengineering, Faculty of Engineering, Izmir Institute of Technology, 35430, Izmir, Turkey.
| |
Collapse
|
5
|
Di Francesco D, Pigliafreddo A, Casarella S, Di Nunno L, Mantovani D, Boccafoschi F. Biological Materials for Tissue-Engineered Vascular Grafts: Overview of Recent Advancements. Biomolecules 2023; 13:1389. [PMID: 37759789 PMCID: PMC10526356 DOI: 10.3390/biom13091389] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 09/11/2023] [Accepted: 09/12/2023] [Indexed: 09/29/2023] Open
Abstract
The clinical demand for tissue-engineered vascular grafts is still rising, and there are many challenges that need to be overcome, in particular, to obtain functional small-diameter grafts. The many advances made in cell culture, biomaterials, manufacturing techniques, and tissue engineering methods have led to various promising solutions for vascular graft production, with available options able to recapitulate both biological and mechanical properties of native blood vessels. Due to the rising interest in materials with bioactive potentials, materials from natural sources have also recently gained more attention for vascular tissue engineering, and new strategies have been developed to solve the disadvantages related to their use. In this review, the progress made in tissue-engineered vascular graft production is discussed. We highlight, in particular, the use of natural materials as scaffolds for vascular tissue engineering.
Collapse
Affiliation(s)
- Dalila Di Francesco
- Department of Health Sciences, University of Piemonte Orientale “A. Avogadro”, 28100 Novara, Italy; (D.D.F.); (S.C.); (L.D.N.)
- Laboratory for Biomaterials and Bioengineering, CRC-I, Department of Min-Met-Materials Engineering, University Hospital Research Center, Regenerative Medicine, Laval University, Quebec City, QC G1V 0A6, Canada;
| | - Alexa Pigliafreddo
- Department of Health Sciences, University of Piemonte Orientale “A. Avogadro”, 28100 Novara, Italy; (D.D.F.); (S.C.); (L.D.N.)
| | - Simona Casarella
- Department of Health Sciences, University of Piemonte Orientale “A. Avogadro”, 28100 Novara, Italy; (D.D.F.); (S.C.); (L.D.N.)
| | - Luca Di Nunno
- Department of Health Sciences, University of Piemonte Orientale “A. Avogadro”, 28100 Novara, Italy; (D.D.F.); (S.C.); (L.D.N.)
| | - Diego Mantovani
- Laboratory for Biomaterials and Bioengineering, CRC-I, Department of Min-Met-Materials Engineering, University Hospital Research Center, Regenerative Medicine, Laval University, Quebec City, QC G1V 0A6, Canada;
| | - Francesca Boccafoschi
- Department of Health Sciences, University of Piemonte Orientale “A. Avogadro”, 28100 Novara, Italy; (D.D.F.); (S.C.); (L.D.N.)
| |
Collapse
|
6
|
Elia E, Brownell D, Chabaud S, Bolduc S. Tissue Engineering for Gastrointestinal and Genitourinary Tracts. Int J Mol Sci 2022; 24:ijms24010009. [PMID: 36613452 PMCID: PMC9820091 DOI: 10.3390/ijms24010009] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 12/10/2022] [Accepted: 12/14/2022] [Indexed: 12/24/2022] Open
Abstract
The gastrointestinal and genitourinary tracts share several similarities. Primarily, these tissues are composed of hollow structures lined by an epithelium through which materials need to flow with the help of peristalsis brought by muscle contraction. In the case of the gastrointestinal tract, solid or liquid food must circulate to be digested and absorbed and the waste products eliminated. In the case of the urinary tract, the urine produced by the kidneys must flow to the bladder, where it is stored until its elimination from the body. Finally, in the case of the vagina, it must allow the evacuation of blood during menstruation, accommodate the male sexual organ during coitus, and is the natural way to birth a child. The present review describes the anatomy, pathologies, and treatments of such organs, emphasizing tissue engineering strategies.
Collapse
Affiliation(s)
- Elissa Elia
- Centre de Recherche en Organogénèse Expérimentale/LOEX, Regenerative Medicine Division, CHU de Québec-Université Laval Research Center, Québec, QC G1J 1Z4, Canada
| | - David Brownell
- Centre de Recherche en Organogénèse Expérimentale/LOEX, Regenerative Medicine Division, CHU de Québec-Université Laval Research Center, Québec, QC G1J 1Z4, Canada
| | - Stéphane Chabaud
- Centre de Recherche en Organogénèse Expérimentale/LOEX, Regenerative Medicine Division, CHU de Québec-Université Laval Research Center, Québec, QC G1J 1Z4, Canada
| | - Stéphane Bolduc
- Centre de Recherche en Organogénèse Expérimentale/LOEX, Regenerative Medicine Division, CHU de Québec-Université Laval Research Center, Québec, QC G1J 1Z4, Canada
- Department of Surgery, Faculty of Medicine, Université Laval, Québec, QC G1V 0A6, Canada
- Correspondence: ; Tel.: +1-418-525-4444 (ext. 42282)
| |
Collapse
|
7
|
Genitourinary Tissue Engineering: Reconstruction and Research Models. Bioengineering (Basel) 2021; 8:bioengineering8070099. [PMID: 34356206 PMCID: PMC8301202 DOI: 10.3390/bioengineering8070099] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Revised: 06/28/2021] [Accepted: 07/06/2021] [Indexed: 01/15/2023] Open
Abstract
Tissue engineering is an emerging field of research that initially aimed to produce 3D tissues to bypass the lack of adequate tissues for the repair or replacement of deficient organs. The basis of tissue engineering protocols is to create scaffolds, which can have a synthetic or natural origin, seeded or not with cells. At the same time, more and more studies have indicated the low clinic translation rate of research realised using standard cell culture conditions, i.e., cells on plastic surfaces or using animal models that are too different from humans. New models are needed to mimic the 3D organisation of tissue and the cells themselves and the interaction between cells and the extracellular matrix. In this regard, urology and gynaecology fields are of particular interest. The urethra and vagina can be sites suffering from many pathologies without currently adequate treatment options. Due to the specific organisation of the human urethral/bladder and vaginal epithelium, current research models remain poorly representative. In this review, the anatomy, the current pathologies, and the treatments will be described before focusing on producing tissues and research models using tissue engineering. An emphasis is made on the self-assembly approach, which allows tissue production without the need for biomaterials.
Collapse
|