1
|
Abbas Y, Yun S, Mehmood A, Shah FA, Wang K, Eldin ET, Al-Qahtani WH, Ali S, Bocchetta P. Co-digestion of cow manure and food waste for biogas enhancement and nutrients revival in bio-circular economy. CHEMOSPHERE 2023; 311:137018. [PMID: 36374782 DOI: 10.1016/j.chemosphere.2022.137018] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2022] [Revised: 10/10/2022] [Accepted: 10/23/2022] [Indexed: 06/16/2023]
Abstract
Anaerobic co-digestion (AcoD) with suitable substrate ratios may have the potential to improve biogas process and could play a better role in nutrient management for biocircular economy. The goal of this study was to enhance biogas yield from AcoD of cow manure (CM) and canteen food waste (CFW), and pertinent co-digestion of suitable substrate ratios for nutrient management i. e NPK from linear to biocircular economy, using ruminant intestinal fluid as a source of inoculum. A mesophilic (37 ± 1 °C) laboratory-scale AcoD with varying CFW/CM ratios of (0:1, 1:4, 2:3, 1:1, 3:2, 4:1, and 1:0) based on wet weight was performed. The AcoD systems of different CFW/CM ratios were evaluated with a loading rate of 400 g/L in the presence of 100 g cow intestinal fluid (CIF) inoculation. All experimental AcoD systems yielded greater biogas (147-300 cm3/g VS) than the mono-digestion in which only CM (135 cm3/g VS) and CFW (146 cm3/g VS) were digested anaerobically. The AcoD system of CFW/CM with 4:1 showed the highest biogas yield (300 cm3/g VS), and VS and COD reduction rate (39.51% and 65.15%, respectively), and nutrient contents (6.53%). Moreover, the experiment results were verified by modified Gompertz model. This work provided a window of opportunity to examine the anaerobic co-digestion technology beyond biogas production and to put the current low-cost technology to use for nutrient management and as a better component of the biocircular economy for agriculture in Pakistan in order to achieve sustainable development goals.
Collapse
Affiliation(s)
- Yasir Abbas
- Functional Materials Laboratory (FML), School of Materials Science and Engineering, Xi'an University of Architecture and Technology, Xi'an, Shaanxi, 710055, China
| | - Sining Yun
- Functional Materials Laboratory (FML), School of Materials Science and Engineering, Xi'an University of Architecture and Technology, Xi'an, Shaanxi, 710055, China.
| | - Ayaz Mehmood
- Department of Soil and Climate Sciences, The University of Haripur, Haripur, 22620, Pakistan.
| | - Fayyaz Ali Shah
- Department of Environmental Sciences, COMSATS University Islamabad-Abbottabad Campus, Abbottabad. 22060, Pakistan
| | - Kaijun Wang
- Functional Materials Laboratory (FML), School of Materials Science and Engineering, Xi'an University of Architecture and Technology, Xi'an, Shaanxi, 710055, China
| | - Elsayed Tag Eldin
- Faculty of Engineering and Technology, Future University in Egypt, New Cairo, 11835, Egypt
| | - Wahidah H Al-Qahtani
- Department of Food Sciences & Nutrition, College of Food & Agriculture Sciences, King Saud University, Riyadh, 11451, Saudi Arabia
| | - Shafaqat Ali
- Department of Biological Sciences and Technology, China Medical University, Taichung, 40402, Taiwan; Department of Environmental Sciences, Government College University, Faisalabad, 38000, Pakistan
| | - Patrizia Bocchetta
- Dipartimento di Ingegneria dell'Innovazione, Università del Salento, via Monteroni, Lecce, 73100, Italy
| |
Collapse
|
2
|
Choi Y, Lee S, Ha DM, Na Y, Kim DH. Fermentation characteristics of bedded pack barn dairy cattle manure on methane yield, carbon, and nitrogen content in solid-state anaerobic digestion. PeerJ 2022; 10:e14134. [PMID: 36262412 PMCID: PMC9575680 DOI: 10.7717/peerj.14134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Accepted: 09/06/2022] [Indexed: 01/21/2023] Open
Abstract
This study aimed to estimate the fermentation characteristics of bedded pack barn dairy cattle manure (BDCM) in terms of methane yield, fibrous material, and nitrogen content in batch solid-state anaerobic digestion (SSAD). SSAD was performed in triplicate using a 1,400 ml polypropylene bottle at a constant temperature of 39 °C until less than 1% methane was produced. The cumulative methane content of BDCM was 142.5 N mL/g volatile solids (VSs). The methane content rapidly increased for 18 days, reaching 63.4 ± 4.6% until the end of the experiment. The ultimate biodegradability and total VS removal of BDCM were 23.1 and 19.0%, respectively. The slopes of the non-fibrous and hemicellulose carbon fractions, and acid detergent insoluble carbon by digestion time were -0.174 (p < 0.001), -0.141 (p = 0.003), and -0.051 (p < 0.001), respectively. The non-fibrous and hemicellulose nitrogen fraction contents quadratically decreased during SSAD (p = 0.001 and p = 0.008). No significant decrease was observed in the acid detergent insoluble nitrogen content (p = 0.840). The results of the present study provide basic data on the digestion characteristics of BDCM and could help determine fermentation conditions in the anaerobic digestion of BDCM.
Collapse
Affiliation(s)
- Yongjun Choi
- Department of Animal Science and Technology, Konkuk University, Seoul, Seoul, South Korea
| | - Sangrak Lee
- Department of Animal Science and Technology, Konkuk University, Seoul, Seoul, South Korea
| | - Duck-Min Ha
- Division of Animal Science, Agri-Food Bio Convergence Institute, Gyeongsang National University, Jinju, Gyeongsangnam-do, South Korea
| | - Youngjun Na
- Animal Data Lab, Antller Inc., Seoul, Seoul, South Korea
| | - Doo-Hwan Kim
- Division of Animal Science, Agri-Food Bio Convergence Institute, Gyeongsang National University, Jinju, Gyeongsangnam-do, South Korea
| |
Collapse
|
4
|
Zhang L, Yao D, Tsui TH, Loh KC, Wang CH, Dai Y, Tong YW. Plastic-containing food waste conversion to biomethane, syngas, and biochar via anaerobic digestion and gasification: Focusing on reactor performance, microbial community analysis, and energy balance assessment. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2022; 306:114471. [PMID: 35026716 DOI: 10.1016/j.jenvman.2022.114471] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Revised: 12/30/2021] [Accepted: 01/06/2022] [Indexed: 05/27/2023]
Abstract
To manage the mixture of food waste and plastic waste, a hybrid biological and thermal system was investigated for converting plastic-containing food waste (PCFW) into renewable energy, focusing on performance evaluation, microbial community analysis, and energy balance assessment. The results showed that anaerobic digestion (AD) of food waste, polyethylene (PE)-containing food waste, polystyrene (PS)-containing food waste, and polypropylene (PP)-containing food waste generated a methane yield of 520.8, 395.6, 504.2, and 479.8 mL CH4/gVS, respectively. CO2 gasification of all the plastic-containing digestate produced more syngas than pure digestate gasification. Syngas from PS-digestate reached the maximum yield of 20.78 mol/kg. During the digestate-derived-biochar-amended AD of PCFW, the methane yields in the biochars-amended digesters were 6-30% higher than those of the control digesters. Bioinformatic analysis of microbial communities confirmed the significant difference between control and biochar-amended digesters in terms of bacterial and methanogenic compositions. The enhanced methane yields in biochars-amended digesters could be partially ascribed to the selective enrichment of genus Methanosarcina, leading to an improved equilibrium between hydrogenotrophic and acetoclastic methanogenesis pathways. Moreover, energy balance assessment demonstrated that the hybrid biological and thermal conversion system can be a promising technical option for the treatment of PCFW and recovery of renewable biofuels (i.e., biogas and syngas) and bioresource (i.e., biochar) on an industrial scale.
Collapse
Affiliation(s)
- Le Zhang
- NUS Environmental Research Institute, National University of Singapore, 1 Create Way, Create Tower #15-02, Singapore, 138602, Singapore; Energy and Environmental Sustainability for Megacities (E2S2) Phase II, Campus for Research Excellence and Technological Enterprise (CREATE), 1 CREATE Way, Singapore, 138602, Singapore
| | - Dingding Yao
- NUS Environmental Research Institute, National University of Singapore, 1 Create Way, Create Tower #15-02, Singapore, 138602, Singapore; Energy and Environmental Sustainability for Megacities (E2S2) Phase II, Campus for Research Excellence and Technological Enterprise (CREATE), 1 CREATE Way, Singapore, 138602, Singapore
| | - To-Hung Tsui
- NUS Environmental Research Institute, National University of Singapore, 1 Create Way, Create Tower #15-02, Singapore, 138602, Singapore; Energy and Environmental Sustainability for Megacities (E2S2) Phase II, Campus for Research Excellence and Technological Enterprise (CREATE), 1 CREATE Way, Singapore, 138602, Singapore
| | - Kai-Chee Loh
- NUS Environmental Research Institute, National University of Singapore, 1 Create Way, Create Tower #15-02, Singapore, 138602, Singapore; Energy and Environmental Sustainability for Megacities (E2S2) Phase II, Campus for Research Excellence and Technological Enterprise (CREATE), 1 CREATE Way, Singapore, 138602, Singapore; Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore, 117585, Singapore
| | - Chi-Hwa Wang
- NUS Environmental Research Institute, National University of Singapore, 1 Create Way, Create Tower #15-02, Singapore, 138602, Singapore; Energy and Environmental Sustainability for Megacities (E2S2) Phase II, Campus for Research Excellence and Technological Enterprise (CREATE), 1 CREATE Way, Singapore, 138602, Singapore; Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore, 117585, Singapore
| | - Yanjun Dai
- Energy and Environmental Sustainability for Megacities (E2S2) Phase II, Campus for Research Excellence and Technological Enterprise (CREATE), 1 CREATE Way, Singapore, 138602, Singapore; School of Mechanical Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Yen Wah Tong
- NUS Environmental Research Institute, National University of Singapore, 1 Create Way, Create Tower #15-02, Singapore, 138602, Singapore; Energy and Environmental Sustainability for Megacities (E2S2) Phase II, Campus for Research Excellence and Technological Enterprise (CREATE), 1 CREATE Way, Singapore, 138602, Singapore; Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore, 117585, Singapore.
| |
Collapse
|