1
|
de Carvalho-Souza GF, Gómez CL, González-Ortegón E. A non-native fish species reaches the south-western European waters: the Atlantic croaker, Micropogoniasundulatus (Acanthuriformes, Sciaenidae) and its invasion history in Europe. Biodivers Data J 2024; 12:e120736. [PMID: 38779570 PMCID: PMC11109509 DOI: 10.3897/bdj.12.e120736] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Accepted: 04/25/2024] [Indexed: 05/25/2024] Open
Abstract
The Atlantic croaker Micropogoniasundulatus, a sciaenid fish native to the North Atlantic American coast, holds importance in recreational and commercial fisheries. Moreover, its potential as an invasive species should be noted, given its expansion and establishment in Atlantic European waters. This study reports its southernmost occurrence in Europe, in the Gulf of Cadiz. Morphological and molecular analysis confirmed its identity, revealing genetic similarities to US sequences. A comprehensive review of historical non-native distribution records underscored the species' expansion throughout European waters, suggesting human-mediated introduction. The escalating frequency of such arrivals emphasises the critical need for effective monitoring and management efforts in order to control non-native species in this region.
Collapse
Affiliation(s)
- Gustavo Freire de Carvalho-Souza
- Instituto de Ciencias Marinas de Andalucía (ICMAN-CSIC), Puerto Real, SpainInstituto de Ciencias Marinas de Andalucía (ICMAN-CSIC)Puerto RealSpain
- Universidad de Cádiz, Instituto Universitario de Investigación Marina (INMAR), Campus de Excelencia Internacional/Global del Mar (CEI·MAR), Puerto Real, SpainUniversidad de Cádiz, Instituto Universitario de Investigación Marina (INMAR), Campus de Excelencia Internacional/Global del Mar (CEI·MAR)Puerto RealSpain
| | - Cristóbal Lobato Gómez
- Agencia de Gestión Agraria y Pesquera de Andalucía, Sevilla, SpainAgencia de Gestión Agraria y Pesquera de AndalucíaSevillaSpain
| | - Enrique González-Ortegón
- Instituto de Ciencias Marinas de Andalucía (ICMAN-CSIC), Puerto Real, SpainInstituto de Ciencias Marinas de Andalucía (ICMAN-CSIC)Puerto RealSpain
| |
Collapse
|
2
|
González-Ortegón E, de Carvalho-Souza GF, Vilas C, Baldó F, Cuesta JA. Trends in the decapod crustacean community at the southernmost estuary of the Atlantic coast of Europe. Sci Rep 2023; 13:22857. [PMID: 38129632 PMCID: PMC10739957 DOI: 10.1038/s41598-023-50049-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Accepted: 12/14/2023] [Indexed: 12/23/2023] Open
Abstract
Climate change may enhance the establishment of introduced species, as well as the poleward shift in distribution of numerous species over decades. Long-term research and monitoring of an ecosystem at the southernmost point of the Atlantic coast of Europe should be an important priority in order to detect and understand trends in species composition and the related environmental changes. The Guadalquivir estuary (South West Spain) is more likely to suffer the exacerbated effects of climate change due to its location in the Mediterranean-climate zone. The long-term data set between 1997 and 2006 has allowed us to analyse the variability of the natural and anthropogenic stressors. The mean interannual dissimilarity of the estuarine fauna (Bray-Curtis dissimilarity index) has showed important differences throughout the years, and the species that most contributed to these differences were the exotic species capable of completing their life cycles. This long-term monitoring of the estuarine community has allowed us to anticipate future events and ecological risk assessment in European waters.
Collapse
Affiliation(s)
- Enrique González-Ortegón
- Institute of Marine Sciences of Andalusia, Spanish National Research Council (ICMAN-CSIC), Puerto Real, Spain.
- Associate Research Unit "Blue Growth", Spanish National Research Council (CSIC) - Andalusian Institute of Agricultural and Fisheries Research and Training (IFAPA), Cadiz, Spain.
| | - Gustavo F de Carvalho-Souza
- Institute of Marine Sciences of Andalusia, Spanish National Research Council (ICMAN-CSIC), Puerto Real, Spain
- Universidad de Cádiz, Departamento de Física Aplicada, Instituto Universitario de Investigación Marina (INMAR), Campus de Excelencia Internacional/Global del Mar (CEI·MAR), 11519, Puerto Real, Cádiz, Spain
| | - Cesar Vilas
- Associate Research Unit "Blue Growth", Spanish National Research Council (CSIC) - Andalusian Institute of Agricultural and Fisheries Research and Training (IFAPA), Cadiz, Spain
- Instituto de Investigación y Formación Agraria Pesquera (IFAPA), Centro El Toruño, Camino Tiro de Pichón S/N, 11500, El Puerto de Santa María, Spain
| | - Francisco Baldó
- Spanish Institute of Oceanography, C.O. de Cádiz (IEO-CSIC), 11006, Cadiz, Spain
| | - Jose A Cuesta
- Institute of Marine Sciences of Andalusia, Spanish National Research Council (ICMAN-CSIC), Puerto Real, Spain
- Associate Research Unit "Blue Growth", Spanish National Research Council (CSIC) - Andalusian Institute of Agricultural and Fisheries Research and Training (IFAPA), Cadiz, Spain
| |
Collapse
|
3
|
Kannan G, Mghili B, Di Martino E, Sanchez-Vidal A, Figuerola B. Increasing risk of invasions by organisms on marine debris in the Southeast coast of India. MARINE POLLUTION BULLETIN 2023; 195:115469. [PMID: 37703630 DOI: 10.1016/j.marpolbul.2023.115469] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 08/23/2023] [Accepted: 08/27/2023] [Indexed: 09/15/2023]
Abstract
Increasing amount of anthropogenic litter in the marine environment has provided an enormous number of substrates for a wide range of marine organisms, thus serving as a potential vector for the transport of fouling organisms. Here, we examined the fouling organisms on different types of stranded litter (plastic, glass, rubber, foam sponge, cloth, metal and wood) on eight beaches along the southeast coast of India. In total, 17 encrusting species belonging to seven phyla (Arthropoda, Bryozoa, Mollusca, Annelida, Cnidaria, Chlorophyta and Foraminifera) were identified on 367 items, with one invasive species, the mussel Mytella strigata, detected. The most common species associated with marine litter were the cosmopolitan bryozoans Jellyella tuberculata (%O = 31.64 %) and J. eburnea (28.61 %), the barnacle species Lepas anserifera (29.97 %), Amphibalanus amphitrite (22.34 %) and Amphibalanus sp. (14.16 %), and the oyster species Saccostrea cucullata (13.62 %) and Magallana bilineata (5.44 %). We also reported the first records on stranded litter of four species: the gastropod species Pirenella cingulata and Umbonium vestiarium, the foraminiferan Ammonia beccarii, and the oyster M. bilineata. This study is thus the first documentation of marine litter as a vector for species dispersal in India, where the production and consumption of plastic rank among the highest in the world. We also highlight the increasing risk of invasions by non-indigenous organisms attached to debris along the southeast coast of India. Comprehensive monitoring efforts are thus needed to elucidate the type of vectors responsible for the arrival of invasive species in this region. Raising awareness and promoting education are vital components in fostering sustainable solutions to combat plastic pollution in the country and globally.
Collapse
Affiliation(s)
- Gunasekaran Kannan
- Centre for Aquaculture, Sathyabama Institute of Science and Technology, Chennai 600 119, Tamil Nadu, India
| | - Bilal Mghili
- LESCB, URL-CNRST N° 18, Abdelmalek Essaadi University, Faculty of Sciences, Tetouan, Morocco
| | - Emanuela Di Martino
- Natural History Museum, University of Oslo - Blindern, P.O. Box 1172, Oslo 0318, Norway
| | - Anna Sanchez-Vidal
- GRC Geociències Marines, Departament de Dinàmica de la Terra i de l'Oceà, Universitat de Barcelona, Barcelona 08028, Spain
| | - Blanca Figuerola
- Department of Marine Biology and Oceanography, Institute of Marine Sciences (ICM-CSIC), Pg. Marítim de la Barceloneta 37-49, Barcelona 08003, Spain.
| |
Collapse
|
4
|
Moreno-Andrés J, Romero-Martínez L, Seoane S, Acevedo-Merino A, Moreno-Garrido I, Nebot E. Evaluation of algaecide effectiveness of five different oxidants applied on harmful phytoplankton. JOURNAL OF HAZARDOUS MATERIALS 2023; 452:131279. [PMID: 36989795 DOI: 10.1016/j.jhazmat.2023.131279] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2022] [Revised: 03/13/2023] [Accepted: 03/22/2023] [Indexed: 05/03/2023]
Abstract
Harmful algal blooms (HABs) in coastal areas similarly impact both ecosystems and human health. The translocation of phytoplankton species via maritime transport can potentially promote the growth of HABs in coastal systems. Accordingly, ballast water must be disinfected. The main goal of this study is to assess the effectiveness of different emerging biocides, including H2O2, peracetic acid (PAA), peroxymonosulfate (PMS), and peroxydisulfate (PDS). The effectiveness of these biocides is compared with that of conventional chlorination methods. Their effects on two ichthyotoxic microalgae with worldwide distribution, i.e., Prymnesium parvum and Heterosigma akashiwo, are examined. To ensure the prolonged effectiveness of the different reagents, their concentration-response curves for 14 days are constructed and examined. The results suggest a strong but shorter effect by PMS (EC50 = 0.40-1.99 mg·L-1) and PAA (EC50 = 0.32-2.70 mg·L-1), a maintained effect by H2O2 (EC50 = 6.67-7.08 mg·L-1), and a negligible effect by PDS. H. akashiwo indicates higher resistance than P. parvum, except when H2O2 is used. Based on the growth inhibition performance and consumption of the reagents as well as a review of important aspects regarding their application, using H2O2, PAA, or PMS can be a feasible alternative to chlorine-based reagents for inhibiting the growth of harmful phytoplankton.
Collapse
Affiliation(s)
- Javier Moreno-Andrés
- Department of Environmental Technologies, Faculty of Marine and Environmental Sciences, INMAR - Marine Research Institute, CEIMAR - International Campus of Excellence of the Sea, University of Cadiz, Spain.
| | - Leonardo Romero-Martínez
- Department of Environmental Technologies, Faculty of Marine and Environmental Sciences, INMAR - Marine Research Institute, CEIMAR - International Campus of Excellence of the Sea, University of Cadiz, Spain
| | - Sergio Seoane
- Department of Plant Biology and Ecology, Faculty of Science and Technology, University of the Basque Country UPV/EHU, Leioa 48940, Spain; Research Centre for Experimental Marine Biology and Biotechnology (Plentzia Marine Station, PiE, UPV/EHU), Plentzia 48620, Spain
| | - Asunción Acevedo-Merino
- Department of Environmental Technologies, Faculty of Marine and Environmental Sciences, INMAR - Marine Research Institute, CEIMAR - International Campus of Excellence of the Sea, University of Cadiz, Spain
| | - Ignacio Moreno-Garrido
- Institute of Marine Sciences of Andalusia (CSIC), Campus Río San Pedro, s/n, 11510 Puerto Real, Cádiz, Spain
| | - Enrique Nebot
- Department of Environmental Technologies, Faculty of Marine and Environmental Sciences, INMAR - Marine Research Institute, CEIMAR - International Campus of Excellence of the Sea, University of Cadiz, Spain
| |
Collapse
|
5
|
Zamora-Marín JM, Herrero-Reyes AA, Ruiz-Navarro A, Oliva-Paterna FJ. Non-indigenous aquatic fauna in transitional waters from the Spanish Mediterranean coast: A comprehensive assessment. MARINE POLLUTION BULLETIN 2023; 191:114893. [PMID: 37027964 DOI: 10.1016/j.marpolbul.2023.114893] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 03/23/2023] [Accepted: 03/25/2023] [Indexed: 05/13/2023]
Abstract
Understanding drivers of spatial variation in non-indigenous species (NIS) is a key goal in invasion biology, but comprehensive assessments providing high-resolution data are extremely scarce. Anthropogenic modifications to transitional waters facilitate the invasion of NIS where they cause both ecological and economic important damage. By screening validated data sources, we conducted a comprehensive assessment of non-indigenous aquatic fauna in Spanish Mediterranean transitional waters (30 sites), as well as assessed introduction pathways, native regions, NIS assemblage patterns and temporal introduction rate. One hundred and twenty-nine NIS were inventoried, with 72 % established and more than half listed before 1980. Two intentional (release, escape) and two unintentional (contaminant, stowaway) introduction pathways were dominant. Recorded NIS originated mostly from North America and Asia. A clear nested pattern in NIS assemblages was observed across sites, suggesting secondary spread from the most invaded waters placed in the northern regions. Our updated inventory should be pivotal for designing prevention protocols and informing specific management plans on non-indigenous fauna in transitional waters.
Collapse
Affiliation(s)
- José M Zamora-Marín
- Department of Zoology and Physical Anthropology, Faculty of Biology, University of Murcia, CEIR Campus Mare Nostrum (CMN), Campus de Espinardo, 30100 Murcia, Spain; Department of Applied Biology, Centro de Investigación e Innovación Agroalimentaria (CIAGRO-UMH), Miguel Hernández University of Elche, Elche, Spain.
| | - Antonio A Herrero-Reyes
- Department of Zoology and Physical Anthropology, Faculty of Biology, University of Murcia, CEIR Campus Mare Nostrum (CMN), Campus de Espinardo, 30100 Murcia, Spain
| | - Ana Ruiz-Navarro
- Department of Zoology and Physical Anthropology, Faculty of Biology, University of Murcia, CEIR Campus Mare Nostrum (CMN), Campus de Espinardo, 30100 Murcia, Spain; Department of Didactics of Experimental Sciences, Faculty of Education, University of Murcia, Campus de Espinardo, 30100 Murcia, Spain
| | - Francisco J Oliva-Paterna
- Department of Zoology and Physical Anthropology, Faculty of Biology, University of Murcia, CEIR Campus Mare Nostrum (CMN), Campus de Espinardo, 30100 Murcia, Spain
| |
Collapse
|
6
|
Gauff RPM, Joubert E, Curd A, Carlier A, Chavanon F, Ravel C, Bouchoucha M. The elephant in the room: Introduced species also profit from refuge creation by artificial fish habitats. MARINE ENVIRONMENTAL RESEARCH 2023; 185:105859. [PMID: 36680811 DOI: 10.1016/j.marenvres.2022.105859] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 12/22/2022] [Accepted: 12/25/2022] [Indexed: 06/17/2023]
Abstract
Increasingly, ecological rehabilitation is envisioned to mitigate and revert impacts of ocean sprawl on coastal marine biodiversity. While in the past studies have demonstrated the positive effects of artificial fish habitats in port areas on fish abundance and diversity, benthic colonization of these structures has not yet been taken into consideration. This could be problematic as they may provide suitable habitat for Non-Indigenous Species (NIS) and hence facilitate their spreading. The present study aimed to examine communities developing on artificial fish habitats and to observe if the number of NIS was higher than in surrounding equivalent habitats. The structures were colonized by communities that were significantly different compared to those surrounding the control habitat, and they were home to a greater number of NIS. As NIS can cause severe ecological and economical damages, our results imply that in conjunction with the ecosystem services provided by artificial fish habitats, an ecosystem disservice in the form of facilitated NIS colonization may be present. These effects have not been shown before and need to be considered to effectively decide in which situations artificial structures may be used for fish rehabilitation.
Collapse
Affiliation(s)
- Robin P M Gauff
- Ifremer, DYNECO, Laboratory of Coastal Benthic Ecology, F-29280, Plouzané, France; Ifremer, Lab Environm Ressources Provence Azur Corse, CS 20330, F-83507, La Seyne Sur Mer, France.
| | - Etienne Joubert
- Ifremer, Lab Environm Ressources Provence Azur Corse, CS 20330, F-83507, La Seyne Sur Mer, France
| | - Amelia Curd
- Ifremer, DYNECO, Laboratory of Coastal Benthic Ecology, F-29280, Plouzané, France
| | - Antoine Carlier
- Ifremer, DYNECO, Laboratory of Coastal Benthic Ecology, F-29280, Plouzané, France
| | - Fabienne Chavanon
- Ifremer, Lab Environm Ressources Provence Azur Corse, CS 20330, F-83507, La Seyne Sur Mer, France
| | - Christophe Ravel
- Ifremer, Lab Environm Ressources Provence Azur Corse, CS 20330, F-83507, La Seyne Sur Mer, France
| | - Marc Bouchoucha
- Ifremer, Lab Environm Ressources Provence Azur Corse, CS 20330, F-83507, La Seyne Sur Mer, France
| |
Collapse
|
7
|
Zatoń-Sieczka K, Bogusławska-Wąs E, Czerniejewski P, Brysiewicz A, Tański A. Habitat Conditions of the Microbiota in Ballast Water of Ships Entering the Oder Estuary. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:15598. [PMID: 36497671 PMCID: PMC9738501 DOI: 10.3390/ijerph192315598] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/25/2022] [Revised: 11/18/2022] [Accepted: 11/21/2022] [Indexed: 06/17/2023]
Abstract
Ballast water is a vector for the transfer of microorganisms between ecospheres that can subsequently have a negative impact on native species of aquatic fauna. In this study, we determined the microbiota and selected physicochemical properties of ballast water from long- and short-range ships entering a southern Baltic port within a large estuary in autumn and winter (Police, Poland). Microbiological tests of the ballast water samples were carried out according to ISO 6887-1, and physicochemical tests were performed according to standard methods. Low amounts of oxygen (1.6-3.10 mg/dm3 in autumn and 0.60-2.10 mg/dm3 in winter) were recorded in all ship ballast water samples, with pH (above 7.90) and PSU (above 1.20) were higher than in the port waters. Yeast, mold, Pseudomonas bacteria (including Pseudomonas fluorescens), and halophilic bacteria as well as lipolytic, amylolytic, and proteolytic bacteria were found in the ballast water samples. Heterotrophic bacteria and mold fungi (log. 2.45-3.26) dominated in the autumn period, while Pseudomonas bacteria (log. 3.32-4.40) dominated in the winter period. In addition, the ballast water samples taken during the autumn period were characterized by a statistically significantly higher (p < 0.1) abundance of microorganisms (log 1.97-2.55) than in the winter period (log 1.39-2.27).
Collapse
Affiliation(s)
- Kinga Zatoń-Sieczka
- Department of Commodity, Quality Assessment, Process Engineering and Human Nutrition, Faculty of Food Sciences and Fisheries, West Pomeranian University of Technology in Szczecin, Ul. Kazimierza Królewicza 4 St., 71-550 Szczecin, Poland
| | - Elżbieta Bogusławska-Wąs
- Department of Microbiology and Applied Biotechnology, Faculty of Food Sciences and Fisheries, West Pomeranian University of Technology in Szczecin, Ul. Papieża Pawła VI St., 71-459 Szczecin, Poland
| | - Przemysław Czerniejewski
- Department of Commodity, Quality Assessment, Process Engineering and Human Nutrition, Faculty of Food Sciences and Fisheries, West Pomeranian University of Technology in Szczecin, Ul. Kazimierza Królewicza 4 St., 71-550 Szczecin, Poland
| | - Adam Brysiewicz
- Institute of Technology and Life Sciences–National Research Institute, Falenty, 3 Hrabska Avenue, 05-090 Raszyn, Poland
| | - Adam Tański
- Department of Hydrobiology, Ichthyology and Reproductive Biotechnology, Faculty of Food Sciences and Fisheries, West Pomeranian University of Technology in Szczecin, Ul. Kazimierza Królewicza 4 St., 71-550 Szczecin, Poland
| |
Collapse
|
8
|
Hao H, Chen S, Wu Z, Su P, Ke C, Feng D. The degradation and environmental risk of camptothecin, a promising marine antifoulant. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 821:153384. [PMID: 35085640 DOI: 10.1016/j.scitotenv.2022.153384] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Revised: 12/30/2021] [Accepted: 01/20/2022] [Indexed: 06/14/2023]
Abstract
Given the adverse environmental impacts of the antifoulants currently used in marine antifouling paints, such as copper and booster biocides, it is urgent to identify potential substitutes that are environmentally benign. Here, we examined the degradation of camptothecin (a natural product previously identified as an efficient antifoulant in the laboratory and in the field) under various conditions and evaluated the environmental risks associated with its use as a marine antifoulant. We found that camptothecin was rapidly photolyzed in seawater: the half-life of camptothecin was less than 1 d under a light intensity of 1000-20,000 lx and was approximately 0.17 d under sunlight irradiation. At pH 4 and pH 7, camptothecin had half-lives of 30.13 and 16.90 d, respectively; at 4 °C, 25 °C, and 35 °C, the half-lives of camptothecin were 23.90, 21.66, and 26.65 d, respectively. Camptothecin biodegradation in seawater was negligible. The predicted no-effect concentration (PNEC) of camptothecin was 2.19 × 10-1 μg L-1, while the average predicted environmental concentrations (PECs) in open seas, shipping lanes, commercial harbors, and marinas were 6.14 × 10-7, 9.39 × 10-7, 6.80 × 10-3, and 5.03 × 10-2 μg L-1, respectively. The PEC/PNEC ratio of camptothecin was much lower than 1 (i.e., 2.80 × 10-6, 4.29 × 10-6, 3.11 × 10-2, and 2.30 × 10-1 for open seas, shipping lanes, commercial harbors, and marinas, respectively), indicating that the use of camptothecin as a marine antifoulant posed little environmental risk.
Collapse
Affiliation(s)
- Huanhuan Hao
- State-Province Joint Engineering Laboratory of Marine Bioproducts and Technology, College of Ocean & Earth Sciences, Xiamen University, Xiamen 361102, China
| | - Siyu Chen
- State-Province Joint Engineering Laboratory of Marine Bioproducts and Technology, College of Ocean & Earth Sciences, Xiamen University, Xiamen 361102, China
| | - Zhiwen Wu
- State-Province Joint Engineering Laboratory of Marine Bioproducts and Technology, College of Ocean & Earth Sciences, Xiamen University, Xiamen 361102, China; State Key Laboratory of Marine Environmental Science, Xiamen University, Xiamen 361102, China
| | - Pei Su
- State-Province Joint Engineering Laboratory of Marine Bioproducts and Technology, College of Ocean & Earth Sciences, Xiamen University, Xiamen 361102, China; State Key Laboratory of Marine Environmental Science, Xiamen University, Xiamen 361102, China
| | - Caihuan Ke
- State-Province Joint Engineering Laboratory of Marine Bioproducts and Technology, College of Ocean & Earth Sciences, Xiamen University, Xiamen 361102, China; State Key Laboratory of Marine Environmental Science, Xiamen University, Xiamen 361102, China
| | - Danqing Feng
- State-Province Joint Engineering Laboratory of Marine Bioproducts and Technology, College of Ocean & Earth Sciences, Xiamen University, Xiamen 361102, China.
| |
Collapse
|