1
|
Wang AT, Tang L, Gao A, Zhang E, Huang G, Shen J, Jia Q, Huang Z. Investigation of the Antimicrobial Resistance of Important Pathogens Isolated from Poultry from 2015 to 2023 in the United States. Pathogens 2024; 13:919. [PMID: 39599473 PMCID: PMC11597794 DOI: 10.3390/pathogens13110919] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2024] [Revised: 10/19/2024] [Accepted: 10/19/2024] [Indexed: 11/29/2024] Open
Abstract
Foodborne pathogens cause around 47.8 million illnesses in the U.S. annually, with antimicrobial misuse in food production, particularly in poultry processing, contributing significantly to this public health challenge. Misuse of antimicrobials can contribute to antimicrobial resistance (AMR) and make the treatment of pathogens increasingly difficult. This emphasizes the need to investigate antimicrobial resistance in U.S. poultry. This study analyzes data from the NCBI Pathogen Isolates Browser (2015-2023) to explore the relationships between antimicrobial-resistant pathogens, AMR genes, and antimicrobials detected with resistance in pathogens isolated from chicken and turkey. Using principal component analysis and hierarchical clustering, we mapped and profiled regional and temporal patterns of antimicrobial resistance. Salmonella enterica was the most prevalent antimicrobial-resistant pathogen across both chicken and turkey, with notable outbreaks, particularly in the Northeast. Antimicrobial-resistant Campylobacter jejuni was more prevalent in chicken, particularly in California and Georgia, while Escherichia coli and Shigella were more prominent in turkey, with concentrated antimicrobial resistance in Texas for pathogen samples isolated from chicken. Resistance to tetracycline and streptomycin was widespread, with distinct regional clusters: antimicrobial resistance was concentrated in states like Minnesota for pathogens isolated from chicken, while AMR found in pathogens isolated from turkey was more evenly distributed across the Midwest. Key AMR genes, such as tet(A), mdsA, and mdsB, also followed similar patterns, peaking in 2019 and significantly declining by 2022. The observed decline in AMR cases may be linked to improved biosecurity measures and disruptions in detection due to the COVID-19 pandemic. This comprehensive study of antimicrobial resistance in U.S. poultry provides valuable insights into resistance trends, which provide useful information to inform targeted interventions and policies to mitigate AMR threats in the poultry production industry. For consumers, these findings emphasize the importance of proper food handling and cooking practices to reduce the risk of exposure to resistant pathogens. Regulatory authorities should focus on enforcing stricter antimicrobial usage policies and enhancing surveillance systems to sustain the reduction in AMR cases.
Collapse
Affiliation(s)
- Asher T. Wang
- Department of Chemical and Biological Engineering, Villanova University, Villanova, PA 19341, USA; (A.T.W.); (L.T.); (A.G.); (E.Z.); (G.H.); (J.S.)
| | - Liya Tang
- Department of Chemical and Biological Engineering, Villanova University, Villanova, PA 19341, USA; (A.T.W.); (L.T.); (A.G.); (E.Z.); (G.H.); (J.S.)
| | - Andrew Gao
- Department of Chemical and Biological Engineering, Villanova University, Villanova, PA 19341, USA; (A.T.W.); (L.T.); (A.G.); (E.Z.); (G.H.); (J.S.)
| | - Ethan Zhang
- Department of Chemical and Biological Engineering, Villanova University, Villanova, PA 19341, USA; (A.T.W.); (L.T.); (A.G.); (E.Z.); (G.H.); (J.S.)
| | - Grace Huang
- Department of Chemical and Biological Engineering, Villanova University, Villanova, PA 19341, USA; (A.T.W.); (L.T.); (A.G.); (E.Z.); (G.H.); (J.S.)
| | - Justin Shen
- Department of Chemical and Biological Engineering, Villanova University, Villanova, PA 19341, USA; (A.T.W.); (L.T.); (A.G.); (E.Z.); (G.H.); (J.S.)
| | - Qian Jia
- Department of Health, Nutrition and Exercise Sciences, Immaculata University, Immaculata, PA 19345, USA
| | - Zuyi Huang
- Department of Chemical and Biological Engineering, Villanova University, Villanova, PA 19341, USA; (A.T.W.); (L.T.); (A.G.); (E.Z.); (G.H.); (J.S.)
| |
Collapse
|
2
|
Chandwani S, Dewala S, Chavan SM, Paul D, Kumar K, Amaresan N. Genomic, LC-MS, and FTIR Analysis of Plant Probiotic Potential of Bacillus albus for Managing Xanthomonas oryzae via Different Modes of Application in Rice (Oryza sativa L.). Probiotics Antimicrob Proteins 2024; 16:1541-1552. [PMID: 37462829 DOI: 10.1007/s12602-023-10120-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/05/2023] [Indexed: 10/02/2024]
Abstract
Xanthomonas oryzae causes tremendous damage in rice plants (Oryza sativa L). Therefore, this study is focused on siderophore-producing Bacillus albus (CWTS 10) for managing BLB disease caused by X. oryzae. Both B. albus and its crude siderophore (methanolic and diethyl ether) extracts inhibited X. oryzae (10-12 mm). Fourier transform infrared spectroscopy (FTIR) analysis of the extracts indicated the presence of catecholate siderophore functional groups. Liquid chromatography-mass spectrometry (LC-MS) analysis revealed the presence of antimicrobial compounds such as 2-deoxystreptamine, miserotoxin, fumitremorgin C, pipercide, pipernonaline, gingerone A, and deoxyvasicinone. Complete genome sequencing revealed the gene clusters for antibiotic, siderophore, antibacterial, antifungal, and secondary metabolite production. An in vivo study revealed that bacteria (CWTS 10) and their siderophore extracts effectively inhibited X. oryzae. The mode of application of bacterial or siderophore extracts in terms of DI and DSI percentage was as follows: soak method > inoculation method > spray method. In addition to providing enhanced antagonistic activity, there was a significant increase in root and shoot length and weight (wet and dry) of treated plants compared to control plants challenged with X. oryzae. Thus, the results clearly indicate that siderophore-producing B. albus and its siderophore extracts strongly inhibited X. oryzae. However, further field experiments are required before being formulated to protect rice crops from X. oryzae.
Collapse
Affiliation(s)
- Sapna Chandwani
- C.G. Bhakta Institute of Biotechnology, Uka Tarsadia University, Bardoli, Surat, Gujarat, 394 350, India
| | - Sahabram Dewala
- National Centre for Microbial Resource, National Centre for Cell Science, Pune, 411 021, India
| | - Sonal Manik Chavan
- Laboratory - NGS, Centenarians Life Sciences Pvt Ltd., Bangalore, 560103, India
| | - Dhiraj Paul
- Department of Environmental and Biological Sciences, University of Eastern Finland, 700, Kuopio, Finland
| | - Krishna Kumar
- Pandit Deendayal, Upadhyay College of Horticulture & Forestry, Dr. Rajendra Prasad Central Agricultural University, Muzaffarpur, Bihar, 843 121, India
| | - Natarajan Amaresan
- C.G. Bhakta Institute of Biotechnology, Uka Tarsadia University, Bardoli, Surat, Gujarat, 394 350, India.
| |
Collapse
|
3
|
Gu G, Pei H, Zhou A, Fan B, Zhou H, Choi A, Huang Z. A Comprehensive Study of Historical Detection Data for Pathogen Isolates from U.S. Cattle. Antibiotics (Basel) 2023; 12:1509. [PMID: 37887210 PMCID: PMC10604524 DOI: 10.3390/antibiotics12101509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 09/27/2023] [Accepted: 09/28/2023] [Indexed: 10/28/2023] Open
Abstract
Foodborne pathogens pose substantial health hazards and result in considerable economic losses in the U.S. Fortunately, the National Center for Biotechnology Information Pathogen Detection Isolates Browser (NPDIB) provides valuable access to antimicrobial resistance (AMR) genes and antimicrobial assay data. This study aimed to conduct the first comprehensive investigation of AMR genes in pathogens isolated from U.S. cattle over the past decade, driven by the urgent need to address the dangers of AMR specifically originating in pathogens isolated from U.S. cattle. In this study, around 28,000 pathogen isolate samples were extracted from the NPDIB and then analyzed using multivariate statistical methods, mainly principal component analysis (PCA) and hierarchical clustering (H-clustering). These approaches were necessary due to the high dimensions of the raw data. Specifically, PCA was utilized to reduce the dimensions of the data, converting it to a two-dimensional space, and H-clustering was used to better identify the differences among data points. The findings from this work highlighted Salmonella enterica and Escherichia coli as the predominant pathogens among the isolates, with E. coli being the more concerning pathogen due to its increasing prevalence in recent years. Moreover, tetracycline was observed as the most commonly resistant antimicrobial, with the resistance genes mdsA, mdsB, mdtM, blaEC, and acrF being the most prevalent in pathogen isolates from U.S. cattle. The occurrence of mdtM, blaEC, acrF, and glpT_E448k showed an increase in pathogens isolated from U.S. cattle in recent years. Furthermore, based on the data collected for the locations of AMR cases, Texas, California, and Nebraska were the major areas carrying major AMR genes or antimicrobials with detected resistance. The results from this study provide potential directions for targeted interventions to mitigate pathogens' antimicrobial resistance in U.S. cattle.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Zuyi Huang
- Department of Chemical and Biological Engineering, Villanova University, Villanova, PA 19085, USA; (G.G.); (H.P.); (A.Z.); (B.F.); (H.Z.); (A.C.)
| |
Collapse
|
4
|
Romero-Calle DX, Pedrosa-Silva F, Tomé LMR, Sousa TJ, de Oliveira Santos LTS, de Carvalho Azevedo VA, Brenig B, Benevides RG, Venancio TM, Billington C, Góes-Neto A. Hybrid Genomic Analysis of Salmonella enterica Serovar Enteritidis SE3 Isolated from Polluted Soil in Brazil. Microorganisms 2022; 11:111. [PMID: 36677403 PMCID: PMC9861973 DOI: 10.3390/microorganisms11010111] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 12/19/2022] [Accepted: 12/27/2022] [Indexed: 01/04/2023] Open
Abstract
In Brazil, Salmonella enterica serovar Enteritidis is a significant health threat. Salmonella enterica serovar Enteritidis SE3 was isolated from soil at the Subaé River in Santo Amaro, Brazil, a region contaminated with heavy metals and organic waste. Illumina HiSeq and Oxford Nanopore Technologies MinION sequencing were used for de novo hybrid assembly of the Salmonella SE3 genome. This approach yielded 10 contigs with 99.98% identity with S. enterica serovar Enteritidis OLF-SE2-98984-6. Twelve Salmonella pathogenic islands, multiple virulence genes, multiple antimicrobial gene resistance genes, seven phage defense systems, seven prophages and a heavy metal resistance gene were encoded in the genome. Pangenome analysis of the S. enterica clade, including Salmonella SE3, revealed an open pangenome, with a core genome of 2137 genes. Our study showed the effectiveness of a hybrid sequence assembly approach for environmental Salmonella genome analysis using HiSeq and MinION data. This approach enabled the identification of key resistance and virulence genes, and these data are important to inform the control of Salmonella and heavy metal pollution in the Santo Amaro region of Brazil.
Collapse
Affiliation(s)
- Danitza Xiomara Romero-Calle
- Postgraduate Program in Biotechnology, State University of Feira de Santana (UEFS), Av. Transnordestina S/N, Feira de Santana 44036-900, BA, Brazil
- Molecular and Computational Biology of Fungi Laboratory, Department of Microbiology, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte 31270-901, MG, Brazil
- Department of Biological Sciences, Feira de Santana State University (UEFS), Feira de Santana 44036-900, BA, Brazil
| | - Francisnei Pedrosa-Silva
- Laboratory of Chemistry, Function of Proteins and Peptides, Center for Biosciences and Biotechnology, Darcy Ribeiro North Fluminense State University (UENF), Campos dos Goytacazes 28013-602, RJ, Brazil
| | - Luiz Marcelo Ribeiro Tomé
- Molecular and Computational Biology of Fungi Laboratory, Department of Microbiology, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte 31270-901, MG, Brazil
| | - Thiago J. Sousa
- Laboratory of Cellular and Molecular Genetics, Department of Genetics, Ecology and Evolution, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte 31270-901, MG, Brazil
| | | | - Vasco Ariston de Carvalho Azevedo
- Laboratory of Cellular and Molecular Genetics, Department of Genetics, Ecology and Evolution, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte 31270-901, MG, Brazil
| | - Bertram Brenig
- Institute of Veterinary Medicine, Burckhardtweg, University of Göttingen, 37073 Göttingen, Germany
| | - Raquel Guimarães Benevides
- Postgraduate Program in Biotechnology, State University of Feira de Santana (UEFS), Av. Transnordestina S/N, Feira de Santana 44036-900, BA, Brazil
- Department of Biological Sciences, Feira de Santana State University (UEFS), Feira de Santana 44036-900, BA, Brazil
| | - Thiago M. Venancio
- Laboratory of Chemistry, Function of Proteins and Peptides, Center for Biosciences and Biotechnology, Darcy Ribeiro North Fluminense State University (UENF), Campos dos Goytacazes 28013-602, RJ, Brazil
| | - Craig Billington
- Health & Environment Group, Institute of Environmental Sciences and Research, P.O. Box 29-181, Christchurch 8540, New Zealand
| | - Aristóteles Góes-Neto
- Postgraduate Program in Biotechnology, State University of Feira de Santana (UEFS), Av. Transnordestina S/N, Feira de Santana 44036-900, BA, Brazil
- Molecular and Computational Biology of Fungi Laboratory, Department of Microbiology, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte 31270-901, MG, Brazil
- Department of Biological Sciences, Feira de Santana State University (UEFS), Feira de Santana 44036-900, BA, Brazil
- Laboratory of Cellular and Molecular Genetics, Department of Genetics, Ecology and Evolution, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte 31270-901, MG, Brazil
| |
Collapse
|
5
|
Sun Q, Gao S, Yu S, Zheng P, Zhou J. Production of (2S)-sakuranetin from (2S)-naringenin in Escherichia coli by strengthening methylation process and cell resistance. Synth Syst Biotechnol 2022; 7:1117-1125. [PMID: 36017331 PMCID: PMC9399173 DOI: 10.1016/j.synbio.2022.07.004] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Revised: 07/18/2022] [Accepted: 07/19/2022] [Indexed: 11/15/2022] Open
Abstract
(2S)-Sakuranetin is a 7-O-methylflavonoid that has anticancer, antiviral, and antimicrobial activities. Methylation process is involved in biosynthesizing (2S)-sakuranetin from (2S)-naringenin, in which S-adenosylmethionine (SAM) serves as the methyl donor. In this study, after methyl donor and substrate inhibition were identified as limiting factors for (2S)-sakuranetin biosynthesis, an efficient (2S)-sakuranetin-producing strain was constructed by enhancing methyl donor supply and cell tolerance to (2S)-naringenin. Firstly, PfOMT3 from Perilla frutescens was selected as the optimal flavonoid 7-O-methyltransferase (F7-OMT) for the conversion of (2S)-naringenin to (2S)-sakuranetin. Then, the methylation process was upregulated by regulating pyridoxal 5′-phosphate (PLP) content, key enzymes in methionine synthesis pathway, and the availability of ATP. Furthermore, genes that can enhance cell resistance to (2S)-naringenin were identified from molecular chaperones and sRNAs. Finally, by optimizing the fermentation process, 681.44 mg/L of (2S)-sakuranetin was obtained in 250-mL shake flasks. The titer of (2S)-sakuranetin reached 2642.38 mg/L in a 5-L bioreactor, which is the highest titer ever reported. This work demonstrates the importance of cofactor PLP in methylation process, and provides insights to biosynthesize other O-methylated flavonoids efficiently in E. coli.
Collapse
Affiliation(s)
- Qiumeng Sun
- Science Center for Future Foods, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu, 214122, China
- Key Laboratory of Industrial Biotechnology, Ministry of Education and School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu, 214122, China
- Engineering Research Center of Ministry of Education on Food Synthetic Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu, 214122, China
- Jiangsu Province Engineering Research Center of Food Synthetic Biotechnology, Jiangnan University, Wuxi, 214122, China
| | - Song Gao
- Science Center for Future Foods, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu, 214122, China
- Key Laboratory of Industrial Biotechnology, Ministry of Education and School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu, 214122, China
- Engineering Research Center of Ministry of Education on Food Synthetic Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu, 214122, China
- Jiangsu Province Engineering Research Center of Food Synthetic Biotechnology, Jiangnan University, Wuxi, 214122, China
| | - Shiqin Yu
- Science Center for Future Foods, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu, 214122, China
- Key Laboratory of Industrial Biotechnology, Ministry of Education and School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu, 214122, China
- Jiangsu Province Engineering Research Center of Food Synthetic Biotechnology, Jiangnan University, Wuxi, 214122, China
| | - Pu Zheng
- Key Laboratory of Industrial Biotechnology, Ministry of Education and School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu, 214122, China
- Corresponding author. School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu, 214122, China.
| | - Jingwen Zhou
- Science Center for Future Foods, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu, 214122, China
- Key Laboratory of Industrial Biotechnology, Ministry of Education and School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu, 214122, China
- Engineering Research Center of Ministry of Education on Food Synthetic Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu, 214122, China
- Jiangsu Province Engineering Research Center of Food Synthetic Biotechnology, Jiangnan University, Wuxi, 214122, China
- Corresponding author. Science Center for Future Foods, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu, 214122, China.
| |
Collapse
|
6
|
Li M, Wang K, Tang A, Tang A, Chen A, Huang Z. Investigation of the Genes Involved in the Outbreaks of Escherichia coli and Salmonella spp. in the United States. Antibiotics (Basel) 2021; 10:1274. [PMID: 34680854 PMCID: PMC8532668 DOI: 10.3390/antibiotics10101274] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Revised: 10/08/2021] [Accepted: 10/12/2021] [Indexed: 11/16/2022] Open
Abstract
Salmonella spp. and Escherichiacoli (E. coli) are two of the deadliest foodborne pathogens in the US. Genes involved in antimicrobial resistance, virulence, and stress response, enable these pathogens to increase their pathogenicity. This study aims to examine the genes detected in both outbreak and non-outbreak Salmonella spp. and E. coli by analyzing the data from the National Centre for Biotechnology Information (NCBI) Pathogen Detection Isolates Browser database. A multivariate statistical analysis was conducted on the genes detected in isolates of outbreak Salmonella spp., non-outbreak Salmonella spp., outbreak E. coli, and non-outbreak E. coli. The genes from the data were projected onto a two-dimensional space through principal component analysis. Hierarchical clustering was then used to quantify the relationship between the genes in the dataset. Most of the outlier genes identified in E. coli isolates are virulence genes, while outlier genes identified in Salmonella spp. are mainly involved in stress response. Gene epeA, which encodes a high-molecular-weight serine protease autotransporter of Enterobacteriaceae (SPATE) protein, along with subA and subB that encode cytotoxic activity, may contribute to the pathogenesis of outbreak E. coli. The iro operon and ars operon may play a role in the ecological success of the epidemic clones of Salmonella spp. Concurrent relationships between esp and ter operons in E. coli and pco and sil operons in Salmonella spp. are found. Stress-response genes (asr, golT, golS), virulence gene (sinH), and antimicrobial resistance genes (mdsA and mdsB) in Salmonella spp. also show a concurrent relationship. All these findings provide helpful information for experiment design to combat outbreaks of E. coli and Salmonella spp.
Collapse
Affiliation(s)
| | | | | | | | | | - Zuyi Huang
- Department of Chemical and Biological Engineering, Villanova University, Villanova, PA 19085, USA; (M.L.); (K.W.); (A.T.); (A.T.); (A.C.)
| |
Collapse
|