1
|
Gowdru Srinivasa M, B C R, Prabhu A, Rani V, Ghate SD, Kumar B R P. Development of novel thiazolidine-2,4-dione derivatives as PPAR-γ agonists through design, synthesis, computational docking, MD simulation, and comprehensive in vitro and in vivo evaluation. RSC Med Chem 2023; 14:2401-2416. [PMID: 37974963 PMCID: PMC10650958 DOI: 10.1039/d3md00273j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Accepted: 09/06/2023] [Indexed: 11/19/2023] Open
Abstract
The present study was conducted to develop new novel 2,4-thiazolidinedione derivatives (3h-3j) as peroxisome proliferator-activated receptor-γ (PPAR-γ) modulators for antidiabetic activity. The objective was to overcome the adverse effects of existing thiazolidinediones while maintaining their pharmacological benefits. The synthesized compounds were elucidated based on FT-IR, 1H-NMR, 13C-NMR, and MS techniques. Molecular docking was utilized to investigate the interaction binding modes, binding free energy, and amino acids engaged in the compounds' interactions with the target protein. Subsequently, molecular dynamics modelling was used to assess the stability of the top-docked complexes and an assay was utilized to assess the cytotoxicity of the compounds to C2C12 myoblasts. Compounds 3h-3j exhibited PPAR-γ modulatory activity and demonstrated significant hypoglycaemic effects when compared to the reference drug pioglitazone. The new compounds were evaluated for their in vivo blood glucose-lowering potential by using a dexamethasone-induced diabetic rat model. All the compounds showed a hypoglycaemic effect of 108.04 ± 4.39, 112.55 ± 6.10, and 117.48 ± 43.93, respectively, along with pioglitazone (153.93 ± 4.61) compared to the diabetic control. Additionally, all the compounds significantly reduced AST and ALT levels and did not cause liver damage.
Collapse
Affiliation(s)
- Mahendra Gowdru Srinivasa
- Department of Pharmaceutical Chemistry, Nitte (Deemed to be University), NGSM Institute of Pharmaceutical Sciences (NGSMIPS) Mangalore India
| | - Revanasiddappa B C
- Department of Pharmaceutical Chemistry, Nitte (Deemed to be University), NGSM Institute of Pharmaceutical Sciences (NGSMIPS) Mangalore India
| | - Ashwini Prabhu
- Yenepoya Research Centre, Yenepoya (Deemed to be University) Deralakatte Mangalore 575 018 Karnataka India
| | - Vinitha Rani
- Yenepoya Research Centre, Yenepoya (Deemed to be University) Deralakatte Mangalore 575 018 Karnataka India
| | - Sudeep D Ghate
- Center for Bioinformatics, Nitte (Deemed to be University) Deralakatte Mangalore Karnataka - 575 018 India
| | - Prashantha Kumar B R
- Department of Pharmaceutical Chemistry, JSS College of Pharmacy, JSS Academy of Higher Education and Research Mysuru-570015 Karnataka India
| |
Collapse
|
2
|
Álvarez-Almazán S, Solís-Domínguez LC, Duperou-Luna P, Fuerte-Gómez T, González-Andrade M, Aranda-Barradas ME, Palacios-Espinosa JF, Pérez-Villanueva J, Matadamas-Martínez F, Miranda-Castro SP, Mercado-Márquez C, Cortés-Benítez F. Anti-Diabetic Activity of Glycyrrhetinic Acid Derivatives FC-114 and FC-122: Scale-Up, In Silico, In Vitro, and In Vivo Studies. Int J Mol Sci 2023; 24:12812. [PMID: 37628991 PMCID: PMC10454726 DOI: 10.3390/ijms241612812] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 08/07/2023] [Accepted: 08/12/2023] [Indexed: 08/27/2023] Open
Abstract
Type 2 diabetes (T2D) is one of the most common diseases and the 8th leading cause of death worldwide. Individuals with T2D are at risk for several health complications that reduce their life expectancy and quality of life. Although several drugs for treating T2D are currently available, many of them have reported side effects ranging from mild to severe. In this work, we present the synthesis in a gram-scale as well as the in silico and in vitro activity of two semisynthetic glycyrrhetinic acid (GA) derivatives (namely FC-114 and FC-122) against Protein Tyrosine Phosphatase 1B (PTP1B) and α-glucosidase enzymes. Furthermore, the in vitro cytotoxicity assay on Human Foreskin fibroblast and the in vivo acute oral toxicity was also conducted. The anti-diabetic activity was determined in streptozotocin-induced diabetic rats after oral administration with FC-114 or FC-122. Results showed that both GA derivatives have potent PTP1B inhibitory activity being FC-122, a dual PTP1B/α-glucosidase inhibitor that could increase insulin sensitivity and reduce intestinal glucose absorption. Molecular docking, molecular dynamics, and enzymatic kinetics studies revealed the inhibition mechanism of FC-122 against α-glucosidase. Both GA derivatives were safe and showed better anti-diabetic activity in vivo than the reference drug acarbose. Moreover, FC-114 improves insulin levels while decreasing LDL and total cholesterol levels without decreasing HDL cholesterol.
Collapse
Affiliation(s)
- Samuel Álvarez-Almazán
- Laboratory of Biotechnology, Unidad de Posgrado, Facultad de Estudios Superiores Cuautitlán Campus 1, Universidad Nacional Autónoma de México, Cuautitlán Izcalli 54740, Mexico; (S.Á.-A.); (L.C.S.-D.); (T.F.-G.); (M.E.A.-B.); (S.P.M.-C.)
| | - Luz Cassandra Solís-Domínguez
- Laboratory of Biotechnology, Unidad de Posgrado, Facultad de Estudios Superiores Cuautitlán Campus 1, Universidad Nacional Autónoma de México, Cuautitlán Izcalli 54740, Mexico; (S.Á.-A.); (L.C.S.-D.); (T.F.-G.); (M.E.A.-B.); (S.P.M.-C.)
| | - Paulina Duperou-Luna
- Laboratory of Synthesis and Isolation of Bioactive Substances, Departamento de Sistemas Biológicos, División de Ciencias Biológicas y de la Salud, Universidad Autónoma Metropolitana–Xochimilco (UAM–X), Mexico City 04960, Mexico; (P.D.-L.); (J.F.P.-E.); (J.P.-V.); (F.M.-M.)
| | - Teresa Fuerte-Gómez
- Laboratory of Biotechnology, Unidad de Posgrado, Facultad de Estudios Superiores Cuautitlán Campus 1, Universidad Nacional Autónoma de México, Cuautitlán Izcalli 54740, Mexico; (S.Á.-A.); (L.C.S.-D.); (T.F.-G.); (M.E.A.-B.); (S.P.M.-C.)
| | - Martin González-Andrade
- Laboratory of Biosensors and Molecular Modelling, Departamento de Bioquímica, Facultad de Medicina, Universidad Nacional Autónoma de México, Mexico City 04510, Mexico;
| | - María E. Aranda-Barradas
- Laboratory of Biotechnology, Unidad de Posgrado, Facultad de Estudios Superiores Cuautitlán Campus 1, Universidad Nacional Autónoma de México, Cuautitlán Izcalli 54740, Mexico; (S.Á.-A.); (L.C.S.-D.); (T.F.-G.); (M.E.A.-B.); (S.P.M.-C.)
| | - Juan Francisco Palacios-Espinosa
- Laboratory of Synthesis and Isolation of Bioactive Substances, Departamento de Sistemas Biológicos, División de Ciencias Biológicas y de la Salud, Universidad Autónoma Metropolitana–Xochimilco (UAM–X), Mexico City 04960, Mexico; (P.D.-L.); (J.F.P.-E.); (J.P.-V.); (F.M.-M.)
| | - Jaime Pérez-Villanueva
- Laboratory of Synthesis and Isolation of Bioactive Substances, Departamento de Sistemas Biológicos, División de Ciencias Biológicas y de la Salud, Universidad Autónoma Metropolitana–Xochimilco (UAM–X), Mexico City 04960, Mexico; (P.D.-L.); (J.F.P.-E.); (J.P.-V.); (F.M.-M.)
| | - Félix Matadamas-Martínez
- Laboratory of Synthesis and Isolation of Bioactive Substances, Departamento de Sistemas Biológicos, División de Ciencias Biológicas y de la Salud, Universidad Autónoma Metropolitana–Xochimilco (UAM–X), Mexico City 04960, Mexico; (P.D.-L.); (J.F.P.-E.); (J.P.-V.); (F.M.-M.)
| | - Susana Patricia Miranda-Castro
- Laboratory of Biotechnology, Unidad de Posgrado, Facultad de Estudios Superiores Cuautitlán Campus 1, Universidad Nacional Autónoma de México, Cuautitlán Izcalli 54740, Mexico; (S.Á.-A.); (L.C.S.-D.); (T.F.-G.); (M.E.A.-B.); (S.P.M.-C.)
| | - Crisóforo Mercado-Márquez
- Isolation and Animal Facility Unit, Facultad de Estudios Superiores Cuautitlán 28, Universidad Nacional Autónoma de México, Cuautitlán Izcalli 54714, Mexico;
| | - Francisco Cortés-Benítez
- Laboratory of Synthesis and Isolation of Bioactive Substances, Departamento de Sistemas Biológicos, División de Ciencias Biológicas y de la Salud, Universidad Autónoma Metropolitana–Xochimilco (UAM–X), Mexico City 04960, Mexico; (P.D.-L.); (J.F.P.-E.); (J.P.-V.); (F.M.-M.)
| |
Collapse
|
3
|
Madrigal-Angulo JL, Ménez-Guerrero C, Estrada-Soto S, Ramírez-Espinosa JJ, Almanza-Pérez JC, León-Rivera I, Hernández-Núñez E, Aguirre-Vidal Y, Flores-León CD, Aguayo-Ortíz R, Navarrete-Vazquez G. Synthesis, in vitro, in silico and in vivo hypoglycemic and lipid-lowering effects of 4-benzyloxy-5-benzylidene-1,3-thiazolidine-2,4-diones mediated by dual PPAR α/γ modulation. Bioorg Med Chem Lett 2022; 70:128804. [PMID: 35598791 DOI: 10.1016/j.bmcl.2022.128804] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Revised: 05/10/2022] [Accepted: 05/16/2022] [Indexed: 11/19/2022]
Abstract
In current work, we prepared a series of nine 4-benzyloxy-5-benzylidene-1,3-thiazolidine-2,4-diones using a two-step pathway. Compounds 1-9 were tested in vitro using a set of three proteins recognized as important targets in diabetes and related diseases: PPARα, PPARγ, and GLUT-4. Compounds 1-3, 5, and 7 showed significant increases in the mRNA expression of PPARγ and GLUT-4, whereas compounds 1-3 did it over PPARα. Compounds 1-3 were identified as a dual PPAR α/γ modulators and were selected for evaluating the in vivo antidiabetic action at 100 mg/kg dose, being orally actives and decreasing blood glucose concentration in a hyperglycemic mice model, as well as reducing the triacylglycerides levels in normolipidemic rats. Docking and molecular dynamics studies were conducted to clarify the dual effect and binding mode of compounds 1-3 on both PPARs. Compounds 2 and 3 exhibited robust in vitro and in vivo efficacy and could be considered dual PPAR modulators with antidiabetic and antidyslipidemic effects.
Collapse
Affiliation(s)
| | - Carlos Ménez-Guerrero
- Facultad de Farmacia, Universidad Autónoma del Estado de Morelos, Cuernavaca, 62209 Morelos, Mexico
| | - Samuel Estrada-Soto
- Facultad de Farmacia, Universidad Autónoma del Estado de Morelos, Cuernavaca, 62209 Morelos, Mexico
| | - Juan José Ramírez-Espinosa
- Departamento de Ciencias Quimico Biologicas, Universidad Autónoma de Ciudad Juárez, Ciudad Juárez, 32310 Chihuahua, Mexico
| | - Julio César Almanza-Pérez
- Laboratorio de Farmacología, Depto. Ciencias de la Salud, Universidad Autónoma Metropolitana-Iztapalapa, 09340 México City, Mexico
| | - Ismael León-Rivera
- Centro de Investigaciones Químicas, Universidad Autónoma del Estado de Morelos, Cuernavaca, 62209 Morelos, Mexico
| | - Emanuel Hernández-Núñez
- Departamento de Recursos del Mar, Centro de Investigación y de Estudios Avanzados, IPN, Unidad Mérida, Yucatán 97310, Mexico
| | - Yoshajandith Aguirre-Vidal
- Red de Estudios Moleculares Avanzados, Cluster Científico y Tecnológico BioMimic, INECOL, Xalapa, 91073 Veracruz, Mexico
| | - Carlos D Flores-León
- Departamento de Farmacia, Facultad de Química, Universidad Nacional Autónoma de México, 04510 México City, Mexico
| | - Rodrigo Aguayo-Ortíz
- Departamento de Farmacia, Facultad de Química, Universidad Nacional Autónoma de México, 04510 México City, Mexico
| | - Gabriel Navarrete-Vazquez
- Facultad de Farmacia, Universidad Autónoma del Estado de Morelos, Cuernavaca, 62209 Morelos, Mexico.
| |
Collapse
|
4
|
Impact of Molecular Symmetry/Asymmetry on Insulin-Sensitizing Treatments for Type 2 Diabetes. Symmetry (Basel) 2022. [DOI: 10.3390/sym14061240] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Although the advantages and disadvantages of asymmetrical thiazolidinediones as insulin-sensitizers have been well-studied, the relevance of symmetry and asymmetry for thiazolidinediones and biguanides has scarcely been explored. Regarding symmetrical molecules, only one thiazolidinedione and no biguanides have been evaluated and proposed as an antihyperglycemic agent for treating type 2 diabetes. Since molecular structure defines physicochemical, pharmacological, and toxicological properties, it is important to gain greater insights into poorly investigated patterns. For example, compounds with intrinsic antioxidant properties commonly have low toxicity. Additionally, the molecular symmetry and asymmetry of ligands are each associated with affinity for certain types of receptors. An advantageous response obtained in one therapeutic application may imply a poor or even adverse effect in another. Within the context of general patterns, each compound must be assessed individually. The current review aimed to summarize the available evidence for the advantages and disadvantages of utilizing symmetrical and asymmetrical thiazolidinediones and biguanides as insulin sensitizers in patients with type 2 diabetes. Other applications of these same compounds are also examined as well as the various uses of additional symmetrical molecules. More research is needed to exploit the potential of symmetrical molecules as insulin sensitizers.
Collapse
|
5
|
In Vivo and Ex Vivo Evaluation of 1,3-Thiazolidine-2,4-Dione Derivatives as Euglycemic Agents. PPAR Res 2022; 2021:5100531. [PMID: 35003235 PMCID: PMC8741387 DOI: 10.1155/2021/5100531] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 10/30/2021] [Accepted: 12/06/2021] [Indexed: 12/19/2022] Open
Abstract
Thiazolidinediones (TZDs), used to treat type 2 diabetes mellitus, act as full agonists of the peroxisome proliferator-activated receptor gamma. Unfortunately, they produce adverse effects, including weight gain, hepatic toxicity, and heart failure. Our group previously reported the design, synthesis, in silico evaluation, and acute oral toxicity test of two TZD derivatives, compounds 40 (C40) and 81 (C81), characterized as category 5 and 4, respectively, under the Globally Harmonized System. The aim of this study was to determine whether C40, C81, and a new compound, C4, act as euglycemic and antioxidant agents in male Wistar rats with streptozotocin-induced diabetes. The animals were randomly divided into six groups (n = 7): the control, those with diabetes and untreated, and those with diabetes and treated with pioglitazone, C40, C81, or C4 (daily for 21 days). At the end of the experiment, tissue samples were collected to quantify the level of glucose, insulin, triglycerides, total cholesterol, and liver enzymes, as well as enzymatic and nonenzymatic antioxidant activity. C4, without a hypoglycemic effect, displayed the best antioxidant activity. Whereas C81 could only attenuate the elevated level of blood glucose, C40 generated euglycemia by the end of the treatment. All compounds produced a significant decrease in triglycerides.
Collapse
|