1
|
Shao X, Huang Y, Xu R, He Q, Zhang M, He F, Wang D. ZASP: A Highly Compatible and Sensitive ZnCl 2 Precipitation-Assisted Sample Preparation Method for Proteomic Analysis. Mol Cell Proteomics 2024; 23:100837. [PMID: 39243857 PMCID: PMC11492125 DOI: 10.1016/j.mcpro.2024.100837] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 08/30/2024] [Accepted: 09/03/2024] [Indexed: 09/09/2024] Open
Abstract
Universal sample preparation for proteomic analysis that enables unbiased protein manipulation, flexible reagent use, and low protein loss is required to ensure the highest sensitivity of downstream liquid chromatography-mass spectrometry (LC-MS) analysis. To address these needs, we developed a ZnCl2 precipitation-assisted sample preparation method (ZASP) that depletes harsh detergents and impurities in protein solutions prior to trypsin digestion via 10 min of ZnCl2 and methanol-induced protein precipitation at room temperature (RT). ZASP can remove trypsin digestion and LC-MS incompatible detergents such as SDS, Triton X-100, and urea at high concentrations in solution and unbiasedly recover proteins independent of the amount of protein input. We demonstrated the sensitivity and reproducibility of ZASP in an analysis of samples with 1 μg to 1000 μg of proteins. Compared to commonly used sample preparation methods such as SDC-based in-solution digestion, acetone precipitation, FASP, and SP3, ZASP has proven to be an efficient approach. Here, we present ZASP, a practical, robust, and cost-effective proteomic sample preparation method that can be applied to profile different types of samples.
Collapse
Affiliation(s)
- Xianfeng Shao
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing, China; Beijing Proteome Research Center, Beijing, China; International Academy of Phronesis Medicine, Guangzhou, Guangdong, China; The π-Hub Infrastructure, Guangzhou, Guangdong, China
| | - Yuanxuan Huang
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing, China; Beijing Proteome Research Center, Beijing, China; International Academy of Phronesis Medicine, Guangzhou, Guangdong, China; The π-Hub Infrastructure, Guangzhou, Guangdong, China
| | - Rong Xu
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing, China; Guangzhou Laboratory, Guangzhou, Guangdong, China
| | - Qiqing He
- International Academy of Phronesis Medicine, Guangzhou, Guangdong, China; The π-Hub Infrastructure, Guangzhou, Guangdong, China
| | - Min Zhang
- Department of Dermatology, Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Fuchu He
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing, China; Beijing Proteome Research Center, Beijing, China; International Academy of Phronesis Medicine, Guangzhou, Guangdong, China; The π-Hub Infrastructure, Guangzhou, Guangdong, China; Guangzhou Laboratory, Guangzhou, Guangdong, China.
| | - Dongxue Wang
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing, China; Beijing Proteome Research Center, Beijing, China; International Academy of Phronesis Medicine, Guangzhou, Guangdong, China; The π-Hub Infrastructure, Guangzhou, Guangdong, China.
| |
Collapse
|
2
|
Hu YY, Xiao S, Zhou GC, Chen X, Wang B, Wang JH. Bioactive peptides in dry-cured ham: A comprehensive review of preparation methods, metabolic stability, safety, health benefits, and regulatory frameworks. Food Res Int 2024; 186:114367. [PMID: 38729727 DOI: 10.1016/j.foodres.2024.114367] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 03/29/2024] [Accepted: 04/17/2024] [Indexed: 05/12/2024]
Abstract
Dry-cured hams contain abundant bioactive peptides with significant potential for the development of functional foods. However, the limited bioavailability of food-derived bioactive peptides has hindered their utilization in health food development. Moreover, there is insufficient regulatory information regarding bioactive peptides and related products globally. This review summarizes diverse bioactive peptides derived from dry-cured ham and by-products originating from various countries and regions. The bioactivity, preparation techniques, bioavailability, and metabolic stability of these bioactive peptides are described, as well as the legal and regulatory frameworks in various countries. The primary objectives of this review are to dig deeper into the functionality of dry-cured ham and provide theoretical support for the commercialization of bioactive peptides from food sources, especially the dry-cured ham.
Collapse
Affiliation(s)
- Yao-Yao Hu
- School of Life Healthy and Technology, Dongguan University of Technology, Dongguan 523808, China; College of Biological Engineering, Dalian Polytechnic University, Dalian 116034, China
| | - Shan Xiao
- School of Life Healthy and Technology, Dongguan University of Technology, Dongguan 523808, China; College of Biological Engineering, Dalian Polytechnic University, Dalian 116034, China.
| | - Gui-Cheng Zhou
- School of Life Healthy and Technology, Dongguan University of Technology, Dongguan 523808, China; College of Biological Engineering, Dalian Polytechnic University, Dalian 116034, China
| | - Xuan Chen
- School of Life Healthy and Technology, Dongguan University of Technology, Dongguan 523808, China
| | - Bo Wang
- School of Life Healthy and Technology, Dongguan University of Technology, Dongguan 523808, China; Regional Brand Innovation & Development Institute of Dongguan Prepared Dishes
| | - Ji-Hui Wang
- School of Life Healthy and Technology, Dongguan University of Technology, Dongguan 523808, China; College of Biological Engineering, Dalian Polytechnic University, Dalian 116034, China; Regional Brand Innovation & Development Institute of Dongguan Prepared Dishes
| |
Collapse
|
3
|
Nelemans LC, Melo VA, Buzgo M, Bremer E, Simaite A. Antibody desolvation with sodium chloride and acetonitrile generates bioactive protein nanoparticles. PLoS One 2024; 19:e0300416. [PMID: 38483950 PMCID: PMC10939210 DOI: 10.1371/journal.pone.0300416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Accepted: 02/26/2024] [Indexed: 03/17/2024] Open
Abstract
About 30% of the FDA approved drugs in 2021 were protein-based therapeutics. However, therapeutic proteins can be unstable and rapidly eliminated from the blood, compared to conventional drugs. Furthermore, on-target but off-tumor protein binding can lead to off-tumor toxicity, lowering the maximum tolerated dose. Thus, for effective treatment therapeutic proteins often require continuous or frequent administration. To improve protein stability, delivery and release, proteins can be encapsulated inside drug delivery systems. These drug delivery systems protect the protein from degradation during (targeted) transport, prevent premature release and allow for long-term, sustained release. However, thus far achieving high protein loading in drug delivery systems remains challenging. Here, the use of protein desolvation with acetonitrile as an intermediate step to concentrate monoclonal antibodies for use in drug delivery systems is reported. Specifically, trastuzumab, daratumumab and atezolizumab were desolvated with high yield (∼90%) into protein nanoparticles below 100 nm with a low polydispersity index (<0.2). Their size could be controlled by the addition of low concentrations of sodium chloride between 0.5 and 2 mM. Protein particles could be redissolved in aqueous solutions and redissolved antibodies retained their binding activity as evaluated in cell binding assays and exemplified for trastuzumab in an ELISA.
Collapse
Affiliation(s)
- Levi Collin Nelemans
- R&D Center, InoCure s.r.o, Celákovice, Central Bohemian, Czech Republic
- Department of Hematology, University Medical Center Groningen/University of Groningen, Groningen, Groningen, The Netherlands
| | - Vinicio Alejandro Melo
- Department of Hematology, University Medical Center Groningen/University of Groningen, Groningen, Groningen, The Netherlands
| | - Matej Buzgo
- R&D Center, InoCure s.r.o, Celákovice, Central Bohemian, Czech Republic
| | - Edwin Bremer
- Department of Hematology, University Medical Center Groningen/University of Groningen, Groningen, Groningen, The Netherlands
| | - Aiva Simaite
- R&D Center, InoCure s.r.o, Celákovice, Central Bohemian, Czech Republic
| |
Collapse
|
4
|
Jia Z, Zhu X, Zhou Y, Wu J, Cao M, Hu C, Yu L, Xu R, Chen Z. Polypeptides from traditional Chinese medicine: Comprehensive review of perspective towards cancer management. Int J Biol Macromol 2024; 260:129423. [PMID: 38232868 DOI: 10.1016/j.ijbiomac.2024.129423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 12/26/2023] [Accepted: 01/09/2024] [Indexed: 01/19/2024]
Abstract
Cancer has always been a focus of global attention, and the difficulty of treatment and poor prognosis have always plagued humanity. Conventional chemotherapeutics and treatment with synthetic disciplines will cause adverse side effects and drug resistance. Therefore, searching for a safe, valid, and clinically effective drug is necessary. At present, some natural compounds have proved to have the potential to fight cancer. Polypeptides obtained from traditional Chinese medicine are good anti-cancer ingredients. The anticancer activity has been fully demonstrated in vivo and in vitro. However, most of the functional studies on traditional Chinese medicine polypeptides are at the stage of basic experimental research, and fewer of them have been applied to clinical trials. Hence, this review mainly discusses the chemical structure, extraction, separation and purification methods, the anti-cancer mechanism, and structure-activity relationships of traditional Chinese medicine polypeptides. It provides theoretical support for strengthening the rapid separation and purification and the overall efficacy and mechanism of action, as well as the industrialization and clinical application of traditional Chinese medicine polypeptides.
Collapse
Affiliation(s)
- Zhuolin Jia
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Xiaoli Zhu
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Ye Zhou
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Jie Wu
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Mayijie Cao
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Changjiang Hu
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Lingying Yu
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China.
| | - Runchun Xu
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China.
| | - Zhimin Chen
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China.
| |
Collapse
|
5
|
Ronca CL, Marques SS, Ritieni A, Giménez-Martínez R, Barreiros L, Segundo MA. Olive Oil Waste as a Source of Functional Food Ingredients: Assessing Polyphenolic Content and Antioxidant Activity in Olive Leaves. Foods 2024; 13:189. [PMID: 38254490 PMCID: PMC10814828 DOI: 10.3390/foods13020189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2023] [Revised: 12/31/2023] [Accepted: 01/03/2024] [Indexed: 01/24/2024] Open
Abstract
Around two million tons of olive oil are produced in Europe annually, with Portugal being among the top five European olive oil-producing countries. Olive oil production results in a substantial amount of waste in the form of olive leaves. These discarded olive leaves contain valuable phenolic compounds with antioxidant, anti-inflammatory, hypoglycaemic, neuroprotective, and antiproliferative properties. Due to their richness in polyphenols with health-promoting properties, olive leaves can be considered a potential functional food ingredient. Thus, sustainable practices for reusing olive leaf waste are in demand. In this study, the polyphenolic content in olive leaves from different Portuguese locations was determined using HPLC-UV-Vis after defining the best fit-for-purpose liquid extraction strategy. The differences in the in vitro antioxidant activity in these samples were determined by several methodologies based on radical scavenging (against 2,2'-azino-bis-3-ethylbenzthiazoline-6-sulphonic acid (ABTS), 2,2-diphenyl-2-picrylhydrazyl (DPPH), and peroxyl radical (ORAC)) and on reducing properties (cupric-reducing antioxidant capacity (CUPRAC), and Folin-Ciocalteu assay (FC)), to unveil the relationship between the profile and quantity of polyphenols with antioxidant mechanisms and their capacity. At last, the stability of extracted compounds upon lyophilization and exposition to surrogate biological fluids was assessed, envisioning the future incorporation of olive leaves extracted compounds in food products.
Collapse
Affiliation(s)
- Carolina L. Ronca
- LAQV, REQUIMTE, Department of Chemical Sciences, Faculty of Pharmacy, University of Porto, 4099-002 Porto, Portugal; (C.L.R.); (S.S.M.); (L.B.)
- Department of Pharmacy, Faculty of Pharmacy, University of Naples “Federico II”, 80138 Naples, Italy
- Department of Nutrition and Bromatology, School of Pharmacy, University of Granada, 18012 Granada, Spain;
| | - Sara S. Marques
- LAQV, REQUIMTE, Department of Chemical Sciences, Faculty of Pharmacy, University of Porto, 4099-002 Porto, Portugal; (C.L.R.); (S.S.M.); (L.B.)
| | - Alberto Ritieni
- Department of Pharmacy, Faculty of Pharmacy, University of Naples “Federico II”, 80138 Naples, Italy
| | - Rafael Giménez-Martínez
- Department of Nutrition and Bromatology, School of Pharmacy, University of Granada, 18012 Granada, Spain;
| | - Luisa Barreiros
- LAQV, REQUIMTE, Department of Chemical Sciences, Faculty of Pharmacy, University of Porto, 4099-002 Porto, Portugal; (C.L.R.); (S.S.M.); (L.B.)
- School of Health, Polytechnic Institute of Porto, 4200-072 Porto, Portugal
| | - Marcela A. Segundo
- LAQV, REQUIMTE, Department of Chemical Sciences, Faculty of Pharmacy, University of Porto, 4099-002 Porto, Portugal; (C.L.R.); (S.S.M.); (L.B.)
| |
Collapse
|
6
|
Garrido-Amador P, Stortenbeker N, Wessels HJCT, Speth DR, Garcia-Heredia I, Kartal B. Enrichment and characterization of a nitric oxide-reducing microbial community in a continuous bioreactor. Nat Microbiol 2023; 8:1574-1586. [PMID: 37429908 PMCID: PMC10390337 DOI: 10.1038/s41564-023-01425-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Accepted: 06/14/2023] [Indexed: 07/12/2023]
Abstract
Nitric oxide (NO) is a highly reactive and climate-active molecule and a key intermediate in the microbial nitrogen cycle. Despite its role in the evolution of denitrification and aerobic respiration, high redox potential and capacity to sustain microbial growth, our understanding of NO-reducing microorganisms remains limited due to the absence of NO-reducing microbial cultures obtained directly from the environment using NO as a substrate. Here, using a continuous bioreactor and a constant supply of NO as the sole electron acceptor, we enriched and characterized a microbial community dominated by two previously unknown microorganisms that grow at nanomolar NO concentrations and survive high amounts (>6 µM) of this toxic gas, reducing it to N2 with little to non-detectable production of the greenhouse gas nitrous oxide. These results provide insight into the physiology of NO-reducing microorganisms, which have pivotal roles in the control of climate-active gases, waste removal, and evolution of nitrate and oxygen respiration.
Collapse
Affiliation(s)
| | | | - Hans J C T Wessels
- Translational Metabolic Laboratory, Department of Laboratory Medicine, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Daan R Speth
- Max Planck Institute for Marine Microbiology, Bremen, Germany
| | | | - Boran Kartal
- Max Planck Institute for Marine Microbiology, Bremen, Germany.
- School of Science, Constructor University, Bremen, Germany.
| |
Collapse
|
7
|
Pu S, Hadinoto K. A comparative study of antisolvent versus salting-out precipitations of glycopeptide vancomycin: Precipitation efficiency and product qualities. POWDER TECHNOL 2023. [DOI: 10.1016/j.powtec.2022.118181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
8
|
Feng L, Wang Y, Yang J, Sun YF, Li YW, Ye ZH, Lin HB, Yang K. Overview of the preparation method, structure and function, and application of natural peptides and polypeptides. Biomed Pharmacother 2022; 153:113493. [DOI: 10.1016/j.biopha.2022.113493] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Revised: 07/26/2022] [Accepted: 07/27/2022] [Indexed: 02/06/2023] Open
|