1
|
Mooghali M, Stroud AM, Yoo DW, Barry BA, Grimshaw AA, Ross JS, Zhu X, Miller JE. Trustworthy and ethical AI-enabled cardiovascular care: a rapid review. BMC Med Inform Decis Mak 2024; 24:247. [PMID: 39232725 PMCID: PMC11373417 DOI: 10.1186/s12911-024-02653-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Accepted: 08/26/2024] [Indexed: 09/06/2024] Open
Abstract
BACKGROUND Artificial intelligence (AI) is increasingly used for prevention, diagnosis, monitoring, and treatment of cardiovascular diseases. Despite the potential for AI to improve care, ethical concerns and mistrust in AI-enabled healthcare exist among the public and medical community. Given the rapid and transformative recent growth of AI in cardiovascular care, to inform practice guidelines and regulatory policies that facilitate ethical and trustworthy use of AI in medicine, we conducted a literature review to identify key ethical and trust barriers and facilitators from patients' and healthcare providers' perspectives when using AI in cardiovascular care. METHODS In this rapid literature review, we searched six bibliographic databases to identify publications discussing transparency, trust, or ethical concerns (outcomes of interest) associated with AI-based medical devices (interventions of interest) in the context of cardiovascular care from patients', caregivers', or healthcare providers' perspectives. The search was completed on May 24, 2022 and was not limited by date or study design. RESULTS After reviewing 7,925 papers from six databases and 3,603 papers identified through citation chasing, 145 articles were included. Key ethical concerns included privacy, security, or confidentiality issues (n = 59, 40.7%); risk of healthcare inequity or disparity (n = 36, 24.8%); risk of patient harm (n = 24, 16.6%); accountability and responsibility concerns (n = 19, 13.1%); problematic informed consent and potential loss of patient autonomy (n = 17, 11.7%); and issues related to data ownership (n = 11, 7.6%). Major trust barriers included data privacy and security concerns, potential risk of patient harm, perceived lack of transparency about AI-enabled medical devices, concerns about AI replacing human aspects of care, concerns about prioritizing profits over patients' interests, and lack of robust evidence related to the accuracy and limitations of AI-based medical devices. Ethical and trust facilitators included ensuring data privacy and data validation, conducting clinical trials in diverse cohorts, providing appropriate training and resources to patients and healthcare providers and improving their engagement in different phases of AI implementation, and establishing further regulatory oversights. CONCLUSION This review revealed key ethical concerns and barriers and facilitators of trust in AI-enabled medical devices from patients' and healthcare providers' perspectives. Successful integration of AI into cardiovascular care necessitates implementation of mitigation strategies. These strategies should focus on enhanced regulatory oversight on the use of patient data and promoting transparency around the use of AI in patient care.
Collapse
Affiliation(s)
- Maryam Mooghali
- Section of General Internal Medicine, Department of Internal Medicine, Yale School of Medicine, New Haven, CT, USA.
- Yale Center for Outcomes Research and Evaluation (CORE), 195 Church Street, New Haven, CT, 06510, USA.
| | - Austin M Stroud
- Biomedical Ethics Research Program, Mayo Clinic, Rochester, MN, USA
| | - Dong Whi Yoo
- School of Information, Kent State University, Kent, OH, USA
| | - Barbara A Barry
- Robert D. and Patricia E. Kern Center for the Science of Health Care Delivery, Mayo Clinic, Rochester, MN, USA
- Division of Health Care Delivery Research, Mayo Clinic, Rochester, MN, USA
| | - Alyssa A Grimshaw
- Harvey Cushing/John Hay Whitney Medical Library, Yale University, New Haven, CT, USA
| | - Joseph S Ross
- Section of General Internal Medicine, Department of Internal Medicine, Yale School of Medicine, New Haven, CT, USA
- Department of Health Policy and Management, Yale School of Public Health, New Haven, CT, USA
| | - Xuan Zhu
- Robert D. and Patricia E. Kern Center for the Science of Health Care Delivery, Mayo Clinic, Rochester, MN, USA
| | - Jennifer E Miller
- Section of General Internal Medicine, Department of Internal Medicine, Yale School of Medicine, New Haven, CT, USA
| |
Collapse
|
2
|
Albinsaad LS, Alkhawajah AA, Abuageelah BM, Alkhalaf RA, Alfaifi MH, Oberi IA, Alnajjad AI, Albalawi IA, Alessa MY, Khan A. The Saudi Community View of the Use of Artificial Intelligence in Health Care. Ann Afr Med 2024; 23:343-351. [PMID: 39034557 PMCID: PMC11364311 DOI: 10.4103/aam.aam_192_23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 01/02/2024] [Accepted: 01/05/2024] [Indexed: 07/23/2024] Open
Abstract
OBJECTIVES Artificial intelligence (AI) holds the promise to revolutionize the field of medicine and enhance the well-being of countless patients. Its capabilities span various areas, including disease prevention, accurate diagnosis, and the development of innovative treatments. Moreover, AI has the potential to streamline health-care delivery and lower expenses. The community should be aware of the potential applications of AI in health care, so that they can advocate for its development and adoption. Hence, the objective of this study is to assess the community's perspectives regarding the utilization of AI in health care. METHODS A cross-sectional, questionnaire-based study was conducted in Saudi Arabia during the period of June to October 2023. The questionnaire was distributed to people on various social media platforms using a convenience sampling method. The collected data were analyzed using Statistical Package for the Social Sciences. RESULTS The study included 771 individuals, with 42.5% having a positive outlook on the use of AI in health care, 31.8% having a neutral view, and 7.5% having a negative view. The only factor associated with a positive opinion was regional differences (P = 0.006). Moreover, participants who used medical apps or programs (P = 0.026), wearables (P = 0.027), felt more confident in using technology (P < 0.001), enjoyed using technology (P < 0.001), found it easier to familiarize themselves with new devices or programs (P < 0.001), and had more knowledge about AI (P < 0.001) had more positive opinions regarding the use of AI in health care. CONCLUSIONS The study found that most Saudis, especially those who were familiar with the use of technology, support the use of AI in health care, with a positive or neutral view. Yet, targeted campaigns in certain regions are needed to educate the entire community about AI's potential benefits.
Collapse
Affiliation(s)
- Loai S. Albinsaad
- Department of Surgery, College of Medicine, King Faisal University, Al Ahsa, SAU
| | | | | | | | - Mona H. Alfaifi
- Department of Medicine and Surgery, Batterjee Medical College, Aseer, SAU
| | | | | | | | | | | |
Collapse
|
3
|
Mahesh Batra A, Reche A. A New Era of Dental Care: Harnessing Artificial Intelligence for Better Diagnosis and Treatment. Cureus 2023; 15:e49319. [PMID: 38143639 PMCID: PMC10748804 DOI: 10.7759/cureus.49319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Accepted: 11/23/2023] [Indexed: 12/26/2023] Open
Abstract
The integration of artificial intelligence (AI) into dental care holds the promise of revolutionizing the field by enhancing the accuracy of dental diagnosis and treatment. This paper explores the impact of AI in dental care, with a focus on its applications in diagnosis, treatment planning, and patient engagement. AI-driven dental imaging and radiography, computer-aided detection and diagnosis of dental conditions, and early disease detection and prevention are discussed in detail. Moreover, the paper delves into how AI assists in personalized treatment planning and provides predictive analytics for dental care. Ethical and privacy considerations, including data security, fairness, and regulatory aspects, are addressed, highlighting the need for a responsible and transparent approach to AI implementation. Finally, the paper underscores the potential for a collaborative partnership between AI and dental professionals to offer the best possible care to patients, making dental care more efficient, patient-centric, and effective. The advent of AI in dentistry presents a remarkable opportunity to improve oral health outcomes, benefiting both patients and the healthcare community.
Collapse
Affiliation(s)
- Aastha Mahesh Batra
- Dentistry, Sharad Pawar Dental College and Hospital, Datta Meghe Institute of Higher Education and Research, Wardha, IND
| | - Amit Reche
- Public Health Dentistry, Sharad Pawar Dental College and Hospital, Datta Meghe Institute of Higher Education and Research, Wardha, IND
| |
Collapse
|
4
|
Ardito V, Cappellaro G, Compagni A, Petracca F, Preti LM. Implementation of Machine Learning Applications in Health Care Organizations: Protocol for a Systematic Review of Empirical Studies. JMIR Res Protoc 2023; 12:e47971. [PMID: 37698910 PMCID: PMC10523208 DOI: 10.2196/47971] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 06/11/2023] [Accepted: 07/17/2023] [Indexed: 09/13/2023] Open
Abstract
BACKGROUND An increasing interest in machine learning (ML) has been observed among scholars and health care professionals. However, while ML-based applications have been shown to be effective and have the potential to change the delivery of patient care, their implementation in health care organizations is complex. There are several challenges that currently hamper the uptake of ML in daily practice, and there is currently limited knowledge on how these challenges have been addressed in empirical studies on implemented ML-based applications. OBJECTIVE The aim of this systematic literature review is twofold: (1) to map the ML-based applications implemented in health care organizations, with a focus on investigating the organizational dimensions that are relevant in the implementation process; and (2) to analyze the processes and strategies adopted to foster a successful uptake of ML. METHODS We developed this protocol following the PRISMA-P (Preferred Reporting Items for Systematic Review and Meta-Analysis Protocols) guidelines. The search was conducted on 3 databases (PubMed, Scopus, and Web of Science), considering a 10-year time frame (2013-2023). The search strategy was built around 4 blocks of keywords (artificial intelligence, implementation, health care, and study type). Based on the detailed inclusion criteria defined, only empirical studies documenting the implementation of ML-based applications used by health care professionals in clinical settings will be considered. The study protocol was registered in PROSPERO (International Prospective Register of Systematic Reviews). RESULTS The review is ongoing and is expected to be completed by September 2023. Data analysis is currently underway, and the first results are expected to be submitted for publication in November 2023. The study was funded by the European Union within the Multilayered Urban Sustainability Action (MUSA) project. CONCLUSIONS ML-based applications involving clinical decision support and automation of clinical tasks present unique traits that add several layers of complexity compared with earlier health technologies. Our review aims at contributing to the existing literature by investigating the implementation of ML from an organizational perspective and by systematizing a conspicuous amount of information on factors influencing implementation. INTERNATIONAL REGISTERED REPORT IDENTIFIER (IRRID) DERR1-10.2196/47971.
Collapse
Affiliation(s)
- Vittoria Ardito
- Center for Research on Health and Social Care Management (CERGAS), SDA Bocconi School of Management, Milan, Italy
| | - Giulia Cappellaro
- Center for Research on Health and Social Care Management (CERGAS), SDA Bocconi School of Management, Milan, Italy
- Department of Social and Political Sciences, Bocconi University, Milan, Italy
| | - Amelia Compagni
- Center for Research on Health and Social Care Management (CERGAS), SDA Bocconi School of Management, Milan, Italy
- Department of Social and Political Sciences, Bocconi University, Milan, Italy
| | - Francesco Petracca
- Center for Research on Health and Social Care Management (CERGAS), SDA Bocconi School of Management, Milan, Italy
| | - Luigi Maria Preti
- Center for Research on Health and Social Care Management (CERGAS), SDA Bocconi School of Management, Milan, Italy
| |
Collapse
|
5
|
Yearley AG, Goedmakers CMW, Panahi A, Doucette J, Rana A, Ranganathan K, Smith TR. FDA-approved machine learning algorithms in neuroradiology: A systematic review of the current evidence for approval. Artif Intell Med 2023; 143:102607. [PMID: 37673576 DOI: 10.1016/j.artmed.2023.102607] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 05/30/2023] [Accepted: 06/05/2023] [Indexed: 09/08/2023]
Abstract
Over the past decade, machine learning (ML) and artificial intelligence (AI) have become increasingly prevalent in the medical field. In the United States, the Food and Drug Administration (FDA) is responsible for regulating AI algorithms as "medical devices" to ensure patient safety. However, recent work has shown that the FDA approval process may be deficient. In this study, we evaluate the evidence supporting FDA-approved neuroalgorithms, the subset of machine learning algorithms with applications in the central nervous system (CNS), through a systematic review of the primary literature. Articles covering the 53 FDA-approved algorithms with applications in the CNS published in PubMed, EMBASE, Google Scholar and Scopus between database inception and January 25, 2022 were queried. Initial searches identified 1505 studies, of which 92 articles met the criteria for extraction and inclusion. Studies were identified for 26 of the 53 neuroalgorithms, of which 10 algorithms had only a single peer-reviewed publication. Performance metrics were available for 15 algorithms, external validation studies were available for 24 algorithms, and studies exploring the use of algorithms in clinical practice were available for 7 algorithms. Papers studying the clinical utility of these algorithms focused on three domains: workflow efficiency, cost savings, and clinical outcomes. Our analysis suggests that there is a meaningful gap between the FDA approval of machine learning algorithms and their clinical utilization. There appears to be room for process improvement by implementation of the following recommendations: the provision of compelling evidence that algorithms perform as intended, mandating minimum sample sizes, reporting of a predefined set of performance metrics for all algorithms and clinical application of algorithms prior to widespread use. This work will serve as a baseline for future research into the ideal regulatory framework for AI applications worldwide.
Collapse
Affiliation(s)
- Alexander G Yearley
- Harvard Medical School, 25 Shattuck St, Boston, MA 02115, USA; Computational Neuroscience Outcomes Center (CNOC), Department of Neurosurgery, Brigham and Women's Hospital, Harvard Medical School, 75 Francis St, Boston, MA 02115, USA.
| | - Caroline M W Goedmakers
- Computational Neuroscience Outcomes Center (CNOC), Department of Neurosurgery, Brigham and Women's Hospital, Harvard Medical School, 75 Francis St, Boston, MA 02115, USA; Department of Neurosurgery, Leiden University Medical Center, Albinusdreef 2, 2333 ZA Leiden, Netherlands
| | - Armon Panahi
- The George Washington University School of Medicine and Health Sciences, 2300 I St NW, Washington, DC 20052, USA
| | - Joanne Doucette
- Computational Neuroscience Outcomes Center (CNOC), Department of Neurosurgery, Brigham and Women's Hospital, Harvard Medical School, 75 Francis St, Boston, MA 02115, USA; School of Pharmacy, MCPHS University, 179 Longwood Ave, Boston, MA 02115, USA
| | - Aakanksha Rana
- Computational Neuroscience Outcomes Center (CNOC), Department of Neurosurgery, Brigham and Women's Hospital, Harvard Medical School, 75 Francis St, Boston, MA 02115, USA; Massachusetts Institute of Technology, 77 Massachusetts Ave, Cambridge, MA 02139, USA
| | - Kavitha Ranganathan
- Division of Plastic Surgery, Brigham and Women's Hospital, 75 Francis St, Boston, MA 02115, USA
| | - Timothy R Smith
- Harvard Medical School, 25 Shattuck St, Boston, MA 02115, USA; Computational Neuroscience Outcomes Center (CNOC), Department of Neurosurgery, Brigham and Women's Hospital, Harvard Medical School, 75 Francis St, Boston, MA 02115, USA
| |
Collapse
|
6
|
Vodanović M, Subašić M, Milošević D, Savić Pavičin I. Artificial Intelligence in Medicine and Dentistry. Acta Stomatol Croat 2023; 57:70-84. [PMID: 37288152 PMCID: PMC10243707 DOI: 10.15644/asc57/1/8] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Accepted: 03/01/2023] [Indexed: 09/14/2023] Open
Abstract
INTRODUCTION Artificial intelligence has been applied in various fields throughout history, but its integration into daily life is more recent. The first applications of AI were primarily in academia and government research institutions, but as technology has advanced, AI has also been applied in industry, commerce, medicine and dentistry. OBJECTIVE Considering that the possibilities of applying artificial intelligence are developing rapidly and that this field is one of the areas with the greatest increase in the number of newly published articles, the aim of this paper was to provide an overview of the literature and to give an insight into the possibilities of applying artificial intelligence in medicine and dentistry. In addition, the aim was to discuss its advantages and disadvantages. CONCLUSION The possibilities of applying artificial intelligence to medicine and dentistry are just being discovered. Artificial intelligence will greatly contribute to developments in medicine and dentistry, as it is a tool that enables development and progress, especially in terms of personalized healthcare that will lead to much better treatment outcomes.
Collapse
Affiliation(s)
- Marin Vodanović
- Department of Dental Anthropology, School of Dental Medicine, University of Zagreb, Croatia
- University Hospital Centre Zagreb, Croatia
| | - Marko Subašić
- Faculty of Electrical Engineering and Computing, University of Zagreb, Croatia
| | - Denis Milošević
- Faculty of Electrical Engineering and Computing, University of Zagreb, Croatia
| | - Ivana Savić Pavičin
- Department of Dental Anthropology, School of Dental Medicine, University of Zagreb, Croatia
- University Hospital Centre Zagreb, Croatia
| |
Collapse
|
7
|
Pesapane F, Rotili A, Valconi E, Agazzi GM, Montesano M, Penco S, Nicosia L, Bozzini A, Meneghetti L, Latronico A, Pizzamiglio M, Rossero E, Gaeta A, Raimondi S, Pizzoli SFM, Grasso R, Carrafiello G, Pravettoni G, Cassano E. Women’s perceptions and attitudes to the use of AI in breast cancer screening: a survey in a cancer referral centre. Br J Radiol 2022; 96:20220569. [DOI: 10.1259/bjr.20220569] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Objective: Although breast cancer screening can benefit from Artificial Intelligence (AI), it is still unknown whether, to which extent or under which conditions, the use of AI is going to be accepted by the general population. The aim of our study is to evaluate what the females who are eligible for breast cancer screening know about AI and how they perceive such innovation. Methods: We used a prospective survey consisting of a 11-multiple-choice questionnaire evaluating statistical associations with Chi-Square-test or Fisher-exact-test. Multinomial-logistic-regression was performed on items with more than two response categories. Odds ratio (OR) with 95% CI were computed to estimate the probability of a specific response according to patient’s characteristics. Results: In the 800 analysed questionnaires, 51% of respondents confirmed to have knowledge of AI. Of these, 88% expressed a positive opinion about its use in medicine. Non-Italian respondents were associated with the belief of having a deep awareness about AI more often than Italian respondents (OR = 1.91;95% CI[1.10–3.33]). Higher education level was associated with better opinions on the use of AI in medicine (OR = 4.69;95% CI[1.36–16.12]). According to 94% of respondents, the radiologists should always produce their own report on mammograms, whilst 77% agreed that AI should be used as a second reader. Most respondents (52%) considered that both the software developer and the radiologist should be held accountable for AI errors. Conclusions: Most of the females undergoing screening in our Institute approve the introduction of AI, although only as a support to radiologist, and not in substitution thereof. Yet, accountability in case of AI errors is still unsolved. advances in knowledge: This survey may be considered as a pilot-study for the development of large-scale studies to understand females’s demands and concerns about AI applications in breast cancer screening.
Collapse
Affiliation(s)
- Filippo Pesapane
- Breast Imaging Division, IEO European Institute of Oncology IRCCS, Milan, Italy
| | - Anna Rotili
- Breast Imaging Division, IEO European Institute of Oncology IRCCS, Milan, Italy
| | - Elena Valconi
- Diagnostic and Interventional Radiology Unit, Department of Diagnostic and Therapeutic Advanced Technology, Azienda Socio Sanitaria Territoriale Santi Paolo and Carlo Hospital, Milan, Italy
| | - Giorgio Maria Agazzi
- Diagnostic and Interventional Radiology Unit, Department of Diagnostic and Therapeutic Advanced Technology, Azienda Socio Sanitaria Territoriale Santi Paolo and Carlo Hospital, Milan, Italy
| | - Marta Montesano
- Breast Imaging Division, IEO European Institute of Oncology IRCCS, Milan, Italy
| | - Silvia Penco
- Breast Imaging Division, IEO European Institute of Oncology IRCCS, Milan, Italy
| | - Luca Nicosia
- Breast Imaging Division, IEO European Institute of Oncology IRCCS, Milan, Italy
| | - Anna Bozzini
- Breast Imaging Division, IEO European Institute of Oncology IRCCS, Milan, Italy
| | - Lorenza Meneghetti
- Breast Imaging Division, IEO European Institute of Oncology IRCCS, Milan, Italy
| | - Antuono Latronico
- Breast Imaging Division, IEO European Institute of Oncology IRCCS, Milan, Italy
| | - Maria Pizzamiglio
- Breast Imaging Division, IEO European Institute of Oncology IRCCS, Milan, Italy
| | - Eleonora Rossero
- Laboratorio dei Diritti Fondamentali, Collegio Carlo Alberto, Torino ER, Turin, Italy
| | - Aurora Gaeta
- Department of Experimental Oncology, IEO European Institute of Oncology IRCCS, Milan, Italy
| | - Sara Raimondi
- Department of Experimental Oncology, IEO European Institute of Oncology IRCCS, Milan, Italy
| | | | - Roberto Grasso
- Applied Research Division for Cognitive and Psychological Science, IEO European Institute of Oncology IRCCS, Milan, Italy
| | - Gianpaolo Carrafiello
- Department of Radiology and Department of Health Sciences, Fondazione IRCCS Cà Granda Ospedale Maggiore Policlinico and University of Milano, Milan, Italy
| | - Gabriella Pravettoni
- Dipartimento di Oncologia ed Emato Oncologia, Università degli studi di Milano, Milan, Italy
- Applied Research Division for Cognitive and Psychological Science, IEO European Institute of Oncology IRCCS, Milan, Italy
| | - Enrico Cassano
- Breast Imaging Division, IEO European Institute of Oncology IRCCS, Milan, Italy
| |
Collapse
|
8
|
The Good, the Bad, and the Invisible with Its Opportunity Costs: Introduction to the ‘J’ Special Issue on “the Impact of Artificial Intelligence on Law”. J 2022. [DOI: 10.3390/j5010011] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Scholars and institutions have been increasingly debating the moral and legal challenges of AI, together with the models of governance that should strike the balance between the opportunities and threats brought forth by AI, its ‘good’ and ‘bad’ facets. There are more than a hundred declarations on the ethics of AI and recent proposals for AI regulation, such as the European Commission’s AI Act, have further multiplied the debate. Still, a normative challenge of AI is mostly overlooked, and regards the underuse, rather than the misuse or overuse, of AI from a legal viewpoint. From health care to environmental protection, from agriculture to transportation, there are many instances of how the whole set of benefits and promises of AI can be missed or exploited far below its full potential, and for the wrong reasons: business disincentives and greed among data keepers, bureaucracy and professional reluctance, or public distrust in the era of no-vax conspiracies theories. The opportunity costs that follow this technological underuse is almost terra incognita due to the ‘invisibility’ of the phenomenon, which includes the ‘shadow prices’ of economy. This introduction provides metrics for such assessment and relates this work to the development of new standards for the field. We must quantify how much it costs not to use AI systems for the wrong reasons.
Collapse
|