1
|
Ancel L, Grison S, Gabillot O, Gueguen J, Svilar L, Guen BL, Gruel G, Benderitter M, Martin JC, Souidi M, Tamarat R, Flamant S, Benadjaoud MA. Metabolomics identifies plasma biomarkers of localized radiation injury. Sci Rep 2025; 15:2166. [PMID: 39819895 PMCID: PMC11739571 DOI: 10.1038/s41598-025-85717-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Accepted: 01/06/2025] [Indexed: 01/19/2025] Open
Abstract
A radiological accident may result in the development of a local skin radiation injury (LRI) which may evolve, depending on the dose, from dry desquamation to deep ulceration and necrosis through unpredictable inflammatory waves. Therefore, early diagnosis of victims of LRI is crucial for improving medical care efficiency. This preclinical study aims to identify circulating metabolites as biomarkers associated with LRI using a C57BL/6J mouse model of hind limb irradiation. More precisely, two independent mice cohorts were used to conduct a broad-spectrum profiling study followed by a suspect screening analysis performed on plasma metabolites by mass spectrometry. An integrative analysis was conducted through a multi-block sparse partial least square discriminant analysis (sPLS-DA) to establish multi-scale correlations between specific metabolites levels and biological, physiological (injury severity), and functional parameters (skin perfusion). The identified biomarker signature consists in a 6-metabolite panel including putrescine, uracil, 2,3-dihydroxybenzoate, 3-hydroxybenzoate, L-alanine and pyroglutamate, that can discriminate mice according to radiation dose and injury severity. Our results demonstrate relevant molecular signature associated with LRI in mice and support the use of plasma metabolites as suitable molecular biomarkers for LRI prognosis and diagnosis.
Collapse
Affiliation(s)
- Lucie Ancel
- Institut de Radioprotection et de Sureté Nucléaire (IRSN), PSE-SANTE/SERAMED/LRAcc, 31 av de la Division Leclerc, Fontenay-aux-Roses, 92260, France
| | - Stéphane Grison
- Institut de Radioprotection et de Sureté Nucléaire (IRSN), PSE-SANTE/SESANE/LRTox, Fontenay-aux-Roses, 92260, France
| | - Olivier Gabillot
- Institut de Radioprotection et de Sureté Nucléaire (IRSN), PSE-SANTE/SERAMED/LRAcc, 31 av de la Division Leclerc, Fontenay-aux-Roses, 92260, France
| | - Jules Gueguen
- Institut de Radioprotection et de Sureté Nucléaire (IRSN), PSE-SANTE/SERAMED/LRAcc, 31 av de la Division Leclerc, Fontenay-aux-Roses, 92260, France
| | - Ljubica Svilar
- Centre Cardiovasculaire et Nutrition (C2VN), CRIBIOM, Aix Marseille Université, Marseille, 13007, France
| | - Bernard Le Guen
- Électricité de France (EDF), DPN, 1 place Pleyel, Saint Denis, 93382, France
| | - Gaëtan Gruel
- Institut de Radioprotection et de Sureté Nucléaire (IRSN), PSE-SANTE/SERAMED, Fontenay-aux-Roses, 92260, France
| | - Marc Benderitter
- Institut de Radioprotection et de Sureté Nucléaire (IRSN), PSE-SANTE, Fontenay-aux-Roses, 92260, France
| | - Jean-Charles Martin
- C2VN, INRAE, INSERM, BIOMET, Aix Marseille Université, Marseille, 13007, France
| | - Maâmar Souidi
- Institut de Radioprotection et de Sureté Nucléaire (IRSN), PSE-SANTE/SERAMED/LRAcc, 31 av de la Division Leclerc, Fontenay-aux-Roses, 92260, France
| | - Radia Tamarat
- Institut de Radioprotection et de Sureté Nucléaire (IRSN), PSE-SANTE, Fontenay-aux-Roses, 92260, France
| | - Stéphane Flamant
- Institut de Radioprotection et de Sureté Nucléaire (IRSN), PSE-SANTE/SERAMED/LRAcc, 31 av de la Division Leclerc, Fontenay-aux-Roses, 92260, France
| | - Mohamed Amine Benadjaoud
- Institut de Radioprotection et de Sureté Nucléaire (IRSN), PSE-SANTE/SERAMED/LRAcc, 31 av de la Division Leclerc, Fontenay-aux-Roses, 92260, France.
| |
Collapse
|
2
|
Zong X, Zhu L, Wang Y, Wang J, Gu Y, Liu Q. Cohort Studies and Multi-omics Approaches to Low-Dose Ionizing Radiation-Induced Cardiovascular Disease: A Comprehensive Review. Cardiovasc Toxicol 2025; 25:148-165. [PMID: 39538046 DOI: 10.1007/s12012-024-09943-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Accepted: 10/30/2024] [Indexed: 11/16/2024]
Abstract
The effect of low-dose ionizing radiation exposure on the risk of cardiovascular disease (CVD) represents a significant concern in the field of radiation protection. The prevailing approach to mitigating the adverse effects of low-dose or low-dose-rate radiation does not currently incorporate the potential risk of CVD, despite the possibility that such risk may be a substantial contributor to overall health hazards. Current evidence suggests a potential association between radiation exposure and CVD; however, the overall findings remain inconclusive. This is particularly due to the uncertainty surrounding the influence of significant non-radiation risk factors on the associations reported in epidemiological studies. It is difficult to discern the underlying connection in observational epidemiology when there is substantial variation in baseline risk factors. The paucity of epidemiological research in this domain is being partially offset by the advancement of multi-omics approaches. These methods assist in identifying radiosensitive targets, comprehending underlying biological processes, and pinpointing biomarkers. This, in turn, fortifies the evidence gleaned from epidemiological studies. In this review, we delve into the body of epidemiological research pertaining to CVD induced by low-dose ionizing radiation and the application of multi-omics techniques. The integration of these two methodologies holds the promise of identifying specific molecules or biological pathways that can be employed to validate endpoints related to radiation risk assessment.
Collapse
Affiliation(s)
- Xumin Zong
- Institute of Radiation Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, No.238 Baidi Road, Nankai District, Tianjin, 300192, China
| | - Lin Zhu
- School of Basic Medical Sciences, Weifang Medical University, Shandong, 261000, China
| | - Yan Wang
- Institute of Radiation Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, No.238 Baidi Road, Nankai District, Tianjin, 300192, China
| | - Jinhan Wang
- Institute of Radiation Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, No.238 Baidi Road, Nankai District, Tianjin, 300192, China
| | - Yeqing Gu
- Institute of Radiation Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, No.238 Baidi Road, Nankai District, Tianjin, 300192, China.
| | - Qiang Liu
- Institute of Radiation Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, No.238 Baidi Road, Nankai District, Tianjin, 300192, China.
| |
Collapse
|
3
|
Maan K, Baghel R, Dhariwal S, Sharma A, Bakhshi R, Rana P. Metabolomics and transcriptomics based multi-omics integration reveals radiation-induced altered pathway networking and underlying mechanism. NPJ Syst Biol Appl 2023; 9:42. [PMID: 37689794 PMCID: PMC10492812 DOI: 10.1038/s41540-023-00305-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Accepted: 08/25/2023] [Indexed: 09/11/2023] Open
Abstract
Recent advancement in integrated multi-omics has significantly contributed to many areas of the biomedical field. Radiation research has also grasped uprising omics technologies in biomarker identification to aid in triage management. Herein, we have used a combinatorial multi-omics approach based on transcriptomics together with metabolomics and lipidomics of blood from murine exposed to 1 Gy (LD) and 7.5 Gy (HD) of total-body irradiation (TBI) for a comprehensive understanding of biological processes through integrated pathways and networking. Both omics displayed demarcation of HD group from controls using multivariate analysis. Dysregulated amino acids, various PC, PE and carnitine were observed along with many dysregulated genes (Nos2, Hmgcs2, Oxct2a, etc.). Joint-Pathway Analysis and STITCH interaction showed radiation exposure resulted in changes in amino acid, carbohydrate, lipid, nucleotide, and fatty acid metabolism. Elicited immune response was also observed by Gene Ontology. BioPAN has predicted Elovl5, Elovl6 and Fads2 for fatty acid pathways, only in HD group. Collectively, the combined omics approach facilitated a better understanding of processes uncovering metabolic pathways. Presumably, this is the first in radiation metabolomics that utilized an integrated omics approach following TBI in mice. Our work showed that omics integration could be a valuable tool for better comprehending the mechanism as well as molecular interactions.
Collapse
Affiliation(s)
- Kiran Maan
- Metabolomics Research Facility, Institute of Nuclear Medicine and Allied Sciences (INMAS), DRDO, Delhi, India
- Department of Biomedical Science, Shaheed Rajguru College of Applied Sciences for Women, University of Delhi, Delhi, India
| | - Ruchi Baghel
- Metabolomics Research Facility, Institute of Nuclear Medicine and Allied Sciences (INMAS), DRDO, Delhi, India
| | - Seema Dhariwal
- Metabolomics Research Facility, Institute of Nuclear Medicine and Allied Sciences (INMAS), DRDO, Delhi, India
| | - Apoorva Sharma
- Metabolomics Research Facility, Institute of Nuclear Medicine and Allied Sciences (INMAS), DRDO, Delhi, India
| | - Radhika Bakhshi
- Department of Biomedical Science, Shaheed Rajguru College of Applied Sciences for Women, University of Delhi, Delhi, India
| | - Poonam Rana
- Metabolomics Research Facility, Institute of Nuclear Medicine and Allied Sciences (INMAS), DRDO, Delhi, India.
| |
Collapse
|
4
|
Liu Z, Cologne J, Amundson SA, Noda A. Candidate biomarkers and persistent transcriptional responses after low and high dose ionizing radiation at high dose rate. Int J Radiat Biol 2023; 99:1853-1864. [PMID: 37549410 PMCID: PMC10845127 DOI: 10.1080/09553002.2023.2241897] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 06/26/2023] [Accepted: 07/10/2023] [Indexed: 08/09/2023]
Abstract
PURPOSE Development of an integrated time and dose model to explore the dynamics of gene expression alterations and identify biomarkers for biodosimetry following low- and high-dose irradiations at high dose rate. MATERIAL AND METHODS We utilized multiple transcriptome datasets (GSE8917, GSE43151, and GSE23515) from Gene Expression Omnibus (GEO) for identifying candidate biological dosimeters. A linear mixed-effects model with random intercept was used to explore the dose-time dynamics of transcriptional responses and to functionally characterize the time- and dose-dependent changes in gene expression. RESULTS We identified genes that are correlated with dose and time and discovered two clusters of genes that are either positively or negatively correlated with both dose and time based on the parameters of the model. Genes in these two clusters may have persistent transcriptional alterations. Twelve potential transcriptional markers for dosimetry-ARHGEF3, BAX, BBC3, CCDC109B, DCP1B, DDB2, F11R, GADD45A, GSS, PLK3, TNFRSF10B, and XPC were identified. Of these genes, BAX, GSS, and TNFRSF10B are positively associated with both dose and time course, have a persistent transcriptional response, and might be better biological dosimeters. CONCLUSIONS With the proposed approach, we may identify candidate biomarkers that change monotonically in relation to dose, have a persistent transcriptional response, and are reliable over a wide dose range.
Collapse
Affiliation(s)
- Zhenqiu Liu
- Department of Statistics, Radiation Effects Research Foundation, Hiroshima, Japan
| | - John Cologne
- Department of Statistics, Radiation Effects Research Foundation, Hiroshima, Japan
| | - Sally A. Amundson
- Center for Radiological Research, Columbia University Irving Medical Center, New York City, NY, USA
| | - Asao Noda
- Department of Molecular Biosciences, Radiation Effects Research Foundation, Hiroshima, Japan
| |
Collapse
|
5
|
Bolcaen J, Combrink N, Spoormans K, More S, Vandevoorde C, Fisher R, Kleynhans J. Biodosimetry, can it find its way to the nuclear medicine clinic? FRONTIERS IN NUCLEAR MEDICINE (LAUSANNE, SWITZERLAND) 2023; 3:1209823. [PMID: 39355046 PMCID: PMC11440959 DOI: 10.3389/fnume.2023.1209823] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Accepted: 07/06/2023] [Indexed: 10/03/2024]
Abstract
Personalised dosimetry based on molecular imaging is a field that has grown exponentially in the last decade due to the increasing success of Radioligand Therapy (RLT). Despite advances in imaging-based 3D dose estimation, the administered dose of a therapeutic radiopharmaceutical for RLT is often non-personalised, with standardised dose regimens administered every 4-6 weeks. Biodosimetry markers, such as chromosomal aberrations, could be used alongside image-based dosimetry as a tool for individualised dose estimation to further understand normal tissue toxicity and refine the administered dose. In this review we give an overview of biodosimetry markers that are used for blood dose estimation, followed by an overview of their current results when applied in RLT patients. Finally, an in-depth discussion will provide a perspective on the potential for the use of biodosimetry in the nuclear medicine clinic.
Collapse
Affiliation(s)
- Julie Bolcaen
- Radiation Biophysics Division, SSC Laboratory, iThemba Laboratory for Accelerator Based Sciences (iThemba LABS), Cape Town, South Africa
| | - Nastassja Combrink
- Nuclear Medicine Division, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
| | - Kaat Spoormans
- Nuclear Medicine and Molecular Imaging, Department of Imaging and Pathology, University of Leuven, Leuven, Belgium
| | - Stuart More
- Division of Nuclear Medicine, Department of Radiation Medicine, University of Cape Town, Cape Town, South Africa
| | - Charlot Vandevoorde
- Biophysics Departement, GSI Helmholtzzentrum für Schwerionenforschung GmbH, Darmstadt, Germany
| | - Randall Fisher
- Radiation Biophysics Division, SSC Laboratory, iThemba Laboratory for Accelerator Based Sciences (iThemba LABS), Cape Town, South Africa
| | - Janke Kleynhans
- Radiopharmaceutical Research, Department of Pharmacy and Pharmacology, Catholic University of Leuven, Leuven, Belgium
| |
Collapse
|
6
|
Azimzadeh O, Moertl S, Ramadan R, Baselet B, Laiakis EC, Sebastian S, Beaton D, Hartikainen JM, Kaiser JC, Beheshti A, Salomaa S, Chauhan V, Hamada N. Application of radiation omics in the development of adverse outcome pathway networks: an example of radiation-induced cardiovascular disease. Int J Radiat Biol 2022; 98:1722-1751. [PMID: 35976069 DOI: 10.1080/09553002.2022.2110325] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
BACKGROUND Epidemiological studies have indicated that exposure of the heart to doses of ionizing radiation as low as 0.5 Gy increases the risk of cardiac morbidity and mortality with a latency period of decades. The damaging effects of radiation to myocardial and endothelial structures and functions have been confirmed radiobiologically at high dose, but much less is known at low dose. Integration of radiation biology and epidemiology data is a recommended approach to improve the radiation risk assessment process. The adverse outcome pathway (AOP) framework offers a comprehensive tool to compile and translate mechanistic information into pathological endpoints which may be relevant for risk assessment at the different levels of a biological system. Omics technologies enable the generation of large volumes of biological data at various levels of complexity, from molecular pathways to functional organisms. Given the quality and quantity of available data across levels of biology, omics data can be attractive sources of information for use within the AOP framework. It is anticipated that radiation omics studies could improve our understanding of the molecular mechanisms behind the adverse effects of radiation on the cardiovascular system. In this review, we explored the available omics studies on radiation-induced cardiovascular disease (CVD) and their applicability to the proposed AOP for CVD. RESULTS The results of 80 omics studies published on radiation-induced CVD over the past 20 years have been discussed in the context of the AOP of CVD proposed by Chauhan et al. Most of the available omics data on radiation-induced CVD are from proteomics, transcriptomics, and metabolomics, whereas few datasets were available from epigenomics and multi-omics. The omics data presented here show great promise in providing information for several key events of the proposed AOP of CVD, particularly oxidative stress, alterations of energy metabolism, extracellular matrix and vascular remodeling. CONCLUSIONS The omics data presented here shows promise to inform the various levels of the proposed AOP of CVD. However, the data highlight the urgent need of designing omics studies to address the knowledge gap concerning different radiation scenarios, time after exposure and experimental models. This review presents the evidence to build a qualitative omics-informed AOP and provides views on the potential benefits and challenges in using omics data to assess risk-related outcomes.
Collapse
Affiliation(s)
- Omid Azimzadeh
- Federal Office for Radiation Protection (BfS), Section Radiation Biology, 85764 Neuherberg, Germany
| | - Simone Moertl
- Federal Office for Radiation Protection (BfS), Section Radiation Biology, 85764 Neuherberg, Germany
| | - Raghda Ramadan
- Institute for Environment, Health and Safety, Radiobiology Unit, Belgian Nuclear Research Centre (SCK CEN), Mol, Belgium
| | - Bjorn Baselet
- Institute for Environment, Health and Safety, Radiobiology Unit, Belgian Nuclear Research Centre (SCK CEN), Mol, Belgium
| | - Evagelia C Laiakis
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University, Washington, DC 20057, USA.,Department of Biochemistry and Molecular and Cellular Biology, Georgetown University, Washington, DC 20057, USA
| | | | | | - Jaana M Hartikainen
- School of Medicine, Institute of Clinical Medicine, Pathology and Forensic Medicine, and Translational Cancer Research Area, University of Eastern Finland, Kuopio, Finland
| | - Jan Christian Kaiser
- Helmholtz Zentrum München, Institute of Radiation Medicine (HMGU-IRM), 85764 Neuherberg, Germany
| | - Afshin Beheshti
- KBR, Space Biosciences Division, NASA Ames Research Center, Moffett Field, CA, 94035, USA.,Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, 02142, USA
| | - Sisko Salomaa
- Department of Environmental and Biological Sciences, University of Eastern Finland, Kuopio, Finland
| | - Vinita Chauhan
- Environmental Health Science Research Bureau, Health Canada, Ottawa, Ontario, Canada
| | - Nobuyuki Hamada
- Biology and Environmental Chemistry Division, Sustainable System Research Laboratory, Central Research Institute of Electric Power Industry (CRIEPI), Komae, Tokyo 201-8511, Japan
| |
Collapse
|
7
|
Akh LA, Ishak MO, Harris JF, Glaros TG, Sasiene ZJ, Mach PM, Lilley LM, McBride EM. -Omics potential of in vitro skin models for radiation exposure. Cell Mol Life Sci 2022; 79:390. [PMID: 35776214 PMCID: PMC11073334 DOI: 10.1007/s00018-022-04394-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Revised: 05/12/2022] [Accepted: 05/24/2022] [Indexed: 11/12/2022]
Abstract
There is a growing need to uncover biomarkers of ionizing radiation exposure that leads to a better understanding of how exposures take place, including dose type, rate, and time since exposure. As one of the first organs to be exposed to external sources of ionizing radiation, skin is uniquely positioned in terms of model systems for radiation exposure study. The simultaneous evolution of both MS-based -omics studies, as well as in vitro 3D skin models, has created the ability to develop a far more holistic understanding of how ionizing radiation affects the many interconnected biomolecular processes that occur in human skin. However, there are a limited number of studies describing the biomolecular consequences of low-dose ionizing radiation to the skin. This review will seek to explore the current state-of-the-art technology in terms of in vitro 3D skin models, as well as track the trajectory of MS-based -omics techniques and their application to ionizing radiation research, specifically, the search for biomarkers within the low-dose range.
Collapse
Affiliation(s)
- Leyla A Akh
- Biosecurity and Public Health Group, Bioscience Division, Los Alamos National Laboratory, Los Alamos, NM, 87545, USA
| | - Mohammad O Ishak
- Biosecurity and Public Health Group, Bioscience Division, Los Alamos National Laboratory, Los Alamos, NM, 87545, USA
| | - Jennifer F Harris
- Biosecurity and Public Health Group, Bioscience Division, Los Alamos National Laboratory, Los Alamos, NM, 87545, USA
| | - Trevor G Glaros
- Bioenergy and Biome Sciences Group, Bioscience Division, Los Alamos National Laboratory, Los Alamos, NM, 87545, USA
| | - Zachary J Sasiene
- Bioenergy and Biome Sciences Group, Bioscience Division, Los Alamos National Laboratory, Los Alamos, NM, 87545, USA
| | - Phillip M Mach
- Bioenergy and Biome Sciences Group, Bioscience Division, Los Alamos National Laboratory, Los Alamos, NM, 87545, USA
| | - Laura M Lilley
- Physical Chemistry and Applied Spectroscopy Group, Chemistry Division, Los Alamos National Laboratory, Los Alamos, NM, 87545, USA.
| | - Ethan M McBride
- Bioenergy and Biome Sciences Group, Bioscience Division, Los Alamos National Laboratory, Los Alamos, NM, 87545, USA.
| |
Collapse
|