1
|
Panetier A, Bosser P, Khenchaf A. Sensitivity of Shipborne GNSS Estimates to Processing Modeling Based on Simulated Dataset. SENSORS (BASEL, SWITZERLAND) 2023; 23:6605. [PMID: 37514899 PMCID: PMC10383897 DOI: 10.3390/s23146605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 07/17/2023] [Accepted: 07/21/2023] [Indexed: 07/30/2023]
Abstract
The atmospheric water vapor is commonly monitored from ground Global Navigation Satellite System (GNSS) measurements, by retrieving the tropospheric delay under the Zenith Wet Delay (ZWD) component, linked to the water vapor content in the atmosphere. In recent years, the GNSS ZWD retrieval has been performed on shipborne antennas to gather more atmospheric data above the oceans for climatology and meteorology study purposes. However, when analyzing GNSS data acquired by a moving antenna, it is more complex to decorrelate the height of the antenna and the ZWD during the Precise Point Positioning (PPP) processing. Therefore, the observation modeling and processing parametrization must be tuned. This study addresses the impact of modeling on the estimation of height and ZWD from the simulation of shipborne GNSS measurements. The GNSS simulation is based on an authors-designed simulator presented in this article. We tested different processing models (elevation cut-off angle, elevation weighting function, and random walk of ZWD) and simulation configurations (the constellations used, the sampling of measurements, the location of the antenna, etc.). According to our results, we recommend processing shipborne GNSS measurements with 3° of cut-off angle, elevation weighting function square root of sine, and an average of 5 mm·h-1/2 of random walk on ZWD, the latter being specifically adapted to mid-latitudes but which could be extended to other areas. This processing modeling will be applied in further studies to monitor the distribution of water vapor above the oceans from systematic analysis of shipborne GNSS measurements.
Collapse
Affiliation(s)
- Aurélie Panetier
- PIM UMR 6285 CNRS, Lab-STICC (Laboratoire des sciences et techniques de l'information, de la communication et de la connaissance), ENSTA Bretagne, 29200 Brest, France
| | - Pierre Bosser
- M3 UMR 6285 CNRS, Lab-STICC (Laboratoire des sciences et techniques de l'information, de la communication et de la connaissance), ENSTA Bretagne, 29200 Brest, France
| | - Ali Khenchaf
- PIM UMR 6285 CNRS, Lab-STICC (Laboratoire des sciences et techniques de l'information, de la communication et de la connaissance), ENSTA Bretagne, 29200 Brest, France
| |
Collapse
|
2
|
Tomaštík J, Everett T. Static Positioning under Tree Canopy Using Low-Cost GNSS Receivers and Adapted RTKLIB Software. SENSORS (BASEL, SWITZERLAND) 2023; 23:3136. [PMID: 36991847 PMCID: PMC10056071 DOI: 10.3390/s23063136] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 03/13/2023] [Accepted: 03/14/2023] [Indexed: 06/19/2023]
Abstract
The decrease in costs and dimensions of GNSS receivers has enabled their adoption for a very wide range of users. Formerly mediocre positioning performance is benefiting from recent technology advances, namely the adoption of multi-constellation, multi-frequency receivers. In our study, we evaluate signal characteristics and horizontal accuracies achievable with two low-cost receivers-a Google Pixel 5 smartphone and a u-Blox ZED F9P standalone receiver. The considered conditions include open area with nearly optimal signal reception, but also locations with differing amounts of tree canopy. GNSS data were acquired using ten 20 min observations under leaf-on and leaf-off conditions. Post-processing in static mode was conducted using the Demo5 fork of the RTKLIB open source software, which is adapted for usage with lower quality measurement data. The F9P receiver provided consistent results with sub-decimeter median horizontal errors even under tree canopy. The errors for the Pixel 5 smartphone were under 0.5 m under open-sky conditions and around 1.5 m under vegetation canopy. The adaptation of the post-processing software to lower quality data was proven crucial, especially for the smartphone. In terms of signal quality (carrier-to-noise density, multipath), the standalone receiver provided significantly better data than the smartphone.
Collapse
Affiliation(s)
- Julián Tomaštík
- Department of Forest Resources Planning and Informatics, Faculty of Forestry, Technical University in Zvolen, 960 01 Zvolen, Slovakia
| | | |
Collapse
|
3
|
Hamza V, Stopar B, Sterle O, Pavlovčič-Prešeren P. Low-Cost Dual-Frequency GNSS Receivers and Antennas for Surveying in Urban Areas. SENSORS (BASEL, SWITZERLAND) 2023; 23:2861. [PMID: 36905063 PMCID: PMC10007599 DOI: 10.3390/s23052861] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Revised: 03/01/2023] [Accepted: 03/03/2023] [Indexed: 06/18/2023]
Abstract
Low-cost dual-frequency global navigation satellite system (GNSS) receivers have recently been tested in various positioning applications. Considering that these sensors can now provide high positioning accuracy at a lower cost, they can be considered an alternative to high-quality geodetic GNSS devices. The main objectives of this work were to analyze the differences between geodetic and low-cost calibrated antennas on the quality of observations from low-cost GNSS receivers and to evaluate the performance of low-cost GNSS devices in urban areas. In this study, a simple RTK2B V1 board u-blox ZED-F9P (Thalwil, Switzerland) was tested in combination with a low-cost calibrated and geodetic antenna in open-sky and adverse conditions in urban areas, while a high-quality geodetic GNSS device was used as a reference for comparison. The results of the observation quality check show that low-cost GNSS instruments have a lower carrier-to-noise ratio (C/N0) than geodetic instruments, especially in the urban areas where the difference is larger and in favor of the geodetic GNSS instruments. The root-mean-square error (RMSE) of the multipath error in the open sky is twice as high for low-cost as for geodetic instruments, while this difference is up to four times greater in urban areas. The use of a geodetic GNSS antenna does not show a significant improvement in the C/N0 and multipath of low-cost GNSS receivers. However, the ambiguity fix ratio is larger when geodetic antennas are used, with a difference of 1.5% and 18.4% for the open-sky and urban conditions, respectively. It should be noted that float solutions may become more evident when low-cost equipment is used, especially for short sessions and in urban areas with more multipath. In relative positioning mode, low-cost GNSS devices were able to provide horizontal accuracy lower than 10 mm in urban areas in 85% of sessions, while the vertical and spatial accuracy was lower than 15 mm in 82.5% and 77.5% of the sessions, respectively. In the open sky, low-cost GNSS receivers achieve a horizontal, vertical, and spatial accuracy of 5 mm for all sessions considered. In RTK mode, positioning accuracy varies between 10-30 mm in the open-sky and urban areas, while better performance is demonstrated for the former.
Collapse
Affiliation(s)
- Veton Hamza
- Faculty of Civil and Geodetic Engineering, University of Ljubljana, 1000 Ljubljana, Slovenia
| | | | | | | |
Collapse
|
4
|
Evaluation of Forest Features Determining GNSS Positioning Accuracy of a Novel Low-Cost, Mobile RTK System Using LiDAR and TreeNet. REMOTE SENSING 2022. [DOI: 10.3390/rs14122856] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Accurate positioning is one of the main components and challenges for precision forestry. This study was established to test the feasibility of a low-cost GNSS receiver, u-blox ZED-F9P, in movable RTK mode with features that determine its positioning accuracy following logging trails in the forest environment. The accuracy of the low-cost receiver was controlled via a geodetic-grade receiver and high-density LiDAR data. The features of nearby logging trails were extracted from the LiDAR data in three main categories: tree characteristics; ground-surface conditions; and crown-surface conditions. An object-based TreeNet approach was used to explore the influential features of the receiver’s positioning accuracy. The results of the TreeNet model indicated that tree height, ground elevation, aspect, canopy-surface elevation, and tree density were the top influencing features. The partial dependence plots showed that tree height above 14 m, ground elevation above 134 m, western direction, canopy-surface elevation above 138 m, and tree density above 30% significantly increased positioning errors by the low-cost receiver over southern Finland. Overall, the low-cost receiver showed high performance in acquiring reliable and consistent positions, when integrated with LiDAR data. The system has a strong potential for navigating machinery in the pathway of precision harvesting in commercial forests.
Collapse
|
5
|
Sanna G, Pisanu T, Garau S. Behavior of Low-Cost Receivers in Base-Rover Configuration with Geodetic-Grade Antennas. SENSORS (BASEL, SWITZERLAND) 2022; 22:2779. [PMID: 35408394 PMCID: PMC9002666 DOI: 10.3390/s22072779] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Revised: 03/31/2022] [Accepted: 04/02/2022] [Indexed: 02/05/2023]
Abstract
The main goal of this research was to evaluate the performances of the ZED-F9P-Ublox low-cost GNSS receiver in a base-rover real configuration. We realized a base configuration with two permanent stations based on the ZED-F9P and two geodetic antennas and the rover configuration based on another ZED-F9P and an ANN-MB-00-00 Multi-band (L1, L2/E5b/B2I) active GNSS u-blox antenna. In the calculation of the reference stations, we compared the solutions with the ZED-F9P receiver and a professional receiver. Comparison showed greater variability in the solutions, but the coordinate values were in very good agreement. Standard deviations were in the order of a few millimeters. On the rover side, two car tests were performed in two different environments, one in an extra-urban environment with a long baseline of approximately 30 km in an open sky area with varying visibility and shielded locations, the other one in an urban area around a circle approximately 10 km in diameter with the presence of buildings and open sectors. The results of the measurements were very good, with more than 95% of fixed solutions in real-time and a time to fix on reacquisition of 1 or 2 s. Moreover, real-time kinematic solutions were in good agreement with the post-processed ones, showing that less than 5% of differences were above 30 mm in the horizontal component and 100 mm in the vertical component.
Collapse
Affiliation(s)
- Giannina Sanna
- Department of Civil, Environmental Engineering and Architecture, University of Cagliari, 09123 Cagliari, Italy
- National Institute for Astrophysics, Astronomical Observatory of Cagliari, 09047 Selargius, Italy;
| | - Tonino Pisanu
- National Institute for Astrophysics, Astronomical Observatory of Cagliari, 09047 Selargius, Italy;
| | | |
Collapse
|
6
|
Krietemeyer A, van der Marel H, van de Giesen N, ten Veldhuis MC. A Field Calibration Solution to Achieve High-Grade-Level Performance for Low-Cost Dual-Frequency GNSS Receiver and Antennas. SENSORS (BASEL, SWITZERLAND) 2022; 22:2267. [PMID: 35336435 PMCID: PMC8954006 DOI: 10.3390/s22062267] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Revised: 03/03/2022] [Accepted: 03/11/2022] [Indexed: 02/04/2023]
Abstract
Low-cost dual-frequency receivers and antennas have created opportunities for a wide range of new applications, in regions and disciplines where traditional GNSS equipment is unaffordable. However, the major drawback of using low-cost antenna equipment is that antenna phase patterns are typically poorly defined. Therefore, the noise in tropospheric zenith delay and coordinate time series is increased and systematic errors may occur. Here, we present a field calibration method that fully relies on low-cost solutions. It does not require costly software, uses low-cost equipment (~500 Euros), requires limited specialist expertise, and takes complex processing steps into the cloud. The application is more than just a relative antenna calibration: it is also a means to assess the quality and performance of the antenna, whether this is at a calibration site or directly in the field. We cover PCV calibrations, important for deformation monitoring, GNSS meteorology and positioning, and the computation of PCOs when the absolute position is of interest. The method is made available as an online web service. The performance of the calibration method is presented for a range of antennas of different quality and price in combination with a low-cost dual-frequency receiver. Carrier phase residuals of the low-cost antennas are reduced by 11-34% on L1 and 19-39% on L2, depending on the antenna type and ground plane used. For the cheapest antenna, when using a circular ground plane, the L1 residual is reduced from 3.85 mm before to 3.41 mm after calibration, and for L2 from 5.34 mm to 4.3 mm. The calibration reduces the Median Absolute Deviations (MADs) of the low-cost antennas in the vertical direction using Post Processed Kinematic (PPK) by 20-24%. For the cheapest antenna, the MAD is reduced from 5.6 to 3.8 mm, comparable to a geodetic-grade antenna (3.5 mm MAD). The calibration also has a positive impact on the Precise Point Positioning (PPP) results, delivering more precise results and reducing height biases.
Collapse
Affiliation(s)
- Andreas Krietemeyer
- Faculty of Civil Engineering, Delft University of Technology, 2628 CN Delft, The Netherlands; (H.v.d.M.); (N.v.d.G.); (M.-C.t.V.)
- R&D Department of Seismology and Acoustics, Royal Netherlands Meteorological Institute (KNMI), Utrechtseweg 297, 3731 GA De Bilt, The Netherlands
| | - Hans van der Marel
- Faculty of Civil Engineering, Delft University of Technology, 2628 CN Delft, The Netherlands; (H.v.d.M.); (N.v.d.G.); (M.-C.t.V.)
| | - Nick van de Giesen
- Faculty of Civil Engineering, Delft University of Technology, 2628 CN Delft, The Netherlands; (H.v.d.M.); (N.v.d.G.); (M.-C.t.V.)
| | - Marie-Claire ten Veldhuis
- Faculty of Civil Engineering, Delft University of Technology, 2628 CN Delft, The Netherlands; (H.v.d.M.); (N.v.d.G.); (M.-C.t.V.)
| |
Collapse
|
7
|
Experimental Evaluation of Smartphone Accelerometer and Low-Cost Dual Frequency GNSS Sensors for Deformation Monitoring. SENSORS 2021; 21:s21237946. [PMID: 34883950 PMCID: PMC8659869 DOI: 10.3390/s21237946] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Revised: 11/21/2021] [Accepted: 11/22/2021] [Indexed: 12/02/2022]
Abstract
Smartphone accelerometers and low-cost Global Navigation Satellite System (GNSS) equipment have faced rapid and important advancement, opening a new door to deformation monitoring applications such as landslide, plate tectonics and structural health monitoring (SHM). The precision potential and operational feasibility of the equipment play an important role in the decision making of campaigning for affordable solutions. This paper focuses on the evaluation of the empirical precision, including (auto)time correlation, of a common smartphone accelerometer (Bosch BMI160) and a low-cost dual frequency GNSS reference-rover pair (u-blox ZED-F9P) set to operate at high rates (50 and 5 Hz, respectively). Additionally, a high-rate (5 Hz) GPS-only baseline-based multipath (MP) correction is proposed for effectively removing a large part of this error and allowing to correctly determine the instrumental noise of the GNSS sensor. Furthermore, the benefit of smartphone-based validation for the tracking of dynamic displacements is addressed. The estimated East-North-Up (ENU) precision values (σ^) of ±7.7, 8.1 and 9.6 mms2 are comparable with the declared precision potential (σ) of the smartphone accelerometer of ±8.8mms2. Furthermore, the acceleration noise shows only mild traces of (auto)correlation. The MP-corrected 3D (ENU) empirical precision values of ±2.6, 3.6 and 6.7 mm were found to be better by 30–40% than the straight-out-of box precision of the GNSS sensor, attesting the usefulness of the MP correction. The GNSS sensors output position information with time correlation of typically tens of seconds. The results indicate exceptional precision potential of these low-power-consuming, small-scale, affordable sensors set to operate at a high-rate over small regions. The smartphone-based dynamic displacement validation shows that GNSS data of a low-cost sensor at a 5 Hz sampling rate can be successfully used for tracking dynamic processes.
Collapse
|
8
|
Kinematic Zenith Tropospheric Delay Estimation with GNSS PPP in Mountainous Areas. SENSORS 2021; 21:s21175709. [PMID: 34502600 PMCID: PMC8434461 DOI: 10.3390/s21175709] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Revised: 08/12/2021] [Accepted: 08/19/2021] [Indexed: 12/04/2022]
Abstract
The use of global navigation satellite systems (GNSS) precise point positioning (PPP) to estimate zenith tropospheric delay (ZTD) profiles in kinematic vehicular mode in mountainous areas is investigated. Car-mounted multi-constellation GNSS receivers are employed. The Natural Resources Canada Canadian Spatial Reference System PPP (CSRS-PPP) online service that currently processes dual-frequency global positioning system (GPS) and Global’naya Navigatsionnaya Sputnikovaya Sistema (GLONASS) measurements and is now capable of GPS integer ambiguity resolution is used. An offline version that can process the above and Galileo measurements simultaneously, including Galileo integer ambiguity resolution is also tested to evaluate the advantage of three constellations. A multi-day static data set observed under open sky is first tested to determine performance under ideal conditions. Two long road profile tests conducted in kinematic mode are then analyzed to assess the capability of the approach. The challenges of ZTD kinematic profiling are numerous, namely shorter data sets, signal shading due to topography and forests of conifers along roads, and frequent losses of phase lock requiring numerous but not always successful integer ambiguity re-initialization. ZTD profiles are therefore often only available with float ambiguities, reducing system observability. Occasional total interruption of measurement availability results in profile discontinuities. CSRS-PPP outputs separately the zenith hydrostatic or dry delay (ZHD) and water vapour content or zenith wet delay (ZWD). The two delays are analyzed separately, with emphasis on the more unpredictable and highly variable ZWD, especially in mountainous areas. The estimated delays are compared with the Vienna Mapping Function 1 (VMF1), which proves to be highly effective to model the large-scale profile variations in the Canadian Rockies, the main contribution of GNSS PPP being the estimation of higher frequency ZWD components. Of the many conclusions drawn from the field experiments, it is estimated that kinematic profiles are generally determined with accuracy of 10 to 20 mm, depending on the signal harshness of the environment.
Collapse
|
9
|
Janos D, Kuras P. Evaluation of Low-Cost GNSS Receiver under Demanding Conditions in RTK Network Mode. SENSORS 2021; 21:s21165552. [PMID: 34450997 PMCID: PMC8401267 DOI: 10.3390/s21165552] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Revised: 08/16/2021] [Accepted: 08/16/2021] [Indexed: 11/16/2022]
Abstract
Positioning with low-cost GNSS (Global Navigation Satellite System) receivers is becoming increasingly popular in many engineering applications. In particular, dual-frequency receivers, which receive signals of all available satellite systems, offer great possibilities. The main objective of this research was to evaluate the accuracy of a position determination using low-cost receivers in different terrain conditions. The u-blox ZED-F9P receiver was used for testing, with the satellite signal supplied by both a dedicated u-blox ANN-MB-00 low-cost patch antenna and the Leica AS10 high-precision geodetic one. A professional Leica GS18T geodetic receiver was used to acquire reference satellite data. In addition, on the prepared test base, observations were made using the Leica MS50 precise total station, which provided higher accuracy and stability of measurement than satellite positioning. As a result, it was concluded that the ZED-F9P receiver equipped with a patch antenna is only suitable for precision measurements in conditions with high availability of open sky. However, the configuration of this receiver with a geodetic-grade antenna significantly improves the quality of results, beating even professional geodetic equipment. In most cases of the partially obscured horizon, a high precision positioning was obtained, making the ZED-F9P a valuable alternative to the high-end geodetic receivers in many applications.
Collapse
|
10
|
Performance Evaluation of Low-Cost Multi-Frequency GNSS Receivers and Antennas for Displacement Detection. APPLIED SCIENCES-BASEL 2021. [DOI: 10.3390/app11146666] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Low-cost Global Navigation Satellite System (GNSS) receivers are currently used in various engineering applications. These low-cost devices are regarded as suitable sensors for applications in areas with a high risk of instrument damage. The main objectives of this research were to identify the size of displacements that can be detected in relative and absolute positioning modes by low-cost GNSS instruments and to compare the results of selected antennas. Additionally, geodetic and low-cost GNSS instruments were compared in the level of observations. For this study, low-cost SimpleRTK2B V1 boards, which house ZED-F9P GNSS chips, and three low-cost antennas, namely, Survey, Tallysman TW3882, and Survey Calibrated, were selected. While antenna calibration parameters are known for the last antenna, this is not the case for the first two. For testing purposes, a geodetic network consisting of four points was established; horizontal and vertical movements were imposed by a special mechanism with high accuracy. In relative positioning mode, the results indicate that the Survey Calibrated antenna can detect horizontal and vertical displacements with sizes of 4 mm, and 6 mm, respectively. In the detection of horizontal displacements, the performance of the Survey antenna was not as good as that of Tallysman, and the sizes of detected displacements were 6 mm and 4 mm for the first, and second antennas, respectively. Vertical displacements of 9 mm were detected using both Survey and Tallysman antennas. In absolute positioning mode, Survey Calibrated also had better performance than the Tallysman antenna, and spatial displacements of 20 mm or greater were detected by low-cost GNSS instruments. The observations made with low-cost and geodetic GNSS instruments were compared, and the latter showed better performance. However, the differences in cycle slips and the noise of phase observations were inferior. Considering their cost and proven performance, it can be concluded that such sensors can be considered for setting up a highly accurate but low-cost geodetic monitoring system.
Collapse
|
11
|
Hamza V, Stopar B, Sterle O. Testing the Performance of Multi-Frequency Low-Cost GNSS Receivers and Antennas. SENSORS 2021; 21:s21062029. [PMID: 33809368 PMCID: PMC7998556 DOI: 10.3390/s21062029] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Revised: 03/08/2021] [Accepted: 03/09/2021] [Indexed: 11/16/2022]
Abstract
Global Navigation Satellite System (GNSS) low-cost multi-frequency receivers are argued as an alternative to geodetic receivers for many applications. Calibrated low-cost antennas recently became available on the market making low-cost instruments more comparable with geodetic ones. The main goal of this research was to evaluate the noise of low-cost GNSS receivers, to compare the positioning quality from different types of low-cost antennas, and to analyze the positioning differences between low-cost and geodetic instruments. The results from a zero baseline test indicated that the u-blox multi-frequency receiver, namely, ZED-F9P, had low noise that was at the sub-millimeter level. To analyze the impact of the antennas in the obtained coordinates, a short baseline test was applied. Both tested uncalibrated antennas (Tallysman TW3882 and Survey) demonstrated satisfactory positioning performance. The Tallysman antenna was more accurate in the horizontal position determination, and the difference from the true value was only 0.1 mm; while, for the Survey antenna, the difference was 1.0 mm. For the ellipsoid height, the differences were 0.3 and 0.6 mm for the Survey and Tallysman antennas, respectively. The comparison of low-cost receivers with calibrated low-cost antennas (Survey Calibrated) and geodetic instruments proved better performance for the latter. The geodetic GNSS instruments were more accurate than the low-cost instruments, and the precision of the estimated coordinates from the geodetic network was also greater. Low-cost GNSS instruments were not at the same level as the geodetic ones; however, considering their cost, they demonstrated excellent performance that is sufficiently appropriate for various geodetic applications.
Collapse
|
12
|
Feasibility of Using Low-Cost Dual-Frequency GNSS Receivers for Land Surveying. SENSORS 2021; 21:s21061956. [PMID: 33799512 PMCID: PMC8001986 DOI: 10.3390/s21061956] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Revised: 03/04/2021] [Accepted: 03/09/2021] [Indexed: 11/16/2022]
Abstract
Global Navigation Satellite Systems (GNSS) have revolutionized land surveying, by determining position coordinates with centimeter-level accuracy in real-time or up to sub-millimeter accuracy in post-processing solutions. Although low-cost single-frequency receivers do not meet the accuracy requirements of many surveying applications, multi-frequency hardware is expected to overcome the major issues. Therefore, this paper is aimed at investigating the performance of a u-blox ZED-F9P receiver, connected to a u-blox ANN-MB-00-00 antenna, during multiple field experiments. Satisfactory signal acquisition was noticed but it resulted as >7 dB Hz weaker than with a geodetic-grade receiver, especially for low-elevation mask signals. In the static mode, the ambiguity fixing rate reaches 80%, and a horizontal accuracy of few centimeters was achieved during an hour-long session. Similar accuracy was achieved with the Precise Point Positioning (PPP) if a session is extended to at least 2.5 h. Real-Time Kinematic (RTK) and Network RTK measurements achieved a horizontal accuracy better than 5 cm and a sub-decimeter vertical accuracy. If a base station constituted by a low-cost receiver is used, the horizontal accuracy degrades by a factor of two and such a setup may lead to an inaccurate height determination under dynamic surveying conditions, e.g., rotating antenna of the mobile receiver.
Collapse
|
13
|
Zhu F, Zhang H, Huang L, Li X, Feng P. Research on Absolute Calibration of GNSS Receiver Delay through Clock-Steering Characterization. SENSORS (BASEL, SWITZERLAND) 2020; 20:E6063. [PMID: 33113797 PMCID: PMC7663689 DOI: 10.3390/s20216063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Revised: 10/22/2020] [Accepted: 10/22/2020] [Indexed: 11/18/2022]
Abstract
The receiver delay has a significant impact on global navigation satellite system (GNSS) time measurement. This article comprehensively analyzes the difficulty, composition, principle, and calculation of GNSS receiver delay. A universal method, based on clock-steering characterization, is proposed to absolutely calibrate all types of receivers. We use a hardware simulator to design several experiments to test the performance of GNSS receiver delay for different receiver types, radio frequency (RF) signals, operation status and time-to-phase (TtP). At first, through the receivers of Novatel and Septentrio, the channel delay of Septentrio is 2 ns far lower than 65 ns for Novatel, and for the inter-frequency bias of GLONASS L1, Septentrio tends to increase within 10 ns compared with decreasing of Novatel within 5 ns. Secondly, a representative receiver of UniNav-BDS (BeiDou) is chosen to test the influence of Ttp which may be ignored by users. Under continuous operation, the receiver delay shows a monotone reduction of 10 ns as TtP increased by 10 ns. However, under on-off operation, the receiver delay represents periodic variation. Through a zero-baseline comparison, we verifies the relation between receiver delay and TtP. At last, the article analyzes instrument errors and measurement errors in the experiment, and the combined uncertainty of absolute calibration is calculated with 1.36 ns.
Collapse
Affiliation(s)
- Feng Zhu
- National Time Service Center, Chinese Academy of Science, Xi’an 710600, China; (H.Z.); (L.H.); (X.L.); (P.F.)
- Technology and Engineering Center for Space Utilization, University of Chinese Academy of Science, Beijing 100039, China
- Key Laboratory of Precise Navigation and Timing Technology, Chinese Academy Science, Xi’an 710600, China
| | - Huijun Zhang
- National Time Service Center, Chinese Academy of Science, Xi’an 710600, China; (H.Z.); (L.H.); (X.L.); (P.F.)
- Technology and Engineering Center for Space Utilization, University of Chinese Academy of Science, Beijing 100039, China
- Key Laboratory of Precise Navigation and Timing Technology, Chinese Academy Science, Xi’an 710600, China
| | - Luxi Huang
- National Time Service Center, Chinese Academy of Science, Xi’an 710600, China; (H.Z.); (L.H.); (X.L.); (P.F.)
- Technology and Engineering Center for Space Utilization, University of Chinese Academy of Science, Beijing 100039, China
- Key Laboratory of Precise Navigation and Timing Technology, Chinese Academy Science, Xi’an 710600, China
| | - Xiaohui Li
- National Time Service Center, Chinese Academy of Science, Xi’an 710600, China; (H.Z.); (L.H.); (X.L.); (P.F.)
- Technology and Engineering Center for Space Utilization, University of Chinese Academy of Science, Beijing 100039, China
- Key Laboratory of Precise Navigation and Timing Technology, Chinese Academy Science, Xi’an 710600, China
| | - Ping Feng
- National Time Service Center, Chinese Academy of Science, Xi’an 710600, China; (H.Z.); (L.H.); (X.L.); (P.F.)
- Technology and Engineering Center for Space Utilization, University of Chinese Academy of Science, Beijing 100039, China
- Key Laboratory of Precise Navigation and Timing Technology, Chinese Academy Science, Xi’an 710600, China
| |
Collapse
|
14
|
Hamza V, Stopar B, Ambrožič T, Turk G, Sterle O. Testing Multi-Frequency Low-Cost GNSS Receivers for Geodetic Monitoring Purposes. SENSORS 2020; 20:s20164375. [PMID: 32764406 PMCID: PMC7474426 DOI: 10.3390/s20164375] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Revised: 07/27/2020] [Accepted: 08/03/2020] [Indexed: 12/03/2022]
Abstract
Global Navigation Satellite System (GNSS) technology is widely used for geodetic monitoring purposes. However, in cases where a higher risk of receiver damage is expected, geodetic GNSS receivers may be considered too expensive to be used. As an alternative, low-cost GNSS receivers that are cheap, light, and prove to be of adequate quality over short baselines, are considered. The main goal of this research is to evaluate the positional precision of a multi-frequency low-cost instrument, namely, ZED-F9P with u-blox ANN-MB-00 antenna, and to investigate its potential for displacement detection. We determined the positional precision within static survey, and the displacement detection within dynamic survey. In both cases, two baselines were set, with the same rover point equipped with a low-cost GNSS instrument. The base point of the first baseline was observed with a geodetic GNSS instrument, whereas the second baseline was observed with a low-cost GNSS instrument. The results from static survey for both baselines showed comparable results for horizontal components; the precision was on a level of 2 mm or better. For the height component, the results show a better performance of low-cost instruments. This may be a consequence of unknown antenna calibration parameters for low-cost GNSS antenna, while statistically significant coordinates of rover points were obtained from both baselines. The difference was again more significant in the height component. For the displacement detection, a device was used that imposes controlled movements with sub-millimeter accuracy. Results, obtained on a basis of 30-min sessions, show that low-cost GNSS instruments can detect displacements from 10 mm upwards with a high level of reliability. On the other hand, low-cost instruments performed slightly worse as far as accuracy is concerned.
Collapse
|