1
|
Li C, Wang J, Lan H, Yu Q. Enhanced drought tolerance and photosynthetic efficiency in Arabidopsis by overexpressing phosphoenolpyruvate carboxylase from a single-cell C4 halophyte Suaeda aralocaspica. FRONTIERS IN PLANT SCIENCE 2024; 15:1443691. [PMID: 39280952 PMCID: PMC11392766 DOI: 10.3389/fpls.2024.1443691] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Accepted: 08/06/2024] [Indexed: 09/18/2024]
Abstract
In crop genetic improvement, the introduction of C4 plants' characteristics, known for high photosynthetic efficiency and water utilization, into C3 plants has been a significant challenge. This study investigates the effects of the desert halophyte Suaeda aralocaspica SaPEPC1 gene from a single-cell C4 photosythetic pathway, on drought resistance and photosynthetic performance in Arabidopsis. We used transgenic Arabidopsis with Zea mays ZmPEPC1 from C4 plant with classic Kranz anatomical structure and Arabidopsis AtPEPC1 from C3 photosynthetic cycle plants as controls. The results demonstrated that C4 photosynthetic-type PEPCs could improve drought resistance in plants through stomatal closure, promoting antioxidant enzyme accumulation, and reducing reactive oxygen species (ROS) accumulation. Overexpression of SaPEPC1 was significantly more effective than ZmPEPC1 in enhancing drought tolerance. Notably, overexpressed SaPEPC1 significantly improved light saturation intensity, electron transport rate (ETR), photosynthetic rate (Pn), and photoprotection ability under intense light. Furthermore, overexpression SaPEPC1 or ZmPEPC1 enhanced the activity of key C4 photosynthetic enzymes, including phosphoenolpyruvate carboxylase (PEPC), pyruvate orthophosphate dikinase (PPDK) and NADP-malic enzyme (NADP-ME), and promoted photosynthetic product sugar accumulation. However, with AtPEPC1 overexpression showing no obvious improvement effect on drought and photosynthetic performance. Therefore, these results indicated that introducing C4-type PEPC into C3 plants can significantly enhance drought resistance and photosynthetic performance. However, SaPEPC1 from a single-cell C4 cycle plant exhibits more significant effect in ETR and PSII photosynthesis performance than ZmPEPC1 from a classical C4 anatomical structure plant, although the underlying mechanism requires further exploration.
Collapse
Affiliation(s)
- Caixia Li
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science and Technology, Xinjiang University, Urumqi, China
| | - Juan Wang
- Institute of Horticulture Crops, Xinjiang Academy of Agricultural Sciences, Urumqi, China
| | - Haiyan Lan
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science and Technology, Xinjiang University, Urumqi, China
| | - Qinghui Yu
- Institute of Horticulture Crops, Xinjiang Academy of Agricultural Sciences, Urumqi, China
| |
Collapse
|
2
|
Dynamic monitoring and analysis of factors influencing ecological environment quality in northern Anhui, China, based on the Google Earth Engine. Sci Rep 2022; 12:20307. [PMID: 36434105 PMCID: PMC9700754 DOI: 10.1038/s41598-022-24413-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2022] [Accepted: 11/15/2022] [Indexed: 11/27/2022] Open
Abstract
Monitoring the ecological environment quality is an important task that is often connected to achieving sustainable development. Timely and accurate monitoring can provide a scientific basis for regional land use planning and environmental protection. Based on the Google Earth Engine platform coupled with the greenness, humidity, heat, and dryness identified in remote sensing imagery, this paper constructed a remote sensing ecological index (RSEI) covering northern Anhui and quantitatively analyzed the characteristics of the spatiotemporal changes in the ecological environment quality from 2001 to 2020. Geodetector software was used to explore the mechanism driving the characteristics of spatial differentiation in the ecological environment quality. The main conclusions were as follows. First, the ecological environment quality in northern Anhui declined rapidly from 2001 to 2005, but the rate of decline slowed from 2005 to 2020 and a trend of improvement gradually emerged. The ecological environment quality of Huainan from 2001 to 2020 was better and more stable compared with other regional cities. Bengbu and Suzhou showed a trend of initially declining and then improving. Huaibei, Fuyang, and Bozhou demonstrated a trend of a fluctuating decline over time. Second, vegetation coverage was the main influencing factor of the RSEI, while rainfall was a secondary factor in northern Anhui from 2001 to 2020. Finally, interactions were observed between the factors, and the explanatory power of these factors increased significantly after the interaction. The most apparent interaction was between vegetation coverage and rainfall (q = 0.404). In addition, we found that vegetation abundance had a positive impact on ecological environment quality, while population density and urbanization had negative impacts, and the ecological environment quality of wetlands was the highest. Our research will provide a theoretical basis for environmental protection and support the high-quality development of northern Anhui.
Collapse
|
3
|
Formulation of a Structural Equation Relating Remotely Sensed Electron Transport Rate Index to Photosynthesis Activity. REMOTE SENSING 2022. [DOI: 10.3390/rs14102439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Chlorophyll fluorescence can be remotely sensed in open fields via the Fraunhofer atmospheric absorption lines of oxygen and is termed Solar-Induced Fluorescence (SIF). SIF has been extensively related to carbon assimilation at global ecology scale and was interpreted as electron transport rate. However, SIF was shown to be unrelated directly to carbon assimilation at finer-scale resolution and may be related to other photosynthetic processes, such as non-photochemical quenching. This raises the question how exactly the SIF relates to actual photosynthetic activity. Based on a recently introduced spectral index that relates the photochemical fraction of SIF to the actual electron transport rate, this study presents the formulation of a structural equation, relating the remotely sensed electron transport rate index to fluorescence yield which considers the various fates of energetic quanta and electron excitation. The proposed structural equations are used to examine and interpret the relation between the novel spectral index and seasonal growth of corn (Z. mays Sh2, ‘super sweet’) on a platform of fertilization concentration gradient. Potential uses, practical and theoretical, for the proposed structural equations are discussed.
Collapse
|
4
|
Tadmor Y, Raz A, Reikin-Barak S, Ambastha V, Shemesh E, Leshem Y, Crane O, Stern RA, Goldway M, Tchernov D, Liran O. Metamitron, a Photosynthetic Electron Transport Chain Inhibitor, Modulates the Photoprotective Mechanism of Apple Trees. PLANTS (BASEL, SWITZERLAND) 2021; 10:plants10122803. [PMID: 34961274 PMCID: PMC8707989 DOI: 10.3390/plants10122803] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Revised: 12/14/2021] [Accepted: 12/15/2021] [Indexed: 05/17/2023]
Abstract
Chemical thinning of apple fruitlets is an important practice as it reduces the natural fruit load and, therefore, increases the size of the final fruit for commercial markets. In apples, one chemical thinner used is Metamitron, which is sold as the commercial product Brevis® (Adama, Ashdod, Israel). This thinner inhibits the electron transfer between Photosystem II and Quinone-b within light reactions of photosynthesis. In this study, we investigated the responses of two apple cultivars-Golden Delicious and Top Red-and photosynthetic light reactions after administration of Brevis®. The analysis revealed that the presence of the inhibitor affects both cultivars' energetic status. The kinetics of the photoprotective mechanism's sub-processes are attenuated in both cultivars, but this seems more severe in the Top Red cultivar. State transitions of the antenna and Photosystem II repair cycle are decreased substantially when the Metamitron concentration is above 0.6% in the Top Red cultivar but not in the Golden Delicious cultivar. These attenuations result from a biased absorbed energy distribution between photochemistry and photoprotection pathways in the two cultivars. We suggest that Metamitron inadvertently interacts with photoprotective mechanism-related enzymes in chloroplasts of apple tree leaves. Specifically, we hypothesize that it may interact with the kinases responsible for the induction of state transitions and the Photosystem II repair cycle.
Collapse
Affiliation(s)
- Yuval Tadmor
- Group of Agrophysics Studies, MIGAL—Galilee Research Institute, Kiryat Shemona, Upper Galilee 11016, Israel;
| | - Amir Raz
- Group of Molecular Genetics in Agriculture, MIGAL—Galilee Research Institute, Kiryat Shemona, Upper Galilee 11016, Israel; (A.R.); (M.G.)
- Faculty of Sciences and Technology, Tel-Hai Academic College, Kiryat-Shemona, Upper Galilee 12208, Israel; (Y.L.); (R.A.S.)
| | - Shira Reikin-Barak
- Northern R&D, Kiryat Shemona, Upper Galilee 11016, Israel; (S.R.-B.); (O.C.)
| | - Vivek Ambastha
- Group of Plant Development and Adaptation, MIGAL—Galilee Research Institute, Kiryat Shemona, Upper Galilee 11016, Israel;
| | - Eli Shemesh
- Morris Kahn Marine Research Station, Department of Marine Biology, Leon H. Charney School of Marine Sciences, University of Haifa, Mt. Carmel, Haifa 3498838, Israel; (E.S.); (D.T.)
| | - Yehoram Leshem
- Faculty of Sciences and Technology, Tel-Hai Academic College, Kiryat-Shemona, Upper Galilee 12208, Israel; (Y.L.); (R.A.S.)
- Group of Plant Development and Adaptation, MIGAL—Galilee Research Institute, Kiryat Shemona, Upper Galilee 11016, Israel;
| | - Omer Crane
- Northern R&D, Kiryat Shemona, Upper Galilee 11016, Israel; (S.R.-B.); (O.C.)
| | - Raphael A. Stern
- Faculty of Sciences and Technology, Tel-Hai Academic College, Kiryat-Shemona, Upper Galilee 12208, Israel; (Y.L.); (R.A.S.)
- Northern R&D, Kiryat Shemona, Upper Galilee 11016, Israel; (S.R.-B.); (O.C.)
| | - Martin Goldway
- Group of Molecular Genetics in Agriculture, MIGAL—Galilee Research Institute, Kiryat Shemona, Upper Galilee 11016, Israel; (A.R.); (M.G.)
- Faculty of Sciences and Technology, Tel-Hai Academic College, Kiryat-Shemona, Upper Galilee 12208, Israel; (Y.L.); (R.A.S.)
| | - Dan Tchernov
- Morris Kahn Marine Research Station, Department of Marine Biology, Leon H. Charney School of Marine Sciences, University of Haifa, Mt. Carmel, Haifa 3498838, Israel; (E.S.); (D.T.)
| | - Oded Liran
- Group of Agrophysics Studies, MIGAL—Galilee Research Institute, Kiryat Shemona, Upper Galilee 11016, Israel;
- Morris Kahn Marine Research Station, Department of Marine Biology, Leon H. Charney School of Marine Sciences, University of Haifa, Mt. Carmel, Haifa 3498838, Israel; (E.S.); (D.T.)
- Correspondence:
| |
Collapse
|