1
|
Xue C, Zan M, Zhou Y, Chen Z, Kong J, Yang S, Zhai L, Zhou J. Response of solar-induced chlorophyll fluorescence-based spatial and temporal evolution of vegetation in Xinjiang to multiscale drought. FRONTIERS IN PLANT SCIENCE 2024; 15:1418396. [PMID: 39184576 PMCID: PMC11344270 DOI: 10.3389/fpls.2024.1418396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Accepted: 07/16/2024] [Indexed: 08/27/2024]
Abstract
Climate change and human activities have increased droughts, especially overgrazing and deforestation, which seriously threaten the balance of terrestrial ecosystems. The ecological carrying capacity and vegetation cover in the arid zone of Xinjiang, China, are generally low, necessitating research on vegetation response to drought in such arid regions. In this study, we analyzed the spatial and temporal characteristics of drought in Xinjiang from 2001 to 2020 and revealed the response mechanism of SIF to multi-timescale drought in different vegetation types using standardized precipitation evapotranspiration index (SPEI), solar-induced chlorophyll fluorescence (SIF), normalized difference vegetation index (NDVI), and enhanced vegetation index (EVI) data. We employed trend analysis, standardized anomaly index (SAI), Pearson correlation, and trend prediction techniques. Our investigation focused on the correlations between GOSIF (a new SIF product based on the Global Orbital Carbon Observatory-2), NDVI, and EVI with SPEI12 for different vegetation types over the past two decades. Additionally, we examined the sensitivities of vegetation GOSIF to various scales of SPEI in a typical drought year and predicted future drought trends in Xinjiang. The results revealed that the spatial distribution characteristics of GOSIF, normalized difference vegetation index (NDVI), and enhanced vegetation index (EVI) were consistent, with mean correlations with SPEI at 0.197, 0.156, and 0.128, respectively. GOSIF exhibited the strongest correlation with SPEI, reflecting the impact of drought stress on vegetation photosynthesis. Therefore, GOSIF proves advantageous for drought monitoring purposes. Most vegetation types showed a robust response of GOSIF to SPEI at a 9-month scale during a typical drought year, with grassland GOSIF being particularly sensitive to drought. Our trend predictions indicate a decreasing trend in GOSIF vegetation in Xinjiang, coupled with an increasing trend in drought. This study found that compared with that of the traditional greenness vegetation index, GOSIF has obvious advantages in monitoring drought in the arid zone of Xinjiang. Furthermore, it makes up for the lack of research on the mechanism of vegetation GOSIF response to drought on multiple timescales in the arid zone. These results provide strong theoretical support for investigating the monitoring, assessment, and prediction of vegetation response to drought in Xinjiang, which is vital for comprehending the mechanisms of carbon and water cycles in terrestrial ecosystems.
Collapse
Affiliation(s)
- Cong Xue
- School of Geographical Science and Tourism, Xinjiang Normal University, Urumqi, China
- Xinjiang Laboratory of Lake Environment and Resources in the Arid Zone, Urumqi, China
| | - Mei Zan
- School of Geographical Science and Tourism, Xinjiang Normal University, Urumqi, China
- Xinjiang Laboratory of Lake Environment and Resources in the Arid Zone, Urumqi, China
| | - Yanlian Zhou
- School of Geography and Ocean Science, Nanjing University, Nanjing, China
| | - Zhizhong Chen
- School of Geographical Science and Tourism, Xinjiang Normal University, Urumqi, China
- Xinjiang Laboratory of Lake Environment and Resources in the Arid Zone, Urumqi, China
| | - Jingjing Kong
- School of Geographical Science and Tourism, Xinjiang Normal University, Urumqi, China
- Xinjiang Laboratory of Lake Environment and Resources in the Arid Zone, Urumqi, China
| | - Shunfa Yang
- School of Geographical Science and Tourism, Xinjiang Normal University, Urumqi, China
- Xinjiang Laboratory of Lake Environment and Resources in the Arid Zone, Urumqi, China
| | - Lili Zhai
- School of Geographical Science and Tourism, Xinjiang Normal University, Urumqi, China
- Xinjiang Laboratory of Lake Environment and Resources in the Arid Zone, Urumqi, China
| | - Jia Zhou
- School of Geographical Science and Tourism, Xinjiang Normal University, Urumqi, China
- Xinjiang Laboratory of Lake Environment and Resources in the Arid Zone, Urumqi, China
| |
Collapse
|
2
|
Zhuang QL, Yuan HY, Qi JQ, Sun ZR, Tao BX, Zhang BH. Phosphorus fertiliser application mitigates the negative effects of microplastic on soil microbes and rice growth. JOURNAL OF HAZARDOUS MATERIALS 2024; 465:133278. [PMID: 38118199 DOI: 10.1016/j.jhazmat.2023.133278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 12/09/2023] [Accepted: 12/13/2023] [Indexed: 12/22/2023]
Abstract
Soil microplastics (MPs) have attracted widespread attention recently. Most studies have explored how soil MPs affect the soil's physicochemical parameters, matter circulation, and soil microbial community assembly. Similarly, a key concern in agricultural development has been the use of phosphorus (P) fertiliser, which is essential for plant health and development. However, the relationship between MPs and phosphate fertilisers and their effects on the soil environment and plant growth remains elusive. This study assessed the influence of adding low-density polyethylene MPs (1%) with different phosphate fertiliser application rates on microbial communities and rice biomass. Our results showed that MPs changed the structure of soil bacterial and phoD-harbouring microbial communities in the treatment with P fertiliser at the same level and suppressed the interactions of phoD-harbouring microorganisms. In addition, we found that MPs contamination inhibited rice growth; however, the inclusion of P fertiliser in MP-contaminated soils reduced the inhibitory action of MPs on rice growth, probably because the presence with P fertiliser promoted the uptake of NO3--N by rice in MP-contaminated soils. Our results provide further insights into guiding agricultural production, improving agricultural management, and rationally applying phosphate fertilisers in the context of widespread MPs pollution and global P resource constraints.
Collapse
Affiliation(s)
- Qi-Lu Zhuang
- School of Geography and Environment, Liaocheng University, Liaocheng 252000, China
| | - Hai-Yan Yuan
- School of Geography and Environment, Liaocheng University, Liaocheng 252000, China.
| | - Jian-Qing Qi
- School of Geography and Environment, Liaocheng University, Liaocheng 252000, China
| | - Zhao-Ran Sun
- School of Geography and Environment, Liaocheng University, Liaocheng 252000, China
| | - Bao-Xian Tao
- School of Geography and Environment, Liaocheng University, Liaocheng 252000, China
| | - Bao-Hua Zhang
- School of Geography and Environment, Liaocheng University, Liaocheng 252000, China
| |
Collapse
|
3
|
Zhu X, Liu T, Xu K, Chen C. The impact of high temperature and drought stress on the yield of major staple crops in northern China. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2022; 314:115092. [PMID: 35460982 DOI: 10.1016/j.jenvman.2022.115092] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Revised: 04/13/2022] [Accepted: 04/14/2022] [Indexed: 06/14/2023]
Abstract
The study of the impact of high temperature and drought on the yield of major staple crops can provide important scientific support for the decision-making of agricultural sustainable development. Based on the temperature and precipitation data of the European Centre for Medium-Range Weather Forecasts (ECMWF) ERA 5 for northern China, this paper calculates three indexes, the standard precipitation index (SPI), standardized precipitation evapotranspiration index (SPEI) and the extreme degree-day (EDD), from 1979 to 2017. Monthly SPI and monthly SPEI were calculated at 1 - to - 12 month lags, and EDD was calculated per crop growth season. The yield of winter wheat, spring wheat and summer maize in each province of the study area from 1979 to 2017 was de-trended, and the relative fluctuation of the yield of the three crops was calculated. The change trends of SPI, SPEI and EDD were analysed using the Mann-Kendall test and Sen's slope. The single and interactive effects of high temperature and drought on crop yield were studied using multidimensional Copula function. The results show that: 1) Both high temperature and drought stress in northern China show an increasing trend. The drought trend in the study area detected based on SPEI was greater than the drought trend detected by SPI. The difference between SPEI and SPI in the winter wheat growing season was smaller than that in the spring wheat and maize growing seasons. 2) With the increase in EDD and the decrease of SPI/SPEI values, the probability of negative yield fluctuation gradually increased, and the probability of positive yield fluctuation gradually decreased. Under the same drought and high temperature conditions, the probability of yield fluctuation varies among different crops and different provinces. Drought has a greater impact on crop yield than high temperature. Both the single and interactive effects of drought and high temperature on yield are nonlinear. 3) Irrigation can effectively alleviate the impact of drought and high temperature on yield. In heavily irrigated provinces, the effects of both high temperature and drought on crop yield are not obvious.
Collapse
Affiliation(s)
- Xiufang Zhu
- Key Laboratory of Environmental Change and Natural Disaster, Ministry of Education, Beijing Normal University, Beijing, 100875, China; Institute of Remote Sensing Science and Engineering, Faculty of Geographical Science, Beijing Normal University, Beijing, 100875, China
| | - Tingting Liu
- Institute of Remote Sensing Science and Engineering, Faculty of Geographical Science, Beijing Normal University, Beijing, 100875, China.
| | - Kun Xu
- Institute of Remote Sensing Science and Engineering, Faculty of Geographical Science, Beijing Normal University, Beijing, 100875, China
| | - Changxiu Chen
- Center for Geodata and Analysis, Faculty of Geographical Science, Beijing Normal University, Beijing, 100875, China
| |
Collapse
|
4
|
The Resilience of Vegetation to the 2009/2010 Extreme Drought in Southwest China. FORESTS 2022. [DOI: 10.3390/f13060851] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
The 2009/2010 extreme drought in southwest China (SWC) was a “once-in-a-century” drought event, which caused unprecedented damage to the regional ecology and socioeconomic development. The event provided a chance to explore the resilience of vegetation growth and productivity to the extreme drought. Here, we used the self-calibrating Palmer drought severity index (scPDSI) to describe the characteristics of the extreme drought. Vegetation growth and productivity indices, including the normalized difference vegetation index (NDVI), leaf area index (LAI), and gross primary productivity (GPP), were applied to analyze the resilience of different vegetation types to the extreme drought. Our results showed that the extreme drought event occurred mainly in Yunnan Province, Guizhou Province, central and northern Guangxi Zhuang Autonomous Region, and northwestern Sichuan Province. The spatial heterogeneity of the extreme drought was related to the temperature increase and water deficit. During the extreme drought, the vegetation growth and productivity of evergreen broadleaf forest were the least suppressed, whereas cropland was greatly suppressed. The recovery of cropland was higher than that of evergreen broadleaf forest. NDVI and LAI were recovered in more than 80% of the drought-affected area within 5 months, whereas GPP required a longer time to recover. Moreover, the results of multiple linear regression showed that an increase in surface soil moisture was able to significantly improve the resistance of vegetation NDVI and LAI in evergreen broadleaf forest, evergreen needleleaf forest, evergreen broadleaf shrubland, deciduous broadleaf shrubland, and grassland. Our study highlights the differences in the resilience of different vegetation types to extreme drought and indicates that surface soil moisture is an important factor affecting vegetation resistance in SWC.
Collapse
|
5
|
Assessing Vegetation Ecosystem Resistance to Drought in the Middle Reaches of the Yellow River Basin, China. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:ijerph19074180. [PMID: 35409863 PMCID: PMC8998568 DOI: 10.3390/ijerph19074180] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Revised: 03/28/2022] [Accepted: 03/29/2022] [Indexed: 11/16/2022]
Abstract
The frequency and intensity of droughts are increasing in many parts of the world as a result of global climate change and human activity, posing a serious threat to regional ecological security. The climate in the middle reaches of the Yellow River Basin (MRYRB) has been warm and dry in recent years, with frequent droughts. In order to investigate the temporal trend of drought, and reveal the resistance of vegetation to drought in the MRYRB, this study used remotely-sensed vegetation index products (MODIS-NDVI and SPOT-NDVI) and the standardized precipitation evapotranspiration index (SPEI). The results indicated that: (1) drought intensity showed a weak upward trend in the study area from 2000 to 2018, with linear growth rates of SPEI at temporal scales of 1, 3, 6, 9 and 12 months of -0.002, 0.0034, 0.0198, 0.0234, and 0.0249, respectively; (2) drought was positively correlated with vegetation in most areas (97.6%), and vegetation was most affected by drought on long-term time scales (9 and 12 months); (3) with the extension of drought, vegetation resistance index decreased, then gradually recovered after the end of the drought. Forest had the longest resistance duration of 260 days, while grassland and cultivated land had resistance durations of only 170 days. This study adds to the understanding of vegetation's ability to withstand drought, and these findings provide evidence to support drought response in the MRYRB.
Collapse
|
6
|
Study on the Classification and Change Detection Methods of Drylands in Arid and Semi-Arid Regions. REMOTE SENSING 2022. [DOI: 10.3390/rs14051256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The aim of this study was to clarify the distribution of irrigated drylands in arid and semi-arid areas, where complex terrain, diverse crops and staggered cultivated lands exist. This paper studied the classification methods of irrigated drylands based on temperature, precipitation, Normalized Difference Vegetation Index (NDVI) and Normalized Difference Water Index (NDWI) from Landsat data in the one-harvest area of the northern Loess Plateau of China by using the Google Earth Engine (GEE) platform. An extraction method was proposed for irrigated drylands in arid and semi-arid regions of northwest China. In addition, the change types of irrigated and rainfed drylands in the two periods were classified, and a method was also put forward to directly classify the change types by using the image differences between the two periods combined with the classification results of each period. It was found that combining the ratio of NDVI and NDWI with the accumulated values of temperature and precipitation of the 30 days before imaging could effectively improve the classification accuracy. Moreover, directly classifying the gaps of remote sensing factors in the time dimension before combining spatial clustering information could yield a more accurate type of change, because the accumulation of errors in the change maps obtained from the overlay analysis of distribution maps of the two periods could be avoided. The accuracy of classification could be improved by introducing the dynamic information of time dimension into the classification of historical periods. This study complements the extraction method for this type of irrigated dryland, and the classification results can improve the accuracy of existing products in terms of spatial resolution, which can fill the shortage of detailed distribution data for irrigated and rainfed drylands in this region.
Collapse
|
7
|
Quantifying Drought Resistance of Drylands in Northern China from 1982 to 2015: Regional Disparity in Drought Resistance. FORESTS 2022. [DOI: 10.3390/f13010100] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Drylands are expected to be affected by greater global drought variability in the future; consequently, how dryland ecosystems respond to drought events needs urgent attention. In this study, the Normalized Vegetation Index (NDVI) and Standardized Precipitation and Evaporation Index (SPEI) were employed to quantify the resistance of ecosystem productivity to drought events in drylands of northern China between 1982 and 2015. The relationships and temporal trends of resistance and drought characteristics, which included length, severity, and interval, were examined. The temporal trends of resistance responded greatest to those of drought length, and drought length was the most sensitive and had the strongest negative effect with respect to resistance. Resistance decreased with increasing drought length and did not recover with decreasing drought length in hyper-arid regions after 2004, but did recover in arid and semi-arid regions from 2004 and in dry sub-humid regions from 1997. We reason that the regional differences in resistance may result from the seed bank and compensatory effects of plant species under drought events. In particular, this study implies that the ecosystem productivity of hyper-arid regions is the most vulnerable to drought events, and the drought–resistance and drought–recovery interactions are likely to respond abnormally or even shift under ongoing drought change.
Collapse
|