1
|
Sweet DD, Tirado SB, Cooper J, Springer NM, Hirsch CD, Hirsch CN. Temporally resolved growth patterns reveal novel information about the polygenic nature of complex quantitative traits. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2024. [PMID: 39462452 DOI: 10.1111/tpj.17092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2024] [Revised: 09/29/2024] [Accepted: 10/08/2024] [Indexed: 10/29/2024]
Abstract
Plant height can be an indicator of plant health across environments and used to identify superior genotypes. Typically plant height is measured at a single timepoint when plants reach terminal height. Evaluating plant height using unoccupied aerial vehicles allows for measurements throughout the growing season, facilitating a better understanding of plant-environment interactions and the genetic basis of this complex trait. To assess variation throughout development, plant height data was collected from planting until terminal height at anthesis (14 flights 2018, 27 in 2019, 12 in 2020, and 11 in 2021) for a panel of ~500 diverse maize inbred lines. The percent variance explained in plant height throughout the season was significantly explained by genotype (9-48%), year (4-52%), and genotype-by-year interactions (14-36%) to varying extents throughout development. Genome-wide association studies revealed 717 significant single nucleotide polymorphisms associated with plant height and growth rate at different parts of the growing season specific to certain phases of vegetative growth. When plant height growth curves were compared to growth curves estimated from canopy cover, greater Fréchet distance stability was observed in plant height growth curves than for canopy cover. This indicated canopy cover may be more useful for understanding environmental modulation of overall plant growth and plant height better for understanding genotypic modulation of overall plant growth. This study demonstrated that substantial information can be gained from high temporal resolution data to understand how plants differentially interact with the environment and can enhance our understanding of the genetic basis of complex polygenic traits.
Collapse
Affiliation(s)
- Dorothy D Sweet
- Department of Agronomy and Plant Genetics, University of Minnesota, Saint Paul, Minnesota, 55108, USA
- Department of Plant Pathology, University of Minnesota, Saint Paul, Minnesota, 55108, USA
| | - Sara B Tirado
- Department of Agronomy and Plant Genetics, University of Minnesota, Saint Paul, Minnesota, 55108, USA
- Department of Plant and Microbial Biology, University of Minnesota, Saint Paul, Minnesota, 55108, USA
| | - Julian Cooper
- Department of Plant Pathology, University of Minnesota, Saint Paul, Minnesota, 55108, USA
| | - Nathan M Springer
- Department of Plant and Microbial Biology, University of Minnesota, Saint Paul, Minnesota, 55108, USA
| | - Cory D Hirsch
- Department of Plant Pathology, University of Minnesota, Saint Paul, Minnesota, 55108, USA
| | - Candice N Hirsch
- Department of Agronomy and Plant Genetics, University of Minnesota, Saint Paul, Minnesota, 55108, USA
| |
Collapse
|
2
|
Adak A, DeSalvio AJ, Arik MA, Murray SC. Field-based high-throughput phenotyping enhances phenomic and genomic predictions for grain yield and plant height across years in maize. G3 (BETHESDA, MD.) 2024; 14:jkae092. [PMID: 38776257 PMCID: PMC11228873 DOI: 10.1093/g3journal/jkae092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2024] [Accepted: 04/24/2024] [Indexed: 05/24/2024]
Abstract
Field-based phenomic prediction employs novel features, like vegetation indices (VIs) from drone images, to predict key agronomic traits in maize, despite challenges in matching biomarker measurement time points across years or environments. This study utilized functional principal component analysis (FPCA) to summarize the variation of temporal VIs, uniquely allowing the integration of this data into phenomic prediction models tested across multiple years (2018-2021) and environments. The models, which included 1 genomic, 2 phenomic, 2 multikernel, and 1 multitrait type, were evaluated in 4 prediction scenarios (CV2, CV1, CV0, and CV00), relevant for plant breeding programs, assessing both tested and untested genotypes in observed and unobserved environments. Two hybrid populations (415 and 220 hybrids) demonstrated the visible atmospherically resistant index's strong temporal correlation with grain yield (up to 0.59) and plant height. The first 2 FPCAs explained 59.3 ± 13.9% and 74.2 ± 9.0% of the temporal variation of temporal data of VIs, respectively, facilitating predictions where flight times varied. Phenomic data, particularly when combined with genomic data, often were comparable to or numerically exceeded the base genomic model in prediction accuracy, particularly for grain yield in untested hybrids, although no significant differences in these models' performance were consistently observed. Overall, this approach underscores the effectiveness of FPCA and combined models in enhancing the prediction of grain yield and plant height across environments and diverse agricultural settings.
Collapse
Affiliation(s)
- Alper Adak
- Department of Soil and Crop Sciences, Texas A&M University, College Station, TX 77843-2474, USA
| | - Aaron J DeSalvio
- Interdisciplinary Graduate Program in Genetics and Genomics (Department of Biochemistry and Biophysics), Texas A&M University, College Station, TX 77843-2128, USA
| | - Mustafa A Arik
- Department of Soil and Crop Sciences, Texas A&M University, College Station, TX 77843-2474, USA
| | - Seth C Murray
- Department of Soil and Crop Sciences, Texas A&M University, College Station, TX 77843-2474, USA
| |
Collapse
|
3
|
Adak A, Murray SC, Washburn JD. Deciphering temporal growth patterns in maize: integrative modeling of phenotype dynamics and underlying genomic variations. THE NEW PHYTOLOGIST 2024; 242:121-136. [PMID: 38348523 DOI: 10.1111/nph.19575] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Accepted: 01/11/2024] [Indexed: 03/08/2024]
Abstract
Quantifying the temporal or longitudinal growth dynamics of crops in diverse environmental conditions is crucial for understanding plant development, requiring further modeling techniques. In this study, we analyzed the growth patterns of two different maize (Zea mays L.) populations using high-throughput phenotyping with a maize population consisting of 515 recombinant inbred lines (RILs) grown in Texas and a hybrid population containing 1090 hybrids grown in Missouri. Two models, Gaussian peak and functional principal component analysis (FPCA), were employed to study the Normalized Green-Red Difference Index (NGRDI) scores. The Gaussian peak model showed strong correlations (c. 0.94 for RILs and c. 0.97 for hybrids) between modeled and non-modeled temporal trajectories. Functional principal component analysis differentiated NGRDI trajectories in RILs under different conditions, capturing substantial variability (75%, 20%, and 5% for RILs; 88% and 12% for hybrids). By comparing these models with conventional BLUP values, common quantitative trait loci (QTLs) were identified, containing candidate genes of brd1, pin11, zcn8 and rap2. The harmony between these loci's additive effects and growing degree days, as well as the differentiation of RIL haplotypes across growth stages, underscores the significant interplay of these loci in driving plant development. These findings contribute to advancing understanding of plant-environment interactions and have implications for crop improvement strategies.
Collapse
Affiliation(s)
- Alper Adak
- Department of Soil and Crop Sciences, Texas A&M University, College Station, TX, 77843, USA
| | - Seth C Murray
- Department of Soil and Crop Sciences, Texas A&M University, College Station, TX, 77843, USA
| | | |
Collapse
|
4
|
Adak A, Kang M, Anderson SL, Murray SC, Jarquin D, Wong RKW, Katzfuß M. Phenomic data-driven biological prediction of maize through field-based high-throughput phenotyping integration with genomic data. JOURNAL OF EXPERIMENTAL BOTANY 2023; 74:5307-5326. [PMID: 37279568 DOI: 10.1093/jxb/erad216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Accepted: 06/02/2023] [Indexed: 06/08/2023]
Abstract
High-throughput phenotyping (HTP) has expanded the dimensionality of data in plant research; however, HTP has resulted in few novel biological discoveries to date. Field-based HTP (FHTP), using small unoccupied aerial vehicles (UAVs) equipped with imaging sensors, can be deployed routinely to monitor segregating plant population interactions with the environment under biologically meaningful conditions. Here, flowering dates and plant height, important phenological fitness traits, were collected on 520 segregating maize recombinant inbred lines (RILs) in both irrigated and drought stress trials in 2018. Using UAV phenomic, single nucleotide polymorphism (SNP) genomic, as well as combined data, flowering times were predicted using several scenarios. Untested genotypes were predicted with 0.58, 0.59, and 0.41 prediction ability for anthesis, silking, and terminal plant height, respectively, using genomic data, but prediction ability increased to 0.77, 0.76, and 0.58 when phenomic and genomic data were used together. Using the phenomic data in a genome-wide association study, a heat-related candidate gene (GRMZM2G083810; hsp18f) was discovered using temporal reflectance phenotypes belonging to flowering times (both irrigated and drought) trials where heat stress also peaked. Thus, a relationship between plants and abiotic stresses belonging to a specific time of growth was revealed only through use of temporal phenomic data. Overall, this study showed that (i) it is possible to predict complex traits using high dimensional phenomic data between different environments, and (ii) temporal phenomic data can reveal a time-dependent association between genotypes and abiotic stresses, which can help understand mechanisms to develop resilient plants.
Collapse
Affiliation(s)
- Alper Adak
- Department of Soil and Crop Sciences, Texas A&M University, College Station, TX 77843-2474, USA
| | - Myeongjong Kang
- Department of Statistics, Texas A&M University, College Station, TX 77843, USA
| | | | - Seth C Murray
- Department of Soil and Crop Sciences, Texas A&M University, College Station, TX 77843-2474, USA
| | - Diego Jarquin
- Agronomy Department, University of Florida, Gainesville, FL 32611, USA
| | - Raymond K W Wong
- Department of Statistics, Texas A&M University, College Station, TX 77843, USA
| | - Matthias Katzfuß
- Department of Statistics, Texas A&M University, College Station, TX 77843, USA
| |
Collapse
|
5
|
Li Y, Yang X, Tong L, Wang L, Xue L, Luan Q, Jiang J. Phenomic selection in slash pine multi-temporally using UAV-multispectral imagery. FRONTIERS IN PLANT SCIENCE 2023; 14:1156430. [PMID: 37670863 PMCID: PMC10475579 DOI: 10.3389/fpls.2023.1156430] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Accepted: 08/02/2023] [Indexed: 09/07/2023]
Abstract
Genomic selection (GS) is an option for plant domestication that offers high efficiency in improving genetics. However, GS is often not feasible for long-lived tree species with large and complex genomes. In this paper, we investigated UAV multispectral imagery in time series to evaluate genetic variation in tree growth and developed a new predictive approach that is independent of sequencing or pedigrees based on multispectral imagery plus vegetation indices (VIs) for slash pine. Results show that temporal factors have a strong influence on the h2 of tree growth traits. High genetic correlations were found in most months, and genetic gain also showed a slight influence on the time series. Using a consistent ranking of family breeding values, optimal slash pine families were selected, obtaining a promising and reliable predictive ability based on multispectral+VIs (MV) alone or on the combination of pedigree and MV. The highest predictive value, ranging from 0.52 to 0.56, was found in July. The methods described in this paper provide new approaches for phenotypic selection (PS) using high-throughput multispectral unmanned aerial vehicle (UAV) technology, which could potentially be used to reduce the generation time for conifer species and increase the genetic granularity independent of sequencing or pedigrees.
Collapse
Affiliation(s)
- Yanjie Li
- State Key Laboratory of Tree Genetics and Breeding, Chinese Academy of Forestry, Beijing, China
- Research Institute of Subtropical Forestry, Chinese Academy of Forestry, Fuyang, Hangzhou, Zhejiang, China
- Key Laboratory of State Forestry and Grassland Administration on Subtropical Forest Cultivation, Fuyang, Hangzhou, Zhejiang, China
- Key Laboratory of Tree Breeding of Zhejiang Province, Fuyang, Hangzhou, Zhejiang, China
| | - Xinyu Yang
- Soybean Research Institute, National Center for Soybean Improvement, Key Laboratory of Biology and Genetic Improvement of Soybean (General, Ministry of Agriculture), State Key Laboratory of Crop Genetics and Germplasm Enhancement, Jiangsu Collaborative Innovation Center for Modern Crop Production, College of Agriculture, Nanjing Agricultural University, Nanjing, China
| | - Long Tong
- Chongqing Academy of Forestry, Chongqing, China
| | - Lingling Wang
- Forestry and Water Conservancy Bureau of Fuyang District in Hangzhou, Hangzhou, China
| | - Liang Xue
- State Key Laboratory of Tree Genetics and Breeding, Chinese Academy of Forestry, Beijing, China
- Research Institute of Subtropical Forestry, Chinese Academy of Forestry, Fuyang, Hangzhou, Zhejiang, China
- Key Laboratory of State Forestry and Grassland Administration on Subtropical Forest Cultivation, Fuyang, Hangzhou, Zhejiang, China
- Key Laboratory of Tree Breeding of Zhejiang Province, Fuyang, Hangzhou, Zhejiang, China
| | - Qifu Luan
- State Key Laboratory of Tree Genetics and Breeding, Chinese Academy of Forestry, Beijing, China
- Research Institute of Subtropical Forestry, Chinese Academy of Forestry, Fuyang, Hangzhou, Zhejiang, China
- Key Laboratory of State Forestry and Grassland Administration on Subtropical Forest Cultivation, Fuyang, Hangzhou, Zhejiang, China
- Key Laboratory of Tree Breeding of Zhejiang Province, Fuyang, Hangzhou, Zhejiang, China
| | - Jingmin Jiang
- Research Institute of Subtropical Forestry, Chinese Academy of Forestry, Fuyang, Hangzhou, Zhejiang, China
- Key Laboratory of State Forestry and Grassland Administration on Subtropical Forest Cultivation, Fuyang, Hangzhou, Zhejiang, China
- Key Laboratory of Tree Breeding of Zhejiang Province, Fuyang, Hangzhou, Zhejiang, China
| |
Collapse
|
6
|
Chatterjee S, Adak A, Wilde S, Nakasagga S, Murray SC. Cumulative temporal vegetation indices from unoccupied aerial systems allow maize (Zea mays L.) hybrid yield to be estimated across environments with fewer flights. PLoS One 2023; 18:e0277804. [PMID: 36701283 PMCID: PMC9879521 DOI: 10.1371/journal.pone.0277804] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Accepted: 11/03/2022] [Indexed: 01/27/2023] Open
Abstract
Unoccupied aerial systems (UAS) based high throughput phenotyping studies require further investigation to combine different environments and planting times into one model. Here 100 elite breeding hybrids of maize (Zea mays L.) were evaluated in two environment trials-one with optimal planting and irrigation (IHOT), and one dryland with delayed planting (DHOT). RGB (Red-Green-Blue) based canopy height measurement (CHM) and vegetation indices (VIs) were estimated from a UAS platform. Time series and cumulative VIs, by both summation (ΣVI-SUMs) and area under the curve (ΣVI-AUCs), were fit via machine learning regression modeling (random forest, linear, ridge, lasso, elastic net regressions) to estimate grain yield. VIs were more valuable predictors of yield to combine different environments than CHM. Time series VIs and CHM produced high accuracies (~68-72%), but inconsistent models. A little sacrifice in accuracy (~60-65%) produced consistent models using ΣVI-SUMs and CHM during pre-reproductive vegetative growth. Absence of VIs produced poorer accuracies (by about ~5-10%). Normalized difference type VIs produced maximum accuracies, and flowering times were the best times for UAS data acquisition. This study suggests that the best yielding varieties can be accurately predicted in new environments at or before flowering when combining multiple temporal flights and predictors.
Collapse
Affiliation(s)
- Sumantra Chatterjee
- Department of Soil and Crop Sciences, Texas A&M University, College Station, TX, United States of America
| | - Alper Adak
- Department of Soil and Crop Sciences, Texas A&M University, College Station, TX, United States of America
| | - Scott Wilde
- Department of Soil and Crop Sciences, Texas A&M University, College Station, TX, United States of America
| | - Shakirah Nakasagga
- Department of Soil and Crop Sciences, Texas A&M University, College Station, TX, United States of America
- Department of Horticulture, University of Wisconsin, Madison, Wisconsin, United States of America
| | - Seth C. Murray
- Department of Soil and Crop Sciences, Texas A&M University, College Station, TX, United States of America
- * E-mail:
| |
Collapse
|
7
|
Adak A, Murray SC, Anderson SL. Temporal phenomic predictions from unoccupied aerial systems can outperform genomic predictions. G3 (BETHESDA, MD.) 2022; 13:6851143. [PMID: 36445027 PMCID: PMC9836347 DOI: 10.1093/g3journal/jkac294] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Accepted: 10/21/2022] [Indexed: 11/30/2022]
Abstract
A major challenge of genetic improvement and selection is to accurately predict individuals with the highest fitness in a population without direct measurement. Over the last decade, genomic predictions (GP) based on genome-wide markers have become reliable and routine. Now phenotyping technologies, including unoccupied aerial systems (UAS also known as drones), can characterize individuals with a data depth comparable to genomics when used throughout growth. This study, for the first time, demonstrated that the prediction power of temporal UAS phenomic data can achieve or exceed that of genomic data. UAS data containing red-green-blue (RGB) bands over 15 growth time points and multispectral (RGB, red-edge and near infrared) bands over 12 time points were compared across 280 unique maize hybrids. Through cross-validation of untested genotypes in tested environments (CV2), temporal phenomic prediction (TPP), outperformed GP (0.80 vs 0.71); TPP and GP performed similarly in 3 other cross-validation scenarios. Genome-wide association mapping using area under temporal curves of vegetation indices (VIs) revealed 24.5% of a total of 241 discovered loci (59 loci) had associations with multiple VIs, explaining up to 51% of grain yield variation, less than GP and TPP predicted. This suggests TPP, like GP, integrates small effect loci well improving plant fitness predictions. More importantly, TPP appeared to work successfully on unrelated individuals unlike GP.
Collapse
Affiliation(s)
- Alper Adak
- Department of Soil and Crop Sciences, Texas A&M University, College Station, TX 77843-2474, USA
| | - Seth C Murray
- Corresponding author: Department of Soil and Crop Sciences, Texas A&M University, College Station, TX 77843-2474, USA.
| | | |
Collapse
|
8
|
Zandberg JD, Fernandez CT, Danilevicz MF, Thomas WJW, Edwards D, Batley J. The Global Assessment of Oilseed Brassica Crop Species Yield, Yield Stability and the Underlying Genetics. PLANTS (BASEL, SWITZERLAND) 2022; 11:2740. [PMID: 36297764 PMCID: PMC9610009 DOI: 10.3390/plants11202740] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Revised: 10/08/2022] [Accepted: 10/09/2022] [Indexed: 06/16/2023]
Abstract
The global demand for oilseeds is increasing along with the human population. The family of Brassicaceae crops are no exception, typically harvested as a valuable source of oil, rich in beneficial molecules important for human health. The global capacity for improving Brassica yield has steadily risen over the last 50 years, with the major crop Brassica napus (rapeseed, canola) production increasing to ~72 Gt in 2020. In contrast, the production of Brassica mustard crops has fluctuated, rarely improving in farming efficiency. The drastic increase in global yield of B. napus is largely due to the demand for a stable source of cooking oil. Furthermore, with the adoption of highly efficient farming techniques, yield enhancement programs, breeding programs, the integration of high-throughput phenotyping technology and establishing the underlying genetics, B. napus yields have increased by >450 fold since 1978. Yield stability has been improved with new management strategies targeting diseases and pests, as well as by understanding the complex interaction of environment, phenotype and genotype. This review assesses the global yield and yield stability of agriculturally important oilseed Brassica species and discusses how contemporary farming and genetic techniques have driven improvements.
Collapse
Affiliation(s)
- Jaco D. Zandberg
- School of Biological Sciences, University of Western Australia, Perth, WA 6009, Australia
| | | | - Monica F. Danilevicz
- School of Biological Sciences, University of Western Australia, Perth, WA 6009, Australia
| | - William J. W. Thomas
- School of Biological Sciences, University of Western Australia, Perth, WA 6009, Australia
| | - David Edwards
- Center for Applied Bioinformatics, School of Biological Sciences, University of Western Australia, Perth, WA 6009, Australia
| | - Jacqueline Batley
- School of Biological Sciences, University of Western Australia, Perth, WA 6009, Australia
| |
Collapse
|
9
|
Galuszynski NC, Duker R, Potts AJ, Kattenborn T. Automated mapping of Portulacaria afra canopies for restoration monitoring with convolutional neural networks and heterogeneous unmanned aerial vehicle imagery. PeerJ 2022; 10:e14219. [PMID: 36262418 PMCID: PMC9575683 DOI: 10.7717/peerj.14219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Accepted: 09/20/2022] [Indexed: 01/24/2023] Open
Abstract
Ecosystem restoration and reforestation often operate at large scales, whereas monitoring practices are usually limited to spatially restricted field measurements that are (i) time- and labour-intensive, and (ii) unable to accurately quantify restoration success over hundreds to thousands of hectares. Recent advances in remote sensing technologies paired with deep learning algorithms provide an unprecedented opportunity for monitoring changes in vegetation cover at spatial and temporal scales. Such data can feed directly into adaptive management practices and provide insights into restoration and regeneration dynamics. Here, we demonstrate that convolutional neural network (CNN) segmentation algorithms can accurately classify the canopy cover of Portulacaria afra Jacq. in imagery acquired using different models of unoccupied aerial vehicles (UAVs) and under variable light intensities. Portulacaria afra is the target species for the restoration of Albany Subtropical Thicket vegetation, endemic to South Africa, where canopy cover is challenging to measure due to the dense, tangled structure of this vegetation. The automated classification strategy presented here is widely transferable to restoration monitoring as its application does not require any knowledge of the CNN model or specialist training, and can be applied to imagery generated by a range of UAV models. This will reduce the sampling effort required to track restoration trajectories in space and time, contributing to more effective management of restoration sites, and promoting collaboration between scientists, practitioners and landowners.
Collapse
Affiliation(s)
| | - Robbert Duker
- Department of Botany, Nelson Mandela University, Gqeberha, South Africa
| | - Alastair J. Potts
- Department of Botany, Nelson Mandela University, Gqeberha, South Africa
| | - Teja Kattenborn
- Remote Sensing Centre for Earth System Research (RSC4Earth), Universität Leipzig, Leipzig, Germany
- German Centre for Integrative Biodiversity Research (iDiv), Halle-Jena-Leipzig, Leipzig, Germany
| |
Collapse
|
10
|
DeSalvio AJ, Adak A, Murray SC, Wilde SC, Isakeit T. Phenomic data-facilitated rust and senescence prediction in maize using machine learning algorithms. Sci Rep 2022; 12:7571. [PMID: 35534655 PMCID: PMC9085875 DOI: 10.1038/s41598-022-11591-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Accepted: 04/19/2022] [Indexed: 11/09/2022] Open
Abstract
Current methods in measuring maize (Zea mays L.) southern rust (Puccinia polyspora Underw.) and subsequent crop senescence require expert observation and are resource-intensive and prone to subjectivity. In this study, unoccupied aerial system (UAS) field-based high-throughput phenotyping (HTP) was employed to collect high-resolution aerial imagery of elite maize hybrids planted in the 2020 and 2021 growing seasons, with 13 UAS flights obtained from 2020 and 17 from 2021. In total, 36 vegetation indices (VIs) were extracted from mosaicked aerial images that served as temporal phenomic predictors for southern rust scored in the field and senescence as scored using UAS-acquired mosaic images. Temporal best linear unbiased predictors (TBLUPs) were calculated using a nested model that treated hybrid performance as nested within flights in terms of rust and senescence. All eight machine learning regressions tested (ridge, lasso, elastic net, random forest, support vector machine with radial and linear kernels, partial least squares, and k-nearest neighbors) outperformed a general linear model with both higher prediction accuracies (92-98%) and lower root mean squared error (RMSE) for rust and senescence scores (linear model RMSE ranged from 65.8 to 2396.5 across all traits, machine learning regressions RMSE ranged from 0.3 to 17.0). UAS-acquired VIs enabled the discovery of novel early quantitative phenotypic indicators of maize senescence and southern rust before being detectable by expert annotation and revealed positive correlations between grain filling time and yield (0.22 and 0.44 in 2020 and 2021), with practical implications for precision agricultural practices.
Collapse
Affiliation(s)
- Aaron J DeSalvio
- Department of Biochemistry & Biophysics, Texas A&M University, College Station, TX, 77843-2128, USA
| | - Alper Adak
- Department of Soil and Crop Sciences, Texas A&M University, College Station, TX, 77843-2474, USA
| | - Seth C Murray
- Department of Soil and Crop Sciences, Texas A&M University, College Station, TX, 77843-2474, USA.
| | - Scott C Wilde
- Department of Soil and Crop Sciences, Texas A&M University, College Station, TX, 77843-2474, USA
| | - Thomas Isakeit
- Department of Plant Pathology and Microbiology, Texas A&M University, College Station, TX, 77843-2474, USA
| |
Collapse
|
11
|
Van Tassel DL, DeHaan LR, Diaz-Garcia L, Hershberger J, Rubin MJ, Schlautman B, Turner K, Miller AJ. Re-imagining crop domestication in the era of high throughput phenomics. CURRENT OPINION IN PLANT BIOLOGY 2022; 65:102150. [PMID: 34883308 DOI: 10.1016/j.pbi.2021.102150] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2021] [Revised: 10/19/2021] [Accepted: 10/25/2021] [Indexed: 06/13/2023]
Abstract
De novo domestication is an exciting option for increasing species diversity and ecosystem service functionality of agricultural landscapes. Genomic selection (GS), the application of genomic markers to predict phenotypic traits in a breeding population, offers the possibility of rapid genetic improvement, making GS especially attractive for modifying traits of long-lived species. However, for some wild species just entering the domestication pipeline, especially those with large and complex genomes, a lack of funding and/or prior genome characterization, GS is often out of reach. High throughput phenomics has the potential to augment traditional pedigree selection, reduce costs and amplify impacts of genomic selection, and even create new predictive selection approaches independent of sequencing or pedigrees.
Collapse
Affiliation(s)
| | - Lee R DeHaan
- The Land Institute, 2440 E Water Well Rd., Salina, KS, 67401, USA
| | | | - Jenna Hershberger
- The Land Institute, 2440 E Water Well Rd., Salina, KS, 67401, USA; Donald Danforth Plant Science Center, 975 North Warson Road, Saint Louis, MO, 63132, USA
| | - Matthew J Rubin
- Donald Danforth Plant Science Center, 975 North Warson Road, Saint Louis, MO, 63132, USA
| | | | - Kathryn Turner
- The Land Institute, 2440 E Water Well Rd., Salina, KS, 67401, USA
| | - Allison J Miller
- Donald Danforth Plant Science Center, 975 North Warson Road, Saint Louis, MO, 63132, USA; Saint Louis University Department of Biology, 3507 Laclede Avenue, St. Louis, MO, 63103, USA.
| |
Collapse
|
12
|
Improving Biomass and Grain Yield Prediction of Wheat Genotypes on Sodic Soil Using Integrated High-Resolution Multispectral, Hyperspectral, 3D Point Cloud, and Machine Learning Techniques. REMOTE SENSING 2021. [DOI: 10.3390/rs13173482] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Sodic soils adversely affect crop production over extensive areas of rain-fed cropping worldwide, with particularly large areas in Australia. Crop phenotyping may assist in identifying cultivars tolerant to soil sodicity. However, studies to identify the most appropriate traits and reliable tools to assist crop phenotyping on sodic soil are limited. Hence, this study evaluated the ability of multispectral, hyperspectral, 3D point cloud, and machine learning techniques to improve estimation of biomass and grain yield of wheat genotypes grown on a moderately sodic (MS) and highly sodic (HS) soil sites in northeastern Australia. While a number of studies have reported using different remote sensing approaches and crop traits to quantify crop growth, stress, and yield variation, studies are limited using the combination of these techniques including machine learning to improve estimation of genotypic biomass and yield, especially in constrained sodic soil environments. At close to flowering, unmanned aerial vehicle (UAV) and ground-based proximal sensing was used to obtain remote and/or proximal sensing data, while biomass yield and crop heights were also manually measured in the field. Grain yield was machine-harvested at maturity. UAV remote and/or proximal sensing-derived spectral vegetation indices (VIs), such as normalized difference vegetation index, optimized soil adjusted vegetation index, and enhanced vegetation index and crop height were closely corresponded to wheat genotypic biomass and grain yields. UAV multispectral VIs more closely associated with biomass and grain yields compared to proximal sensing data. The red-green-blue (RGB) 3D point cloud technique was effective in determining crop height, which was slightly better correlated with genotypic biomass and grain yield than ground-measured crop height data. These remote sensing-derived crop traits (VIs and crop height) and wheat biomass and grain yields were further simulated using machine learning algorithms (multitarget linear regression, support vector machine regression, Gaussian process regression, and artificial neural network) with different kernels to improve estimation of biomass and grain yield. The artificial neural network predicted biomass yield (R2 = 0.89; RMSE = 34.8 g/m2 for the MS and R2 = 0.82; RMSE = 26.4 g/m2 for the HS site) and grain yield (R2 = 0.88; RMSE = 11.8 g/m2 for the MS and R2 = 0.74; RMSE = 16.1 g/m2 for the HS site) with slightly less error than the others. Wheat genotypes Mitch, Corack, Mace, Trojan, Lancer, and Bremer were identified as more tolerant to sodic soil constraints than Emu Rock, Janz, Flanker, and Gladius. The study improves our ability to select appropriate traits and techniques in accurate estimation of wheat genotypic biomass and grain yields on sodic soils. This will also assist farmers in identifying cultivars tolerant to sodic soil constraints.
Collapse
|